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Abstract 

Anthropogenic climate change is leading to rising temperatures and an increasing 
frequency of hot days across the globe. Evidence of recent trends is important to 
understand the rate of change and inform adaptation and mitigation policies. For 
Africa, our current understanding of change is limited. This study has analysed 
temperature and hot day trends at gridpoint scale and regional area averages, while 
return periods of the annual maximum temperature was examined over regional 
domains. The representation of these trends and events were compared between 5 
observation-based datasets. All regions of Africa saw robust evidence of warming in 
annual mean maximum temperature, with the largest trend occurring over parts of 
north west and south west Africa, where trends could be exceeding 0.5°C a decade. 
However, there was uncertainty in the magnitude of warming, in addition to the spatial 
representation of the areas seeing the largest increases. At seasonal timescales, the 
uncertainty in the sign and magnitude of trends increased at gridpoint and regional 
area average spatial scales, compared to annual means. The frequency and intensity 
of hot days has been shown to be increasing for nearly all African regions, with 
uncertainty in magnitude of these trends. However, a robust increasing trend was 
identified in Central Africa, a region historically lacking evidence of changes to hot 
extremes. Examining the return periods of the hottest annual temperatures, 
differences in the intensity of these events were present between the datasets. This 
study finds that the choice of dataset influences the representation of absolute 
temperature and trends in the characteristics of extreme heat events. Future projection 
work should seek to account for this uncertainty through the use of multiple 
observational datasets. 
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Abbreviations 

Angular Distance Weighting (ADW)  

Atlantic Multidecadal Oscillation (AMO) 

Berkeley Earth gridded global land surface temperature product (BEST) 

Central Africa (CAF) 

Climate Hazards Center (CHC)  

Climate Hazards Center Infrared Temperature with Stations (CHIRTS)  

Climatic Research Unit gridded Time Series version 4.04 (CRU) 

December, January and February (DJF) 

Diurnal Temperature Range (DTR).  

European Centre for Medium-range Weather Forecasting (ECMWF) 

European Centre for Medium-Range Weather Forecasts Reanalysis Dataset 5 (ERA5) 

Excess Heat (EH)  

Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDI)  

Four-Dimensional Variational Data Assimilation Scheme (4D-Var) 

Global Historical Climatology Network (GHCN)  

Integrated Forecasting System (IFS) 

Intergovernmental Panel on Climate Change (IPCC) 

Japanese Meteorological Agency's 55-year reanalysis (JRA-55) 

June, July and August (JJA) 

Maximum Temperatures (TMAX)  

Mean Temperature (TMP)  

National Centre for Atmospheric Research (NCAR)  

National Oceanographic and Atmospheric Administration (NOAA)  

Quantile-Quantile (Q-Q) 

Saharan Heat Low (SHL) 

Sixth Assessment Report (AR6) 

Two-Dimensional Univariate Optimal Interpolation Scheme (2D-OI) 

West African Monsoon (WAM) 

World Meteorological Organization (WMO) 
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(CAF) is a region where limited data or literature meant the sign of detection of a trend 

could not be determined (IPCC, 2021). This has been attributed to the lack of high-

quality land observations in the region and large observational uncertainty (Pörtner et 

al., 2022). Many studies have attempted to address this issue through the 

development of products focused on African weather and climate. This is particularly 

true for rainfall (Gleixner et al., 2020), where datasets such as the Tropical 

Applications of Meteorology using SATellite and ground based observations 

(TAMSAT) aim to provide rainfall estimates at high spatial and temporal resolutions 

(Maidment et al., 2017). More recently, this has been undertaken for temperature 

based products, namely the Climate Hazards Center Infrared Temperature with 

Stations (CHIRTS) products (Funk et al., 2019). 

 

Figure 1. An regional assessment of the observed changes (1950s to present) to hot 

extremes. Studies used to assess changes are based on daily maximum temperature 

or metrics examining the duration, frequency or intensity of heat extremes. Taken from 

(IPCC, 2021).  

Hotspots of annual mean temperature warming have been noted over north-eastern 

Africa (the Sahel, Maghreb and Egypt) (Fontaine et al., 2013, Ntoumos et al., 2020), 

alongside south-western Africa (Pörtner et al., 2022), where trends exceed 0.3°C a 

decade (Masson-Delmotte et al., 2021). Trends in maximum temperatures in northern 

Africa (4°N - 24°N) have been shown to exceed 2°C - 3°C a century (Moron et al., 

2016). Examining Ethiopia, Kenya and Tanzania, Gebrechorkos et al. (2019) found 

increasing trends in maximum temperatures over the region, with Ethiopia seeing 

increases of up to 2.4°C between 1979-2010. Using the CRUTEM4v data product, 
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areas of Botswana and Zimbabwe are seeing temperature rises of roughly 4°C a 

century (Engelbrecht et al., 2015). While Engdaw et al (2021) illustrated that a variety 

of observational and reanalysis datasets represented the seasonal cycle of 

temperature well, using regional means, few studies have examined this at a variety 

of spatiotemporal scales, across the whole continent. A lack of high-quality 

observations over sub-Saharan Africa has made undertaking these studies difficult 

(Mba et al., 2018). 

Alongside changes in mean temperatures, an increasing frequency and intensity of 

extreme heat events is known to cause adverse impacts in Africa (Ceccherini et al., 

2017). However, there is a dearth of studies examining the changes in characteristics 

during the observational period (Iyakaremye et al., 2022). Hu and Huang (2020) 

illustrated an increasing number of hot days over north Africa (north of °20N), with 

Algeria experiencing at least 6 more heatwave days a decade during 1950-2017 in the 

BEST dataset (Perkins-Kirkpatrick and Lewis, 2020). Over eastern Africa, there was 

a 20% increase in the number of hot days between 1979-2010 (Gebrechorkos et al., 

2019). Western Africa, namely the Sahel, has seen a distinct increase in hot days 

since the mid-20th century (Ringard et al., 2016), with days above 35°C increasing by 

1-9 days per decade between 1961-2014 (Moron et al., 2016). Both maximum 

temperatures and the frequency of hot days have been shown to be increasing in 

southern Africa (Mbokodo et al., 2020, Pörtner et al., 2022, van der Walt and Fitchett, 

2021). 

These studies examining mean and extreme temperatures have used a variety of data 

products, including local station networks, gridded observational and reanalysis 

datasets, in order to tackle the known data sparsity over Africa (Gleixner et al., 2020, 

Gebrechorkos et al., 2019). However,  some of these stations struggle to accurately 

capture data relative to other regions of the world, particularly affecting central and 

north Africa (Ranasinghe et al., 2021), with various observation-based data products 

sharing station data (Borodina et al., 2017). Although, it is not stated how much data 

capture issues specifically impact temperature. Engdaw et al. (2021) highlighted that 

these different ways to observe historical temperature can produce different 

magnitude of trends over Africa and highlight that using multiple data sources will help 

to assess the uncertainty of temperature changes and robustness of trends over 

Africa.  
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highlighted that large observational uncertainty in temperature exists over Africa and 

few studies have examined this for the continent (Taguela et al., 2020). Consequently, 

using an uncertainty range for the observational constraint is a useful way for studies 

to assess model performance (Kim et al., 2014). 

Recent evidence provided by Thompson et al (2022) illustrated that changes in the 

frequency of heat extremes occur at the same rate as the shift in mean temperature, 

driven by a uniform change in all temperature percentiles and an unchanged 

distribution shape of the temperature (Perkins, 2015, McKinnon et al., 2016). Figure 2 

illustrates how the change in the frequency and magnitude of events can vary 

depending on the shape of the distribution of daily temperature. This uniform shift is 

evidenced in the gaussian distribution, where what was previously the 90th percentile 

in the climatology, would be of a lower percentile value in the new climate. 

