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Abstract. Swarm behavior emerges from the local interaction of agents
and their environment often encoded as simple rules. Extracting the rules
by watching a video of the overall swarm behavior could help us study
and control swarm behavior in nature, or artificial swarms that have been
designed by external actors. It could also serve as a new source of inspira-
tion for swarm robotics. Yet extracting such rules is challenging as there
is often no visible link between the emergent properties of the swarm
and their local interactions. To this end, we develop a method to auto-
matically extract understandable swarm controllers from video demon-
strations. The method uses evolutionary algorithms driven by a fitness
function that compares eight high-level swarm metrics. The method is
able to extract many controllers (behavior trees) in a simple collective
movement task. We then provide a qualitative analysis of behaviors that
resulted in different trees, but similar behaviors. This provides the first
steps toward automatic extraction of swarm controllers based on obser-
vations.

1 Introduction

Swarm behavior emerges from simple rules which govern the interaction among
the agents and between each agent with their surrounding environment. Birds
flocking, fish schooling, and bee foraging are examples of swarm behaviors found
in natural systems [25]. Inspiration has been taken from these natural systems
to design robot swarms. Swarm robotics could be used in fire and rescue, storage
organization, bridge inspection. Also, in a biomedical application where swarms
of large numbers of miniature robots coordinate to detect, monitor, or treat
medical conditions [22,24,4]. Swarm behavior is designed by defining the rules
of local interaction between agents and their environment [3].

Extracting an understandable controller by watching a video of the overall
swarm behavior can serve many purposes. It can be considered a design paradigm
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of swarm robotics by allowing for the automatic extraction of use-able rules for
robot swarms just based on a demonstrated behavior of artificial or natural
swarms. In addition, the readability of the controller can provide the swarm
engineer with the ability to understand, control, or adapt the rules to new robots.
Moreover, the method can be used to analyze the natural swarm system. For
example, extracting these rules can help behavioral ecology studies interpret how
these rules developed and whether the same rules evolved across different species
[18]. Another application involves understanding the motion of a particular cell
system, which can provide insight into the influence of new medical intervention
on this system [9]. This method could also be also used to control natural swarm
systems or learn the behavior directly from an online setting [2].

Using existing video observations of swarm behaviors as a source of learn-
ing has been investigated in several works. In the imitation learning context,
a video of an ideal behavior is used to train a controller mostly in form of
a neural network to produce a swarm imitating the demonstrated behavior
[23,27,14,29,16,20,28,5,7]. For the second context, video observations were used
to learn about biological swarm behavior by analyzing their trajectories to inves-
tigate what components of the individual controller were crucial for the emergent
behavior seen in different species [17,24,8,18,12,1,26].

Most of the proposed works do not provide high-level, understandable rules
that can easily be adopted to external systems. In this work, we develop a method
to automatically extract understandable controllers from a video observation of
swarm behavior. The only input to the proposed method is the video observation
of the swarm behavior with no information on the type of the swarm and no
requirement of a training dataset. The extracted controller takes the form of a
behavior tree to favour human readability [15,13]. An evolutionary algorithm is
used to produce a similar emergent behavior to the original observed behavior.
The fitness of the evolutionary algorithm is defined as the similarity between
two behaviors assessed using eight swarm motion metrics.

The paper is organized as follows. Section 2 introduces an overview of the
related works. Section 3 presents the components of the proposed extraction
method of the swarm’s local controller based on a video observation. Our results
are analyzed and discussed in section 4.

2 Related Works

The use of a video observation of swarm behavior as a source of learning can be
beneficial in several ways. It can be considered an automatic design approach for
swarm robotics. Also, it can provide insight into the underlying biological swarm
mechanism. Thus, the human readability of the learned controller is highly re-
garded. In this section, we review works that used video observation to learn a
swarm behavior.

Robot swarms are often seen as simple with (a) multiple robots that have
(b) simple capabilities and (c) only local perception where (d) all of them col-
lectively work to achieve specific behavior. Designing swarm behaviors that fit
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these characteristics comes with three important benefits: robustness, flexibility,
and scalability [3,21]. Designing the rules that make up a swarm robot’s local
controller is done either manually or by a careful definition of optimization’s
objective function to find the rules automatically [3,10]. In either case, expertise
about the desired swarm behavior is needed. Imitation learning eliminates this
requirement and allows the extraction of the swarm controller from a demon-
stration of the desired emergent swarm performance.

