
Peer reviewed version

Link to published version (if available): 10.1063/1.4919887

Link to publication record in Explore Bristol Research

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
SUPPLEMENTARY INFORMATION

Isotropic - nematic phase transition of polydisperse clay rods
Phillip Woolston and Jeroen S. van Duijneveldt

STANDARD DEVIATION IN ASPECT RATIO

As the length and diameter are independent Eq. 1 can be used to calculate the standard deviation in the aspect ratio.

\[\sigma_{L^*/D^*} = \left(\frac{\langle L^* \rangle}{\langle D^* \rangle} \right) \times \left[\left(\frac{\sigma_{L^*}}{\langle L^* \rangle} \right)^2 + \left(\frac{\sigma_{D^*}}{\langle D^* \rangle} \right)^2 \right]^{1/2} \]

(1)

The standard deviation in the average \(\langle L^*/D^* \rangle \) then follows from Eq. 2, where \(N \) is the number of particles counted in analysing the TEM images.

\[\sigma_{\langle L^*/D^* \rangle} = \frac{\sigma_{L^*/D^*}}{\sqrt{N}} \]

(2)

PHASE DIAGRAM - ERROR ANALYSIS

As the value of \(\phi_I/\phi_N \) is taken from extrapolations of the linear trend line for the nematic fraction as a function of rod volume fraction it is possible to rewrite this in terms of the gradient and intercept of the trend lines as seen in Equations 3 to 5 where \(a \) is the intercept of the line and \(b \) is the gradient, listed in Table I. This allows evaluating the standard deviation in these parameters.

\[0 = a + b\phi_I \text{ and } 1 = a + b\phi_N \]

(3)

which rearranges to

\[\phi_I = \frac{-a}{b}, \phi_N = \frac{1 - a}{b} \]

(4)
so

\[
\frac{\phi_I}{\phi_N} = \frac{-a}{b} = \frac{-a}{1-a}
\]

(5)

The standard deviation of \(\phi_I/\phi_N\) then follows as

\[
\sigma_{\frac{\phi_I}{\phi_N}} = \sigma_a \times \left| \frac{\partial \frac{\phi_I}{\phi_N}}{\partial a} \right|
\]

(6)

\[
\sigma_{\frac{\phi_I}{\phi_N}} = \left| \frac{(-1) \times (1-a) - (-a) \times (-1)}{(1-a)^2} \right| \times \sigma_a = \left| \frac{a - 1 - a}{(1-a)^2} \right| \times \sigma_a = \frac{\sigma_a}{(1-a)^2}
\]

(7)

REFERENCES

TABLE I. Data obtained by linear regression applied to the nematic fraction as a function of the core volume fraction.

<table>
<thead>
<tr>
<th>Clay</th>
<th>b</th>
<th>σ_b</th>
<th>a</th>
<th>σ_a</th>
<th>$\langle D^/L^ \rangle$</th>
<th>c_{50}</th>
<th>RSD</th>
<th>Φ_I/Φ_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. 1</td>
<td>S9</td>
<td>10.99</td>
<td>0.63</td>
<td>-0.138</td>
<td>0.037</td>
<td>0.035</td>
<td>2.75</td>
<td>0.419 0.121</td>
</tr>
<tr>
<td>Ref. 1</td>
<td>S9</td>
<td>10.04</td>
<td>0.75</td>
<td>-0.225</td>
<td>0.053</td>
<td>0.046</td>
<td>2.69</td>
<td>0.428 0.184</td>
</tr>
<tr>
<td>Ref. 1</td>
<td>S9</td>
<td>6.57</td>
<td>0.15</td>
<td>-0.217</td>
<td>0.018</td>
<td>0.087</td>
<td>2.10</td>
<td>0.397 0.178</td>
</tr>
<tr>
<td>Ref. 2</td>
<td>B20</td>
<td>8.92</td>
<td>0.39</td>
<td>-0.534</td>
<td>0.042</td>
<td>0.043</td>
<td>3.17</td>
<td>0.398 0.348</td>
</tr>
<tr>
<td>Ref. 2</td>
<td>B20</td>
<td>11.68</td>
<td>0.59</td>
<td>-0.496</td>
<td>0.05</td>
<td>0.032</td>
<td>3.06</td>
<td>0.306 0.332</td>
</tr>
<tr>
<td>2</td>
<td>B20</td>
<td>8.4</td>
<td>0.3</td>
<td>-0.704</td>
<td>0.043</td>
<td>0.061</td>
<td>2.57</td>
<td>0.244 0.413</td>
</tr>
<tr>
<td>1</td>
<td>B20</td>
<td>8.9</td>
<td>0.8</td>
<td>-0.105</td>
<td>0.049</td>
<td>0.057</td>
<td>2.36</td>
<td>0.547 0.095</td>
</tr>
<tr>
<td>2</td>
<td>B20</td>
<td>8.61</td>
<td>0.54</td>
<td>-0.093</td>
<td>0.039</td>
<td>0.060</td>
<td>2.34</td>
<td>0.642 0.085</td>
</tr>
<tr>
<td>3</td>
<td>B20</td>
<td>8.97</td>
<td>0.65</td>
<td>-0.162</td>
<td>0.037</td>
<td>0.058</td>
<td>2.46</td>
<td>0.631 0.139</td>
</tr>
<tr>
<td>4</td>
<td>B20</td>
<td>10.95</td>
<td>1.56</td>
<td>-0.154</td>
<td>0.075</td>
<td>0.048</td>
<td>2.52</td>
<td>0.632 0.133</td>
</tr>
<tr>
<td>5</td>
<td>B20</td>
<td>9.22</td>
<td>0.36</td>
<td>-0.078</td>
<td>0.015</td>
<td>0.050</td>
<td>2.65</td>
<td>0.622 0.072</td>
</tr>
<tr>
<td>6</td>
<td>B20</td>
<td>13.34</td>
<td>1.58</td>
<td>-0.335</td>
<td>0.099</td>
<td>0.048</td>
<td>2.63</td>
<td>0.570 0.251</td>
</tr>
<tr>
<td>7</td>
<td>B20</td>
<td>18.62</td>
<td>0.41</td>
<td>-0.278</td>
<td>0.011</td>
<td>0.054</td>
<td>1.65</td>
<td>0.630 0.218</td>
</tr>
<tr>
<td>Ref. 3</td>
<td>Boehmite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.101</td>
<td>2.91</td>
<td>0.469 0.297</td>
</tr>
<tr>
<td>Ref. 4</td>
<td>Boehmite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.071</td>
<td>2.73</td>
<td>0.261 0.345</td>
</tr>
</tbody>
</table>