Consequently, the frequency of an extreme using a fixed threshold would be expected 

to occur more frequently in the present day climate. However, changes in the 

distributions of temperatures have been noted during the observational period. 

Although, Africa lacked the data required to be examined (Donat and Alexander, 

2012). These changes in distribution are known to influence the frequency and 

intensity of events (Lewis and King, 2017). Compared to a gaussian and long tail 

distribution, a shift to a short tail distribution would cause a faster increase in the 

exceedance of a fixed threshold, due to having more temperature values that are 

larger than the mean. A shift to a long tail would see larger magnitude, but less 

frequent events (Loikith and Neelin, 2015, Seneviratne et al., 2012). Studies use the 

distribution of observed temperature products to evaluate the ability of models to 

simulate changes to heat extremes, with models often producing tails that are too wide 

during the observational period. This causes an underestimation of frequency changes 

and overestimation of magnitude changes in projected changes at regional scales 

(Borodina et al., 2017, Yao et al., 2013). While much of the uncertainty in future 

changes to heat extremes in Africa are due to uncertainty in the observed distribution 

of temperatures, uncertainty in projections over the Southern Sahara is primarily 

driven by local warming trend uncertainty (Borodina et al., 2017). Consequently, 

constraining future projections over Africa is difficult, when the observed 

characteristics are unknown.  
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Despite the threat posed by extreme heat to communities in Africa as a single hazard, 

the continent is also exposed to wide range of other climate hazards (e.g drought and 

extreme rain), with compound events likely to enhance the adverse impacts compared 

to singular extreme event (Weber et al., 2020). For instance, southern Africa is 

particularly at risk to seasonal hot and dry events, due to El Niño-Southern Oscillation 

acting as a key driver in both their occurrences (Hao et al., 2020a, Lyon, 2009, Lakhraj-

Govender and Grab, 2019). Additionally, there could be an increasing risk of heavy 

rainfall and humid heatwaves over the Sahel in July-September, where rainfall is a 

driver of wet-bulb heatwaves (Birch et al., 2022). Further work over Africa is needed 

in order to assess the risk and potential impacts posed by these compound events, to 

enable decision makers to plan effective adaptation policies to protect a rapidly 

growing and vulnerable population (Weber et al., 2020). 

2.4. Regional climate processes 

Africa encompasses a variety of climate zones and topographies (Collins, 2011), with 

Figure 4 highlighting how the elevation varies across the continent, with much of the 

continent south of the equator higher in elevation than the north. The highest points 

largely reside over Tanzania and Kenya. Numerous regional climate processes are 

responsible for changes to mean and extreme temperatures across the continent 

(Iyakaremye et al., 2022). However, few studies have examined the drivers of extreme 

heat and temperature changes over Africa, with those that have namely focusing over 

the Sahel (Birch et al., 2022), a region where communities are already exposed to 

temperatures that risk human mortality for roughly one third of the year (Mora et al., 

2017). These heatwaves have been shown to be largely driven by longwave radiation 

anomalies due to increased atmospheric water vapour and the advection of hot air 

from west Africa to the Sahel (Guigma et al., 2020, Guigma et al., 2021). Despite the 

progress in our understanding of extreme heat drivers over the Sahel, there is a dearth 

of information over most of the continent (Iyakaremye et al., 2022). 

A review of all the regional scale processes influencing temperature is beyond the 

scope of this thesis. Consequently, only those processes used to the discuss the 

results are described and examined in section 2.4. 
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Figure 4. Elevation of Africa, in meters. Taken from Collins (2011). 

2.4.1. West African Monsoon 

The West African Monsoon (WAM) is a circulation pattern associated with south 

westerly flows of moisture from the Atlantic, bringing increased rainfall over the Sahel 

between June and September (Quagraine et al., 2020, Raj et al., 2019), with large 

interannual-decadal variations, evidenced through the wet 1950-1970 and dry 1970-

1990 periods (Akinsanola and Zhou, 2019). The intensity and variability in the WAM 

is controlled by local, regional and remote forcings (Bamba et al., 2019), primarily 

driven by changes in sea surface temperatures in the Atlantic, Pacific and Indian 

oceans (Pomposi et al., 2016). Variations in the WAM is known to influence 

temperatures over the Sahel and Saharan regions, with summer rainfall cooling mean 

surface temperatures over the Sahel (Martin and Thorncroft, 2014).  

Over the Sahara, an amplified warming signal can be linked to an enhanced or 

depressed WAM, where reduced rainfall is associated with a decrease in latent 

heating due to suppressed evaporative cooling, increasing temperatures between 
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decrease and poleward shift of maximum wind speeds between 1980-2015, the 

reanalysis data used in the study has not been compared to observations, due to a 

lack of reliable, accessible data. Kruger et al (2010) examined the 1995-2008 period, 

finding weaker ridging of these low-level anticyclones, meaning lower magnitude 

winds exit the high pressure systems, reducing their ability to carry cold maritime air 

towards the southern continent. However, it is hard to draw robust conclusions, due to 

the short time series, lack of reliable data and dearth of studies examining how these 

mechanisms are changing in the South Atlantic, and its consequences on south 

African temperature (Nchaba et al., 2017, Vizy and Cook, 2016). 

2.4.5. Botswana High 

There is high climate variability over southern Africa, yet, our knowledge of the roles 

that regional circulation systems play on this climate variability is relatively limited 

(Driver and Reason, 2017). The Botswana High is a mid-level (roughly 500hPa) 

subtropical high, forming in austral spring, reaching its peak in the summer and then 

disappears in April-May (Maoyi and Abiodun, 2021). This high pressure system is 

known to sit over southern Africa during the summer, preventing convection and 

rainfall (Reason, 2019), namely through reducing the transport of moisture to the 

region (Blamey et al., 2018). While the lack of studies examining the impact of the 

Botswana High on mean and extreme temperatures has meant drawing conclusions 

on its influence difficult (Driver and Reason, 2017), early evidence suggests it is linked 

to increased temperatures over southern Africa (McBride et al., 2022). 

2.5. Metrics for heat extremes 

There are numerous approaches to define heat extreme events, but events can 

generally be defined as extreme when air temperature exceeds an defined threshold 

value (Sulikowska and Wypych, 2020). Commonly, the intensity, frequency and 

duration are examined, either as individual characteristics or through multi-

measurement indices, with the complexity further compounded by the spatiotemporal 

scales in which they are examined (Horton et al., 2016). For instance, heatwaves are 

commonly defined as consecutive days of extreme heat (Perkins-Kirkpatrick et al., 

2017). Both wet and dry heatwaves can be considered (Birch et al., 2022). Wet 

heatwaves combine temperature and humidity (Russo et al., 2017), providing a useful 

metric for human health studies, due the role humidity plays in our ability to modulate 
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process to produce the uniform spatial resolution of these datasets, which can result 

in high observational uncertainty (Verdin et al., 2020) or erroneous trends (Harris et 

al., 2020).  