Imitation Learning provides the robots with the ability to learn directly
from an expert demonstration. This establishes a learning paradigm between
the swarm robots as a learner and the original swarm behavior presented in a
video as the teacher [23]. Different forms of these three components of imitation
learning: the expert swarm demonstration, the learner swarm, and the learning
mechanism have been proposed in several works. A teacher could take the form
of offline behavioral data consisting of states and actions at different time steps.
This behavioral data can be generated from a simulation of the target behav-
ior. Depending on the sensing capabilities of the target behavior, the dataset
could include images [27,14] or other inferred state descriptors [29,16,20]. The
teaching data can also be generated by capturing the live behavior from a bio-
logical swarm [20,28]. A robot demonstrator in an online learning environment
is another form of the teacher in the imitation learning process [5,7]. The imi-
tation learning process either aims to train a machine learning model that can
map the sensed information into action [27,16], to translate the observed trajec-
tory into performable form and copy it to the learner robot directly [29,5], or
to optimize a local controller using inverse reinforcement learning [28]. Most of
the works conducted in offline imitation learning for swarms focus on extracting
swarm controllers in different variations of neural network form,which are known
to lack interpretability. These variations include : Graph Neural Network [29],
Convolutional Neural Network (CNN) [27], Feed-Forward Neural Network[16],
Recurrent Neural Network [20] or a mixture of them [14].

Some of the studies that propose methods to extract rules from video obser-
vations of swarms have a different goal than imitation learning. While imitation
learning aims to gain the extracted rules as a learned task that produce the col-
lective behavior robustly in the same or different environment, these works are
only concerned with understanding the mechanism of the behavior observed in
the video. Observation-based rule extraction uses parameter fitting techniques
such as Bayesian inference, force matching and additive mixture [8,18,12]. These
techniques receive an input of trajectories from the observed swarm behavior
and rules with associated parameters. They then produce values for these pa-
rameters to indicate the impact of each of these rules on the emergent behavior.
These rules include simple actions such as collision avoidance and aligning ve-
locity. Strategies that the individual of the swarm follow all the time such as
following a leader, following its neighbors or only following their own rules have
been extracted and tested using fish and baboon observations [1][26].

Work by [17] proposed a turning-like classifier to differentiate between an
imitated sample from the assessed controller and the original sample from the
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original controller. A co-evolutionary algorithm is used to optimize both the
classifier to classify original behavior as original and behavior from the assessed
controller as duplicate and also to optimize the assessed controller to deceive the
classifier by making it classify their behavior as the original. Another method
used a single monitoring robot to infer the parameter of the predefined rule of
the swarm in a shared simulation setting [24].

Most of the proposed works do not provide high-level, understandable rules
that can easily be adopted to external systems. This paper aims to not only im-
itate the behavior but also to provide human-readability of the local rules that
lead to the observed behavior. In addition, no assumptions were made about the
demonstrated behavior other than considering it is a swarm behavior. In this
work, we aim to extract an understandable swarm controller in the form of a be-
havior tree with nine motion action nodes from a swarm video observation using
an evolutionary algorithm and eight swarm metrics. The extracted behavior tree
will explain the swarm observation using the list of leaf nodes built in the system.
The no-context aspect of our extraction method with rich options of leaf nodes
will make it applicable to a wide range of swarm observations. This work serves
as a first step toward extracting more complex behavior trees with different leaf
node types such as motion actions, transportation actions, communication, and
sensing actions we aim to pursue in future works.

3 Methodology

Extracting robot controllers that result in an observed swarm behavior can be
defined as an optimization problem with the following formula:

min distance (OriginalSwarmMetrics, AssessedSwarmMetrics) (1)

where:

Original Swarm Metrics is a vector of metrics describing the swarm motion
presented in the video demonstration.

Assessed Swarm Metrics is a vector of metrics describing the swarm motion
generated by simulating a behavior tree to be assessed.