Reanalysis products provide a useful solution to declining station observations, by 

combining weather forecasts and observations to produce datasets without spatial or 

temporal gaps (Gleixner et al., 2020, Parker, 2016), commonly at higher spatial 

resolutions than gridded observation products (Sheridan et al., 2020). However, 

biases can be produced in reanalysis datasets, due to uncertainties in the model 

forecasts, data assimilation processes and a lack of observations (Gleixner et al., 

2020, Donat et al., 2014). Analyses of the performance of reanalysis products, in 

relation to gridded observations, show that over Africa, there is less consensus 

between observational and reanalysis data products, largely in the magnitude of 

annual surface temperature trends (Donat et al., 2014). A more recent analysis over 

Africa by Engdaw et al (2021) produced a similar conclusion in the trends of annual 

temperature and extreme heat metrics, albeit the comparison was undertaken at 

regional scales, rather than at gridpoint scale. Furthermore, Gleixner et al (2020) 

highlighted the improved performance of the ERA5 dataset in the representation of 

annual mean temperature trends, against its predecessor ERA-Interim, compared to 

CRU. Despite these assessments, there is still a dearth of knowledge on the 

consistency of trends produced by observational and reanalysis products, at a range 

of spatiotemporal scales over Africa. 

2.7. Thesis Rationale and Objectives 

Studies examining both projections and observed changes to African mean 

temperatures and extreme heat metrics are lacking in comparison to other regions of 

the world (Nangombe et al., 2019, Iyakaremye et al., 2022). Those studies that have 

been undertaken commonly examine a regional mean or a specific region at gridpoint 

scales, and use different products and metrics, making it difficult to draw conclusions 

about the spatial pattern of warming across the continent (Engdaw et al., 2021, 

Ceccherini et al., 2017). Furthermore, with magnitude differences shown to be present 

between observational and reanalysis datasets over Africa (Engdaw et al., 2021), the 

choice of dataset could have implications on the trends shown in mean temperature 

or extreme heat metrics that utilize air temperature in the calculation. In addition, many 
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studies examining future changes use a single observational dataset to constrain 

projections (Donat et al., 2018). However, the data sparsity over Africa (Gleixner et 

al., 2020) and lack of stations that accurately report data (Ranasinghe et al., 2021) 

contribute to areas of large observational uncertainty (Gleixner et al., 2020). 

Consequently, quantifying the uncertainty in observed temperature trends is therefore 

essential to applying constraints that improve the confidence of future projections 

(Wehrli et al., 2019). Additionally, to the authors knowledge, a comprehensive review 

of how temperatures are represented by different data products at sub annual 

timescales, at gridpoint scales, or with the latest IPCC regions, has not been 

undertaken. Therefore, an opportunity exists for this study to make use of the variety 

of existing data products available from the historical period, to examine and compare 

how mean temperatures and extreme heat metrics are changing at a range of 

spatiotemporal timescales.  

To address these key issues, four research questions were devised, with question 1 

cross cutting throughout questions 2-4. 

1. How consistent is the representation of temperatures and temperature 

trends between observation-based data products? 

2. How has the mean temperature changed through time, across the African 

continent, over the past 60 years? 

3. Is there evidence of an increasing frequency and intensity of hot days? And 

if so, where, and by how much? 

4. How much does the temperature of the hottest days vary between years? 

What counts as an extreme hot day in different regions?  
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3. Methods 

3.1. Observation-based datasets 

A total of five temperature products have been used in this study, two observational, 

two reanalysis and one merged observation-based dataset. Observations from the 

Berkeley Earth gridded global land surface temperature product (BEST) and Climatic 

Research Unit gridded Time Series version 4.04 (CRU) were used. Additionally, the 

European Centre for Medium-Range Weather Forecasts Reanalysis Dataset 5 

(ERA5); the Japanese Meteorological Agency's 55-year reanalysis (JRA-55); and the 

Climate Hazards Center Infrared Temperature with Stations (CHIRTS) monthly and 

daily maximum temperature (Table 1) datasets were examined. All datasets calculate 

2-meter surface air temperature. While these datasets aim to provide complete spatial 

coverage of Africa, the quality of the data products are limited by the number, quality 

and spatial distribution of the stations that inform them (Dinku, 2019). However, Africa 

has seen a decline in the number of stations, compounded by an uneven distribution 

of stations and observations often missing or of poor quality (Dinku, 2019, Gleixner et 

al., 2020). Consequently, data providers use a range of methods aiming to account for 

these issues. 
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Table 1. Summary of the observation-based datasets used in the study. 

Name 
Data 

producers 

Spatial 

resolution 

Temporal 

resolution 
Duration Reference 

Berkeley Earth 

Surface 

Temperature, 

Daily Land 

Average High 

Temperature 

(BEST) 

Berkeley Earth 1° × 1° 
Daily 

maximum 

1880 -

recent 

(Rohde and 

Hausfather, 

2020) 

Climatic 

Research Unit 

gridded Time 

Series, version 

4.04 

(CRU) 
 

University of 

East Anglia 

Climatic 

Research Unit 

0.5° × 

0.5° 

Monthly 

maximum 

and mean 

temperature 

1901 - 

2019 

(Harris et 

al., 2020) 

European 

Centre for 

Medium-

Range 

Weather 

Forecasts 

Reanalysis 

Dataset 5 

(ERA5) 

European 

Centre for 

Medium-

Range 

Weather 

Forecasts 

0.25° × 

0.25° 
Hourly 

1950 -

present 

(Hersbach 

et al., 2020) 

Japanese 

Meteorological 

Agency's 55-

year reanalysis 

(JRA-55) 

Japan 

Meteorological 

Agency 

0.563° × 

0.562° 

6-Hourly 

mean 

1958 - 

present 

(Kobayashi 

et al., 2015) 
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Climate 

Hazards 

Centre  

CHIRTS-daily 

High resolution 

(CHIRTS) 

Climate 

Hazards 

Centre 

0.05° × 

0.05° 

Daily 

maximum 

1983-

2016 

(Verdin et 

al., 2020) 

Climate 

Hazards 

Centre  

CHIRTS-daily 

Low resolution 

(CHIRTS) 

Climate 

Hazards 

Centre 

0.25° × 

0.25° 

Daily 

maximum 

1983-

2016 

(Verdin et 

al., 2020) 

Climate 

Hazards 

Centre 

CHIRTS-

monthly 

(CHIRTS) 

Climate 

Hazards 

Centre 

0.05° × 

0.05° 

Monthly 

maximum 

1983-

2016 

(Funk et al., 

2019) 

 

3.2. Observational datasets 

3.2.1. CRU 

A variety of global gridded datasets are available to examine climate extremes, at a 

range of spatial and temporal resolutions (Donat et al., 2014). Datasets produced by: 

the Climatic Research Unit, Japanese Meteorological Agency, NASA's Goddard 

Institutes of Space Studies and the National Oceanic and Atmospheric Administration 

were amongst those most commonly used (Morice et al., 2012, Carbon Brief, 2015, 

Rohde et al., 2013a). The CRU TS dataset is comprised of 10 variables, that have 

been continually updated and developed since its release in 2000, seeking to improve 

the quality of observations it produces (New et al., 2000, Harris et al., 2020). This 

includes the mean and maximum near-surface temperature products used in this 

study, which have been used in a diverse range of studies focusing on extreme heat 

impacts, event attribution and model bias correction in Africa (Reda et al., 2021, Zittis 

et al., 2021, Zscheischler and Lehner, 2022).  
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in orange and dark blue). This is likely due to the shorter correlation decay distance 

(750km) of DTR, compared to the 1200km of the TMP product (Harris et al., 2020). 

Additionally, there has been a decline in the total number of CRU stations over time 

(James et al., 2018), which could lead to the occurrence of trend artefacts in regions 

of Africa, due to gaps in the time series of each gridpoint (Dinku, 2019, Harris et al., 

2020). However, regions with no stations informing temperature values have been left 

in for the purpose of complete comparison between the datasets in this study. 