The aim is to minimize the distance between the two vectors, with the assump-
tion that if rules assessed generate swarm behaviors with similar metrics, then
imitation has been successful. The controller extraction method starts by com-
puting metrics describing the original swarm behavior. The next steps involve
using the evolutionary method to optimize a behavior tree by: for each individ-
ual in the initial population, generating random behavior trees, simulating each
individual copied over the homogeneous swarm, then measuring the metrics re-
sulting from the swarm behavior, and assigning a fitness based on the distance
between this assessed swarm metrics and the original swarm metrics. As gener-
ations evolve, high-performing behavior trees are selected, mutated, and crossed
over to generate behavior trees that have similar metrics as the original swarm
behavior. Figure 1 shows the general framework of the proposed method.
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Fig. 1. Extraction method with artificial evolution to discover behavior trees that
generate swarm behaviors with swarm metrics similar to those of the original swarm
behavior.

3.1 behavior Tree Controller

Swarm controllers in the form of behavior trees are implemented as a sequence
node with three leaf nodes. The sequence node prompts each of its leaf nodes
from left to right to execute and return success notifications unless any failure
happens in any of the leaf nodes [15]. Leaf nodes can be any of the following
nine types:

– Aggregation: move in the direction of neighboring robots.
– Dispersion: move away from neighbouring robots.
– Separation: avoid collision with neighbouring robots.
– Clustering: move towards the nearest robot to form multiple clusters.
– Random motion: move in the random direction.
– South-East force: move to the south-east direction.
– South-West force: move to the south-west direction.
– North-East force: move to the north-east direction.
– North-West force: move to the north-west direction.

A library of random controllers is generated to fill the initial population needed
by the evolutionary algorithm. Each behavior tree is generated by randomly
selecting three of the nine leaf node options.

3.2 Controller Execution

To produce the swarm trajectories for each swarm controller, a 2D simulation
environment is built using C++ with OpenGL and python Matplotlib. The
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simulation environment includes a square area (8m x 8m) and 20 swarm agents.
Swarm agents are simulated as a circle with a radius of 25 cm where the sensory
range of each robot is 50 cm. Agents can move in any direction based on the
velocity vector resulting from the execution of the behavior tree with a speed of 1
m/s. Each swarm controller is simulated for 100 time-steps (100 seconds) where
at each time step the behavior tree is ticked to update the swarm behavior.

3.3 Swarm Metrics

The swarm behavior produced from the optimal behavior tree controller should
look like the original behavior. Some useful metrics to describe the swarm behav-
ior at a macro level can be found in [11,19,13]. Swarm metrics in this work are
used to quantify swarm behaviors based on video observations of a swarm. The
metrics are computed using only swarm trajectories and are meant to describe a
swarm and its resulting trajectories. Four categories of metrics were considered:
motion metrics, sparsity metrics, density metrics, and a connectivity metric. A
description of these metrics is provided in the following list. In this description,
each agent is defined as a where, a is a composite of two vectors that store the
location of the agent a in the x and the y direction. distance is computed using
Euclidean distance and n is the total number of agents in the swarm. Each of
these metrics is a time-series vector as they are computed at each time-step.

Motion Metrics: This category of metrics is used to capture the direction,
magnitude and frequency of the swarm motion. It includes three metrics: the
center of mass, the maximum swarm shift and the swarm mode index.
1-Center of mass is computed as the average overall agent locations in the x
and the y direction.
2-Maximum swarm shift is computed as the maximum distance moved among
all agents measured at each time-step t.
3-Swarm mode index is used to measure the frequency of the swarm motion.
It is computed as the distance between the center of mass and the swarm mode
at each time-step t. The swarm mode is defined as a location in the x and the y
direction with maximum frequency among all agents’ locations. The frequency
of location l in the x or the y direction is computed using the following formula

Frequency(l) =

n∑
i=1

1

distance(l,li)<0.1

(2)

Sparsity Metrics: These metrics describe how sparse the swarm is quantified
using two metrics: the longest path and the maximum radius.
4-Longest path is the maximum distance traveled from the origin among all
agents.
5-Maximum radius is defined as the maximum distance among the distances
between center of mass of the swarm and each agent.
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Density Metrics: Two metrics are used to capture the density, the average
local density, and the average nearest neighbour distance.
6-Average local density is the sum of the number of agents in the local radius
r of each agent averaged over the total number of agents.
7-Average nearest neighbour distance is the sum of the distance to the
nearest neighbour of each agent averaged over the total number of agents.

Connectivity Metric: if the swarm state in each time-step t is considered a
graph, with the nodes being the agents, then the connectivity of the swarm can
be computed using the 8-Beta index. The beta index is a metric that measures
the connectivity of the graph by dividing the number of paths between nodes by
the number of nodes in the graph. For the swarm beta index, the path is assumed
to be connecting two agents if the distance between them exceeds the average
distance. Average distance is computed as the sum of the distances among all
the agents over the total number of agents.

3.4 Fitness Function

The fitness function measures how similar the original swarm behavior is to
the assessed swarm behavior based on the swarm metrics extracted from the
recorded trajectories. It is defined as the euclidean distance between the original
and assessed swarm metric vectors.√∑

i

(OriginalSwarmMetricsi −AssessedSwarmMetricsi)2 (3)

Metrics are normalized to ensure each metric contributes equally to the fitness.
For each metric, we store the maximum and a minimum values recorded over the
whole population of the first generation and use it to normalize over the entire
evolutionary run.

3.5 Evolutionary Algorithm

Genetic programming (GP) has been used to evolve behavior trees using oper-
ations that take into consideration their hierarchical structure [15,13]. In this
work, behavior trees are evaluated by the fitness function where the goal of evo-
lution is to minimize fitness. Elitism is used to copy the best three behavior trees
to the next generation without any change. The remaining individuals are se-
lected using tournament selection with a tournament size of three. The next steps
include applying single-point crossover and single-point mutation with rates as
shown in Table1. In the single-point crossover, the cross point is chosen randomly
and the two behavior trees swap their leaf nodes. The Mutation is done by choos-
ing a random leaf node and changing its type to any of the other leaf node types.
The behavior tree with the best fitness function in the final generation will then
be chosen as the extracted swarm controller.
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Parameter Value
Population size 50
Generations number 30
Elitism size 3
Tournament size 3
crossover rate 0.5
mutation rate 0.3

Table 1. Evolutionary parameters

4 Results

In this section, we test the capability of the the swarm metrics to capture the sim-
ilarity of two swarm trajectories, we then evaluate the performance in correctly
extracting original behavior trees. Finally, we provide a qualitative analysis of
successful extractions, and extractions resulting in different trees.

4.1 Evaluation of Swarm Metrics

As a first step, we aimed to see which swarm metrics were useful in differen-
tiating between similar or different behavior trees. To this end, we plot the
discrimination power of each metric in section 3.3 by comparing their values in
two settings. First, the difference between metrics vectors of two swarm trajec-
tories produced by the same controller is computed. In the second setting, the
difference was computed based on two swarm trajectories produced by two dif-
ferent randomly generated controllers. 100 pairs of swarm trajectories were used
in each setting. Figure 2 shows the ability of each metric to assess the similarity
of two swarm observations. This result shows the distance between metrics for
two different swarm behaviors resulting from two different trees is larger than
the distance between metrics resulting from the same tree. Thus, demonstrating
their discrimination potential. Although some metrics show a higher capability
to discriminate than others, each of them can provide a different contribution to
the fitness function.

4.2 Performance of The Controller Extraction Method

To quantify the performance of the extraction method, we randomly generate
100 behavior trees, each one used as the original swarm behavior from which a
behavior tree needs to be extracted. To have a meaningful behavior, generations
of the original behavior trees were constrained by preventing leaf nodes that
have a canceling effect on each other from being presented in the same behav-
ior tree such as aggregation node and dispersion node. The simulated swarm
trajectories of these behavior trees are then used as an input to the controller
extraction method. A Jaccard index is used to evaluate the produced controller
by assessing the similarity of the extracted controller to the original behavior
tree. This metric is used as ground truth to assess the exact similarity between
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Fig. 2. The discrimination power of swarm metrics is apparent when the distance
between metrics for swarm behaviors generated from the same behavior trees is smaller
than the metrics coming from two different behavior trees.