 

 

 

 

 

 

 

Figure 5. Average number of stations informing (A) CRU TS4.04 TMP and (B) CRU 

TS4.04 TMAX products. 

3.2.2. BEST 

The BEST dataset is a relatively new gridded dataset, that aims to provide an 

independent estimate of changes in observed surface temperature (Rohde and 

Hausfather, 2020), with the daily maximum temperature product being used in 

numerous studies that examine changes in observed extreme heat, both globally and 

across the African continent (Robinson et al., 2021, Birch et al., 2022). The novel 

mathematical framework of BEST uses an approach that utilises different datasets, 

quality control procedures, averaging and homogenisation techniques to that of CRU, 

providing global gridded coverage at a 1° × 1° resolution and increasing the number 

of stations used to inform its anomaly values (Rohde et al., 2013a, Rohde, 2013b, 

Rohde and Hausfather, 2020, Perkins-Kirkpatrick and Lewis, 2020).  

Comparatively, the BEST dataset is higher resolution and utilises more stations than 

many other global observational datasets (Deng et al., 2021). In excess of 25000 

A B 
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stations are provided by the daily Global Historical Climatology Network (GHCN) (Rao 

et al., 2018). Historically, other global temperature datasets had not integrated the 

GHCN station network into their records, however, an increasing number of these data 

providers are beginning to do so (Rohde and Hausfather, 2020). Figure 6 shows the 

global distribution of stations contributing to BEST, illustrating that Africa has far fewer 

stations compared to Europe and the United States. Specifically, it highlights a dearth 

in stations in the Sahara and hotspots on the north and southern coast of Africa. 

Additionally the Congo basin has numerous stations available (Figure 6), a region 

lacking accessible data for climate studies (Samba et al., 2008).  

 

 

 

 

 

 

 

 

 

 

Figure 6. The locations of stations in the BEST dataset, classified as rural (at least 

0.1° from urban areas) and other stations. A total of 36,869 stations are available 

globally, with 15,594 defined as rural and 21,271 defined as other stations. Taken from 

(Wickham et al., 2013). 

To produce a time series of daily maximum temperature values, a climatology value, 

calculated between 1951-1980 for each calendar day, is summed with an anomaly 

value produced for each day, defined as the difference between the daily surface air 

temperature and climatology. Both the climatology and anomaly is provided to the user 

at gridpoint scale (Rohde et al., 2013a). Estimates of temperature anomalies are 

produced for each station, calculated by subtracting the climatology temperature 
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(1951-1980) from the observed daily temperature, which throughout the time series 

for each station is expected to be equal to zero (Rohde et al., 2013a). This is a 

necessary requirement for the Kriging process which interpolates the station data onto 

a gridded surface. In order to avoid biases produced by areas of high station density 

or the uneven distribution of stations (Muller et al., 2013), the correlation function within 

the Kriging calculation is dependent on the distance between stations, enabling 

temperature values between stations to be estimated without these biases(Rohde et 

al., 2013c). 

The BEST dataset aims to account for measurement errors or local effects through 

weighting the contribution of each station to the Kriging process, allowing all stations 

to be included in the estimation of the temperature. Additionally, a scalpel process is 

introduced, enabling stations with a discontinuous time series, synonymous with 

station relocation and instrument changes, to be included. Prior to the calculation of 

temperatures, the time series is truncated into two periods, split at the point of 

discontinuity, effectively creating two stations, enabling the weighting to be adjusted 

relative to its reliability (Rohde et al., 2013a, Osborn et al., 2017, Rohde et al., 2013c). 

These processes enable stations with outlier values or short time series to still be 

included, vastly increasing the number of stations used to inform temperature values. 

However, it is worth noting the Kriging process relies on the relationship of the distance 

between stations and is influenced by sparse data coverage. Additionally, there is no 

publicly available data of either the number of stations used for each grid box in Africa 

or the time series available from each station, so it is unknown how much infilling 

occurs, where gaps in the time series are filled with estimates  (Wang and Clow, 2020, 

Jones, 2016), an issue which could occur in regions that lack observations and lead 

to trend artefacts. This is a consideration worth keeping in mind for studies examining 

Africa, a region known for a sparse station network, comparatively to Europe and the 

United States (Wang et al., 2018). Furthermore, only a handful of studies have 

examined if any biases exist within the BEST products, and these have focused on 

the mean temperature (e.g Way et al., 2017, Rohde, 2013b), rather than the 

temperature maximum product used in this thesis. While initial studies have found that 

BEST performs better than previous CRU versions for global mean temperature 

averages (Rohde, 2013b), few have explored the product at regional or national 

scales, with a study focusing on Northern Canada finding that BEST underestimates 
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Africa has received little attention, but has been shown to perform better for mean 

temperature over most of East Africa (Gleixner et al., 2020). ERA5 has also been used 

in pan-African assessments of heatwaves (Engdaw et al., 2021). 

3.3.2 JRA-55 

Similarly to ERA5, JRA-55 combines model forecasts and observations to produce a 

spatiotemporally consistent meteorological dataset. It was the first reanalysis product 

to apply a 4D-Var scheme (Harada et al., 2016, Ebita et al., 2011), producing data at 

sub-daily to monthly resolutions, including a 6-hourly mean temperature dataset at 

0.563° × 0.562°, from 1958-present. The 1958 start date was chosen to coincide with 

when regular radiosonde observations became available at a global scale (Kobayashi 

et al., 2015, Ajjur and Al-Ghamdi, 2021). Differences in the model forecasting systems, 

assimilation processes and the observations used exist between ERA5 and JRA-55 

(Simmons et al., 2021). 

JRA-55 uses observations from a diverse range of methods, including satellite and 

conventional (e.g weather stations, radiosonde and aircraft measurements) data 

sources (Wright et al., 2019). The dataset aims to account for biases and errors within 

these observations, while stations on coastlines are not utilised in the calculation of 2-

m temperature (Kobayashi et al., 2015). Observations are primarily sourced as those 

used in ERA-40 (the ECMWF reanalysis product that pre-dated ERA-interim), in 

addition to newly reprocessed or produced datasets from satellites or land station 

networks. Land station data are largely provided by the National Centre for 

Atmospheric Research (NCAR) and NOAA (Kosaka, 2018, Uppala et al., 2005). Errors 

can arise from erroneous data from instrument issues and human errors, while 

inaccurate metadata can result in the duplication of data points, due to the use of 

multiple data sources. To account for biases and errors in this dataset, the JRA-55 

data assimilation scheme uses a dynamic quality control, similar to ERA5, with 

observations excluded if the difference from the expected value exceeds a threshold 

(Wright et al., 2019, Kobayashi et al., 2015). While JRA-55 and ERA5 share the use 

of data from ERA-40, differences exist in the processes used to assimilate satellite 

and conventional data (e.g weather stations, radiosonde and aircraft measurements), 

meaning different observational values are used to correct model forecasts. 
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To calculate the 2-m temperature product, JRA-55 uses an 4D-Var scheme in a 

forecast model, alongside an independent 2D-OI of land observations (Simmons et 

al., 2017). Figure 7 illustrates the data sources and flow of the JRA-55 data 

assimilation scheme. Atmospheric analysis (above 10m) is undertaken and fed into 

the forecasting model, with the 4D-Var scheme predominantly assimilating in satellite 

and radiosonde data (Figure 7) to correct the estimates of upper-air variables. These 

data undergo bias correction and quality control procedures. Radiosonde data before 

the 1980s is known to contain a hot bias due to radiation effects, while satellite data 

are processed under a radiative transfer scheme, that differs to the one used in ERA5. 