behavior trees, and can not be used in the fitness which captures indirect met-
rics that can be extracted from the video observations. The Jaccard index is a
measure of similarity between two texts and is computed by dividing the inter-
section of characters between the two strings over the union of all the characters
[6]. When the Jaccard index is one, the two strings are the same, whereas zero
indicates they are completely different. Here behavior trees are represented as
strings. The method was able to achieve 0.868 average Jaccard similarity over
the 100 behavior trees where 75 behavior trees out of 100 were the exact copy
of the original behavior trees. The rest can be grouped into two groups. A high
similarity group with a Jaccard index larger than or equal to 0.5 which includes
18 extracted controllers. The last 7 controllers have a Jaccard index less than 0.5
and are in the low similarity group. However, no controller was extracted with a
zero similarity. That means the extracted controller in the worst-case will have
at least one of the nodes the same as the original controller. Table 2 shows a
summary of the method’s performance. There is a significant improvement over

Table 2. Performance measures of the controller extraction method

Accuracy 75
controllers with high similarity 18
controllers with low similarity 7
Average Jaccard Index(all) 0.868

the first generations as shown by the best fitness of all the 100 behavior trees in
Figure 3. The average fitness also demonstrates some learning but with larger
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distribution values than the best fitness. Increasing the number of leaf nodes
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Fig. 3. The learning curve of the best fitness (in green) and the average fitness (in red)
over the 30 generations shows a successful minimization of the distance between the
original and the assessed swarm behavior metrics.

of the behavior tree will increase the search space as well as the complexity of
the problem. The performance of this method was tested against more complex
behaviors coming from behavior trees with 4, 5 and 6 leaf nodes. The results
obtained show the potential of this method as it was able to extract 70 exact
behavior trees with four leaf nodes, 57 behavior trees with five and 43 with
six leaf nodes. Although with 6 leaf nodes, the Jaccard similarity was 0.778,
no controller was extracted with zero similarity. For each of these 43 extracted
controllers, the method was able to search around 3,000 possibilities of behavior
trees, which is not trivial space.

4.3 Qualitative behavioral Analysis

An example of a produced controller along with the original controller is pre-
sented in Figure 4. The original behavior tree includes : random motion node,
aggregation node and North-East node. Aggregation node and North-East node
were extracted successfully while random node was not. Overall, the random
node faced a failed extraction 22 times out of 37. In 18 cases, the random node
was confused with a separation node as shown in this example. This is not
surprising since combining separation node and leaf nodes with opposite be-
havior such as aggregation and clustering could look similar to the motion of
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the random node. Separation nodes itself were wrongly extracted in just three
cases out of 26. Aggregation, dispersion, clustering and all the directional nodes
except north-east node had zero failed extractions. In general, the directional
nodes tend to be over-extracted even when they are not present in the original
controller.

(Initial setting) (After 20 seconds)

(After 40 seconds) (Original and extracted behavior trees)

Fig. 4. An example of the output of the method with a high Jaccard similarity in-
cludes three screenshot of the controller and the behavior from the right to the left.
The original behavior tree and their simulated behavior are shown in red whereas the
extracted behavior tree and the imitated behavior are presented in green.

5 Conclusion

Swarm behaviors in natural systems are inspiring in terms of their ability to
provide these systems with robustness and flexibility. Extracting the rules from
such systems is crucial for both the engineering of swarm robotics and the in-
terpretability of the underlying dynamics of the swarm systems whether natural
or artificial. Such extractions are also useful to understand and control artificial
systems after observation. In this study, we developed an understandable swarm
controller extraction method using an evolutionary algorithm and eight swarm
metrics. To evaluate the method, we constructed a swarm dataset where each
sample contains a behavior tree as swarm controller and corresponding simu-
lated swarm trajectories. Our experimental results show the method can exactly
extract 75 behavior trees out of 100 behavior trees while obtaining a 0.868 av-
eraged Jaccard similarity. These results show the potential of the method in
applications ranging from robotics to biology. In the future, more complex be-
havior trees and more action nodes will be considered such as transportation,
communication and sensing nodes.
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