The lowest level of the forecast model is then corrected with land station observations 

in the 2D-OI process (Figure 7). This process takes a valid first guess from the forecast 

model (from the previous assimilation window), with comparisons of the observations 

and first guess occurring at the timestamp of the observation. Corrections are then 

made at the analysis timestep (3-hourly). This differs to ERA5, where the comparison 

process occurs at the analysis timestep, and is thought to be an improvement on ERA5 

(Wright et al., 2019, Kobayashi et al., 2015, Simmons et al., 2021).  

 

 

 

 

Figure 7. Authors adaptation of the production of JRA-55 datasets described in 

Kobayashi et al., (2015), to focus on the elements important to the calculation of the 

2-m temperature products. 

The common approach taken by ERA5 and JRA-55 through assimilating land based 

station observations independently from the upper air forecasts results in the 
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observations having a strong influence on the land surface values. However, this 

disconnect between the upper air and surface fields analyses can result in 

inconsistencies (Wright et al., 2019), and rely on the quality and density of 

observations. This could produce issues in data sparse areas, such as Africa. To 

reduce inconsistencies directly affecting variable analyses, the previous results of the 

2D-OI are not used to initialize forecasts. 

3.4 Merged datasets 

In an attempt to tackle observational uncertainty in data sparse regions, merged 

datasets aim to take advantage of the diverse ways in which climate can be monitored. 

Through combining satellite, station and reanalysis data, these datasets aim to provide 

robust and reliable estimates of temperature (Verdin et al., 2020). 

3.4.1 CHIRTS  

The Climate Hazards Center (CHC) based at the University of California, Santa 

Barbara have developed a wide range of products examining the climate, globally and 

for Africa, including maximum temperatures on a variety of timescales and spatial 

resolutions. Specifically, CHIRTS aims to resolve issues of sparse and declining 

station observations in Africa through filling in data gaps with satellite and reanalysis 

data, providing a resource to monitor extremes with limited station observations (Funk 

et al., 2019).  

3.4.1.1 CHIRTS-monthly 

The development process of monthly maximum dataset has largely followed the 

methodology used in the CHC maximum precipitation dataset (Funk et al., 2019). Long 

term means are produced for the 1981-2010 period, produced on a 0.05° × 0.05° 

latitude-longitude grid and based on station data. Other factors such as elevation and 

reanalysis data of monthly 2-m maximum air temperature anomalies, derived from 

MERRA-2 are then included in a moving window regression function. This produces a 

climatology value for each grid point and month. To produce maximum temperature 

values, the climatology value is combined with a blended station and satellite 2-m 

maximum temperature anomaly (Funk et al., 2019, Funk et al., 2015). The 

geostationary thermal infrared satellite series Meteosat is the primary source of 

satellite data, due to its long and stable satellite record over Africa. Systematic biases 
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in satellite data are corrected by adjusting the temperature maximum by the difference 

between CRU TS4.01 and the satellite average for each grid point. A minimum of 10 

non cloudy days are needed each month for satellite monthly anomalies to be 

calculated (Verdin et al., 2020, Funk et al., 2019).  

The station anomaly is derived from the station data in the BEST dataset, that 

undergoes further quality control procedures and is supplemented by the Global 

Telecommunication System archive, with the station data interpolated onto the same 

grid. These satellite and station anomalies are then blended, weighted on its ability to 

explain variance at each grid point and then subsequently added to the climatology to 

produce a monthly maximum temperature product (Funk et al., 2019). While limited 

published validation work exists over Africa, the CHIRTS-monthly product has been 

shown to estimate station data reliably in West Africa (Muthoni, 2020). 

3.4.1.2 CHIRTS-daily 

CHIRTS-daily builds on the CHIRTS-monthly data product, combining station, satellite 

and reanalysis data to provide daily maximum and minimum temperature data. It is 

comprised of a monthly time series of satellite and station temperature maximum 

anomalies and a monthly maximum temperature climatology, including ERA5 average 

2-m temperatures. ERA5 is downscaled to the grid resolution of CHIRTS (0.05° × 

0.05°). To produce the maximum temperature, the long-term ERA5 monthly mean 

temperature is subtracted from the daily maximum ERA5 temperature, resulting in a 

series of daily anomalies. The long term mean of the grid point, as calculated in 

CHIRTS-monthly is then added to the anomaly, producing a daily maximum 

temperature (Verdin et al., 2020). The high resolution version of the CHIRTS-daily 

product has received little validation work. However, it has been shown to be reliable 

for assessments of heatwave trends and mean maximum temperature in data-sparse 

regions such as Africa against station and gridded observations (Verdin et al., 2020). 

Additionally, it has been used by a range of studies examining extreme heat in Africa 

(Amou et al., 2021, Gyilbag et al., 2021).  

Alongside the high resolution CHIRTS dataset, a low resolution version is available to 

users, providing a useful alternative to those without the space or memory to analyse 

the high resolution version.  However, to the best of the authors knowledge, no studies 

have compared the results between the datasets at sub-annual timescales. Figure 8 



 

35 
 

illustrates the decadal trend in March, April May (MAM) and June, July August (JJA) 

for the three CHIRTS datasets. The CHIRTS- low resolution product highlights sign of 

change differences in Northern Africa, with declining trends in maximum temperatures 

exceeding 1.2°C a decade. In MAM, it has a warm trend in southern Africa, while in 

JJA it has a declining trend, in contrast to the other CHIRTS products. With no 

published methods on the calculation of the CHIRTS-low resolution product, it is 

unknown if there are methodological differences in the calculation of maximum 

temperatures or an issue with interpolating the grid or spatial resolution. Initial contact 

has been made with the Climate Hazards Center at the University of California, Santa 

Barbara to discuss these results. Due to these qualitative differences between the high 

resolutions and low resolution version of the CHIRTS products, only the CHIRTS-high 

resolution daily product is used in any further analyses within this thesis, and will be 

referred to simply as CHIRTS.  
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Figure 9. The 8 IPCC climate reference regions used in the AR6 report over Africa 

(Iturbide et al., 2020). A list of the abbreviations are as follows: Sahara (SAH); 

Western-Africa (WAF); Central Africa (CAF); North Eastern-Africa (NEAF); South 

Eastern-Africa (SEAF); Western Southern-Africa (WSAF); Eastern Southern-Africa 

(ESAF); and Madagascar (MDG).  

3.6.4 Heat extreme metrics 

There are a wide variety of metrics that examine changes to the frequency, magnitude 

and duration of extreme heat events, influenced by the lens of the study (e.g. 

agriculture, health, infrastructure and wildlife), the region studied and the climatic 

conditions (Engdaw et al., 2021, Perkins and Alexander, 2013, Horton et al., 2016). 

Consequently, studies undertaken at regional levels within Africa use a diverse range 

of metrics and study periods. While these indicate increases in extreme heat 

characteristics, it is difficult to compare regions and draw robust conclusions at pan-

African scales (Engdaw et al., 2021, Perkins-Kirkpatrick and Lewis, 2020). In this 

study, heat extremes are examined by computing hot days above a locally-relevant 

percentile. 

3.6.4.1 Hot Day calculation 

To generate results that are relevant across the African continent, this study focuses 

on the intensity and frequency of hot days, examining individual hot days. This metric 

is defined as a single day exceeding an percentile value of each grid point. While 
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absolute values are useful for impacts on the natural world and society, percentile-

based metrics sample the local distribution of temperature for each grid point, 

accounting for changes in elevation and climate (Zhang et al., 2011, Horton et al., 

2016), enabling the comparison of regions. The 90th and 99th percentile values were 

chosen to define hot days, in order to sample a range of severity of events. Both 

characteristics are calculated for a defined season (May-September for the Northern 

Hemisphere, November-March in the Southern Hemisphere and all year in the 15.5°S-

15.5°N tropical region).  

To calculate a percentile value, choosing a climatology period as a subset of the study 

period is a common approach (Christidis and Stott, 2016). The 1961-1990 climatology 

period is used, as recommended by the WMO for climate change monitoring studies 

(Sulikowska and Wypych, 2020, World Meteorological Organization, 2017). This 

approach can lead to changes in the exceedance value for years in the climatology 

period and those outside of it, influencing trend analyses (Engdaw et al., 2021, Zhang 

et al., 2005). While this has not been addressed explicitly in this study and has been 

shown to be a useful method to monitor changes in extremes (Freychet et al., 2021, 

Dunn and Morice, 2022), it should be kept in mind when interpreting results, that 

increasing trends in hot day characteristics could be amplified.  

To calculate the seasonal percentile, the mean of all days within the respective  

season, over the 30 year climatology period is used. This increases the sample size 

of the of the percentile calculation in comparison to other commonly used metrics, 

such as a those that calculate a percentile for each calendar day (Sulikowska and 

Wypych, 2020). While a long window could smooth out extremely high or low values, 

it reduces uncertainty in the percentile value, with high uncertainty associated with 

biases in the exceedance rate (Engdaw et al., 2021). Calculating a seasonal percentile 

has proven a useful way to examine summer extreme heat in Europe (Lhotka and 

Kyselý, 2015), although, a calendar day approach to examining changes to the 

characteristics of hot days is widely used in the literature (e.g Alexander, 2016, 

Perkins-Kirkpatrick and Lewis, 2020). Figure 10 illustrates the decadal trend in hot 

days using the seasonal and calendar day percentile approaches, showing similar 

spatial representation of trends between the two methods. Notable differences include 

a small sign of change difference over Somalia and larger magnitude trends in the 
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examined for BEST, ERA5 and JRA-55, for regional domains. A generalized extreme 

value distribution was fit, as this is most appropriate for describing maxima of defined 

periods of time (Parey et al., 2010) and has been used extensively in the literature to 

analyze observed return periods (Perkins, 2011). A 1/5 year threshold for ERA5 was 

set, enabling a comparison of how the frequency of a specific intensity of event is 

represented in other datasets. A 1000 sample bootstrapping procedure was 

undertaken to provide a 95% confidence interval of the chance of that event occurring.  

To visually assess whether the distribution of annual maximum temperature between 

datasets is similar, Quantile-Quantile plots are examined for BEST, ERA5, JRA-55 

and CHIRTS. This will be used to identify how datasets represent the most extreme 

events during the study period. These graphs enable datasets of different sample 

sizes to be compared (Lazoglou et al., 2019), enabling the BEST, ERA5 and JRA-55 

datasets to be compared to the CHIRTS. 
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4. Results and Discussion 

To examine observational records of temperature and extreme heat metrics in Africa 

and consistency between data products, four research questions were investigated: 

1. How consistent is the representation of temperatures and temperature 

trends between observation-based data products? 

2. How has the mean temperature changed through time, across the African 

continent, over the past 60 years? 

3. Is there evidence of an increasing frequency and intensity of hot days? And 

if so, where, and by how much? 

4. How much does the temperature of the hottest days vary between years? 

What counts as an extreme hot day in different regions?  

This chapter will address each of these questions in turn, with research question one 

crosscutting through questions 2-4. 

4.1 How has the mean temperature changed through time, across the African 

continent, over the past 60 years? 

Trends in the mean and maximum temperature were investigated at grid box and 

regional scales in each of the observational products. Literature shows that mean 

annual near surface temperatures have increased over most of Africa, by more than 

0.5°C during the last 50-100 years, with maximum temperatures also increasing 

(Collins, 2011, Brown et al., 2008, Russo et al., 2016, Gebrechorkos et al., 2019). 

However, studies have rarely explored mean temperature and extreme heat metrics 

at a pan-African scale (Engdaw et al., 2021, Ceccherini et al., 2017), using a variety 

of methods and time periods to produce trends. Additionally, these studies commonly 

use a single observational dataset or reanalysis product, which can make it 

challenging to draw robust conclusions of observed trends at a pan-African scale. 

4.1.1 Mean temperature trends 

Decadal trends in the annual mean near-surface temperature over Africa are shown 

in Figure 11, using CRU and ERA5 data. These two data products were chosen due 

to their common use in the literature to define mean temperature trends over Africa 

(Gleixner et al., 2020). Both datasets show that all of Africa is warming in the annual 

mean temperature. The rate of warming in ERA5 is larger than that of CRU for much 
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4.1.2 Mean maximum temperature trends 

Studies have shown that the relationship between TMP and heat extremes is 

comparable, but not equal to the relationship between TMAX and extremes, with 

regional variations in the changes to TMAX and TMP (Perkins-Kirkpatrick et al., 2017, 

Seneviratne et al., 2016, Van Oldenborgh et al., 2022). Despite the importance of 

changes to maximum temperatures on the intensity and frequency of extreme heat 

events, few studies have explicitly quantified observed maximum temperature trends 

over Africa. This will now be examined. 

4.1.2.1 Annual Mean maximum temperature trends 

Figure 12.1 shows the annual mean-maximum surface temperature trend for the 

African continent. BEST and CRU both show warming trends for all of Africa, while 

ERA5 and JRA-55 have some small regions of cooling. Specifically, ERA5 has a 

negligible negative trend in the northern region of central Africa (particularly at 20°E, 

10°N), while JRA-55 has a declining trend of 0.1°C in the eastern Congo Basin, to the 

west of Lake Victoria, and 0.2°C over parts of Kenya and southern Morocco. These 

declining trends are not represented in the other datasets. The declining trend seen in 

JRA-55 in central Africa is hotspot of warming in ERA5, with the trend exceeding 0.4°C 

a decade. All 4 datasets show that north-west Africa (west of 10°E and North of 25°N) 

is a region experiencing some the largest increases in mean maximum temperatures, 

with trends exceeding 0.5°C a decade in ERA5 and JRA-55. Additionally, all 4 datasets 

show increased warming on the south west coast of Africa, particularly in ERA5 and 

JRA-55. However, the spatial representation of the largest magnitude of trend differs 

between the datasets. CRU shows a larger region of warming in comparison to the 

other datasets in south-eastern Africa, exceeding 0.4°C a decade. While the datasets 

largely agree in the sign of trends, differences exist in the representation of trends, 

both spatially and in magnitude. This is particularly notable over the Congo basin, 

where CRU shows a negligible trend, which could be attributed to having no stations 

informing its values over the region (Figure 5).  

Figure 12.2 quantifies decadal trends in annual mean maximum temperatures over 

the AR6 regions. All regions have increasing trends in all four datasets, at the 95% 

confidence interval. These results show that for all regions, robust trends in observed 

increases to annual mean maximum temperature can be identified, including Central 
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Africa, which is shown as a region of low confidence in observed changes to heat 

extremes in the latest IPCC assessment (IPCC, 2021). However, Figure 12.1 has 

illustrated that these trends are not uniform across the region, with JRA-55 presenting 

cooling trends over central Africa, particularly over the eastern Congo basin and areas 

of Kenya. 

Differences between these datasets could be due to the station data which is 

incorporated. Table 2 shows the key station data networks used for each gridded 

dataset. WMO station data is incorporated into the GHCN, NCAR and NOAA products, 

meaning similar observations could be provided to each dataset. CRU uses the 

CLIMAT messages from the WMO and the Monthly Climatic Data for the World 

provided by the NOAA (Brohan et al., 2006), which can include WMO stations. It is 

unclear to users if common stations exist in these datasets to those used in the GHCN, 

NCAR or NOAA station networks, that are used to inform the datasets. Additionally, 

the different interpolation approaches of the CRU and BEST datasets will further alter 

the stations included in the final data products. The Kriging method of BEST enable 

all stations to be used, while CRU removes anomaly values that exceed 3 standard 

deviations of the 1961-1990 anomaly mean, which have been shown to be potentially 

correct values (Rohde et al., 2013c, Harris et al., 2020). While it is difficult to conclude 

the influence of the stations provided to these observational datasets, it is possible the 

stations used differ between datasets and contribute to the differences in the sign and 

magnitude of trends. 

While common stations could feed into each dataset, differences in the quality control 

procedures and the integration of alternate observations into reanalysis products will 

influence the trends produced by each dataset (Wright et al., 2019). Specifically, JRA-

55 removes land-based coastal observations from its 2D-OI process. This means 

coastal values can be influenced by buoy and sea station observations. This could 

account for the declining trend seen on the north west African coast and the higher 

magnitude increasing trend seen on the south west coast in Figure 12.1, which is not 

replicated in other datasets. Furthermore, ERA5 and JRA-55 utilize different radiative 

transfer schemes, with ERA5 able to assimilate a wider range of satellite observations 

into the forecast model (Hersbach et al., 2020, Wright et al., 2019). However, studies 

have not examined its influence on 2-m temperatures, other than improved 
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representation of temperature after 1957, and again in 2005, due to an increase in 

observations (Simmons et al., 2021).  

Previous examinations of temperature trends in Africa have shown large spreads in 

the magnitude of trends in the tropics. However, studies have used regions identified 

in the IPCC Special Report on Managing the Risks of Extreme Events and Disasters 

to Advance Climate Change Adaptation, which split tropical Africa into two regions (e.g 

Engdaw et al., 2021), rather than 4. Figure 12.2 shows that tropical regions (ranging 

from Western Africa to South Eastern Africa) have a reduced spread in the magnitude 

of trends compared to Engdaw et al (2021) results, suggesting that the new IPCC 

regions for Africa do improve the agreement in trends between datasets.  
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Table 2. Summary of the key observational networks used in each data product. 

Dataset Key Land Station networks used 

BEST GHCN 

CRU WMO and NOAA 

ERA5 WMO 

JRA-55 NCAR and NOAA 

 

4.1.2.2 Absolute climatological temperature differences between datasets 

While this research question primarily explores trends in the temperature products, it 

is worth noting that the absolute temperature differs between BEST, ERA5 and JRA-

55, the datasets consistently used throughout the study. Figure 13 illstrates 

climatological differences in mean maximum temperatures, which can exceed 4°C 

over the study period. The BEST dataset is hotter in most regions, in comparison to 

ERA5 and JRA-55. Specifically, BEST is noticeably warmer in some regions of the 

Sahara (centered on 25°E, 20°N) than ERA5 and over the Congo rainforest region 

against JRA-55. ERA5 and JRA-55 have smaller temperature differences, compared 

to BEST, over much of Africa, with JRA-55 primarily hotter over much of the north-

eastern Sahara (centered on 30°E, 20°N). Overall, there are large absolute 

temperature differences between the products. A technical report on the performance 

of ERA5 compared to a variety of observational and reanalysis datasets found similar 

spatial biases in the absolute values mean temperature between ERA5 and JRA-55, 

at annual and monthly timescales (Simmons et al., 2021). A notable difference is west 

of 20°E and north of 15°N, where Simmons et al (2021) showed absolute temperature 

values to be larger in JRA-55, whereas Figure 13 illustrates that ERA5 is hotter. Trends 

in annual mean temperature were also shown differ in sign and magnitude over the 

1979-2018 study period. Specifically, the Somalia and Angola regions were shown to 

have declining trends, while BEST and ERA5 illustrated warming trends. Additionally, 

ERA5 showed all regions to be warming over the study period, albeit with different 

spatial patterns in the regions of the largest magnitude of warming (Simmons et al., 

2021). However, the lack of attention in comparing maximum temperatures over 
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Africa, which are commonly used when examining heat extremes (e.g Perkins-

Kirkpatrick and Lewis, 2020), means that differences between absolute values and 

trends in the datasets are unknown. 

Figure 13. Climatological annual mean maximum temperature differences between 

datasets, expressed as °C. This difference is calculated by subtracting the 1960-2019 

mean temperature from one dataset from another. The differences were calculated on 

the 1° × 1° grid of the BEST dataset. 

4.1.2.3 Seasonal Mean maximum temperature trends  

Studies have found that the magnitude and sign of trends vary seasonally across 

Africa (Collins, 2011, van der Walt and Fitchett, 2021, Emmanuel et al., 2019). Figure 

14.1 shows the decadal trend for December, January and February (DJF), highlighting 

key sign of change differences between the datasets in parts of northern, western, and 

southern Africa. While BEST shows a cooling trend in the western Sahel, the spatial 

representation in JRA-55 differs, with negative trends over a larger area of the Sahel 

but with a lower magnitude. Both ERA5 and JRA-55 show strong warming in the 

Ethiopian highlands and around of Lake Victoria, exceeding 0.6°C a decade. 

While southern Africa has a complex topography and local variations in the start and 

end of the summer season, studies examining changes in temperatures in this region 

have commonly defined DJF as the summer season, and highlighted that the region 

has experienced increasing trends in maximum temperatures (Kruger and Nxumalo, 

2017, Van der Walt and Fitchett, 2020). Studies examining station data have found 

the largest magnitude trends to occur over the west and east coast of southern Africa 

(van der Walt and Fitchett, 2021, Kruger and Sekele, 2013). Figure 14.1 shows trends 

that exceed 0.5°C along the south west coast during the summer season, covering 



 

53 
 

the Namib desert. ERA5 and JRA-55 provide good spatial agreement with these 

published trends. While ERA5 agrees with the magnitude of trend to the literature, 

trends in JRA-55 are roughly 0.2°C larger (van der Walt and Fitchett, 2021, Kruger 

and Sekele, 2013). This strong trend on the west coast of southern Africa could be 

attributed to changes in the quasi-stationary South Atlantic High (SAH). Weaker 

ridging and a poleward shift, in these systems, driven by global warming, reduce the 

magnitude and frequency of cool maritime air influxes that decrease temperatures, 

occurring particularly during the DJF summer season (Kruger et al., 2010, Kruger and 

Sekele, 2013). Additionally, increasing sea surface temperatures (SST) over the cold 

Benguela upwelling system (running along the coast of western southern Africa) is 

associated with decrease in upwelling (Nchaba et al., 2017), with these cool SST 

linked to modulating temperatures on the western coast (Reason, 2017). 

Consequently, reduced westerly winds and increasing SST limit the amount of cool 

maritime air that could reduce temperatures during the summer season. 

In contrast to other datasets, JRA-55 shows a cooling trend on the east coast of 

southern Africa (Figure 14.1). This could be attributed to the removal of coastal 

observations during the data assimilation process of JRA-55, enabling cooler sea 

surface temperatures to influence its values. Additionally, the cooling trends seen in 

the interior of southern Africa is JRA-55 have not been found in the literature, with 

studies, using station data, highlighting this as the where DJF maximum temperatures 

are changing most rapidly (van der Walt and Fitchett, 2021). Increasing trends, as 

shown by BEST, CRU and ERA5 can be explained through an increase in the 

frequency of El Niño phases during the study period (Freund et al., 2019). These are 

known to increase the magnitude of maximum temperatures and has the strongest 

signal in DJF season. Lakhraj-Govender and Grab (2019) examining South Africa, 

highlighted that the Northern and Central interior regions of South Africa experience 

the largest magnitude change, due to its close proximity to the tropics, where El Niño 

has its largest impact and receives reduced cooling from maritime air (Lakhraj-

Govender and Grab, 2019). While few studies have examined the mechanism of how 

El Niño directly affects summer temperatures, it is proposed that an increase in the 

diurnal temperature range prevent the formation of low-level clouds, increasing the 

solar energy that reaches the surface, increasing maximum temperatures (Manatsa et 

al., 2018). Additionally, El Niño is associated with a reduction of summer rainfall over 
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of 0.3°C. Specifically, BEST highlights two regions of cooling, the first centered on 0°E 

and 20°N, and the second on 25°E and 20°N. There is a lack of observations to 

produce long term temperature trends over the Sahara (Biasutti, 2019), and the BEST 

dataset is known to have a dearth of stations over these regions of cooling seen in 

Figure 14.2 (Figure 6). Regional averages using a variety of observational and 

reanalysis datasets show increasing temperature trends in the JJA summer months 

(Vizy and Cook, 2017) for the Sahara and Western-Africa AR6 regions (Appendix 2). 

Additionally, a study examining JJA TMP using CRU and BEST found small increasing 

trends, over the 1902-2014 period (Thomas and Nigam, 2018). Conversely, studies 

have shown at a gridpoint scale, declining trends in surface temperature can be found 

during the summer monsoon season in the Sahel, south of 10°N and west of 10°E 

(Vizy and Cook, 2017, Akinsanola and Zhou, 2019, Bamba et al., 2019). 

Figure 14.2 highlights warming or negligible trends in this region of the Sahel. 

Surprisingly, these regions of cooling over the Sahel in the literature occur in regions 

of increasing trends in the radiation balance (declining trend in shortwave and 

increasing in longwave radiation), a particularly pronounced pattern in JRA-55 

compared to ERA-Interim (Vizy and Cook, 2017). However, this coincides with an area 

of increasing summer precipitation between 1979-2015, driven by the northward shift 

of the low-level Saharan thermal low, bringing increased moisture from the Atlantic 

and rainfall over the Sahel, which is associated with cooler temperatures (Martin and 

Thorncroft, 2014). Contrastingly, this amplifies warming over much of the Sahara, 

where CRU, ERA5 and JRA-55 highlight an area of intense warming, centered on 

20E° and 20°N (Figure 14.2). However, the spatial representation and magnitude of 

trend between these datasets varies. A larger temperature gradient, linked to the 

warming Sahara and cooling Sahel enhances the southwesterly flows of moisture from 

the wetter Sahel to the Sahara, enhancing cloud cover and longwave radiation, which 

amplifies summer warming (Vizy and Cook, 2017). Future work investigating 

temperature trends over the Sahel and Sahara regions should examine a variety of 

time periods, as this appears to influence the sign and spatial pattern of trends 

produced by each dataset. This could be linked to variations in the rainfall over the 

Sahel, which are known to modulate temperature in these regions (Biasutti, 2019, Vizy 

and Cook, 2017). 
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to communicate the impacts of climate change to the public, often using monthly 

means to define how extreme an event is and validate model projections of the event 

(Christidis and Stott, 2022, Leach et al., 2021). Consequently, it is important to 

understand how temperature is changing at these temporal scales. Figure 15.1 

quantifies the agreement in the sign of change in mean maximum temperatures, 

alongside the calculation of the mean trend between the datasets. The months 

selected in Figure 15.1 were chosen as those showing the largest areas or interesting 

locations with disagreements in the sign of trend. 

Large areas of the Sahel and North West Sahara have at least one dataset disagreeing 

in the sign of change in January and February (Figure 15.1), while a large region of 

the Sahara during the summer month of June cannot show a robust trend (where all 

4 datasets agreeing in the sign of change) in maximum temperature increases. Robust 

trends during summer months occur in regions with the largest magnitude of warming, 

particularly in north west Africa in June and in north east Sahara in August. 

Interestingly, all 4 datasets agree in a declining trend (0.2°C) over a small region of 

the Sahel, the only occurrence across all months. To examine this trend, Figure 15.2 

is a regional average time series calculated over the region for February (area 

delineated by the black box in the February plot). Figure 15.2 highlights five particularly 

cool years that appear to be are driving the declining trends in BEST, ERA5 and JRA-

55. These years (1976, 1999, 2005, 2012 and 2018) in CRU do not show the 

magnitude of drop as seen in the other datasets, and could be attributed as to why it 

is the only dataset to show an increasing trend in the delineated region. 

Much of the literature on the Sahel has focused on regional climate processes that 

control precipitation rather than temperature. However, studies have linked increases 

in precipitation west of 20°E with decreased spring and summer temperatures in the 

Sahel (Vizy and Cook, 2017). The Atlantic Multidecadal Oscillation (AMO) is thought 

to play a key role in precipitation for this region (Ndehedehe et al., 2020), with positive 

phases associated with increases in sea surface temperature (SST) and the strength 

of the Sahara thermal low, which is linked with increased precipitation over the Sahel 

(Martin and Thorncroft, 2014, Alexander et al., 2014). February is the before the onset 

of the West African Monsoon, which brings much of the rainfall over the Sahel. Positive 

AMO phases are still associated with larger SST and westerly flows from the coastal 

regions of the Sahel during January-March, which could increase moisture available 
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for rainfall and reduce temperature during strong AMO events. However, observations 

from CRU and the Global Precipitation Climatology Project show no change in 

precipitation associated with positive AMO phases over the Sahel for February (Martin 

and Thorncroft, 2014). While 1999, 2005 and 2012 have been shown to be years with 

strong AMO phases, 1976 was a negative phase year (Frajka-Williams et al., 2017, 

Lüdecke et al., 2021) and cannot account for all cool years during the study period. 

Other potential mechanisms include high dust emissions from the Sahara that reduce 

short wave radiation over the Sahel during DJF (Diba et al., 2021). Alternatively, Mann 

et al (2021) argue that the AMO does not exist, rather multidecadal oscillations in SST 

is driven by volcanic activity and anthropogenic forcing throughout the 20th century. 

However, its impact of on precipitation over the Sahel is yet to be explored, or 

recognised in the literature (Birkel et al., 2018). 

Somewhat surprisingly, the Congo basin shows agreement in the sign of change 

(Figure 15.1), with all four datasets showing increasing trends (other than for a small 

part of the northern basin in June, particularly at 25°E and 5°S), despite the lack of 

observations for the region (Samba et al., 2008). Figure 15.1 shows that there is 

observational uncertainty in direction of temperature trends for some months, notably 

affecting north of the equator. A lack of research attention in the literature highlights 

these sign of change differences between datasets and time periods, meaning there 

is little consensus on the temperature trends and their drivers, at varying 

spatiotemporal scales, particularly over Northern Africa and for the month of February. 
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how resilient infrastructure is required to be (Horton et al., 2016, Beaumont et al., 

2011).  

Across all timescales, datasets have produced sign of change differences at a 

gridpoint level, with increasingly larger areas of disagreement as the temporal 

resolution increases (e.g annually to seasonally, Figures 12.1 and 14.1). Seasonal 

analyses showed sign of change differences between datasets at gridpoint scale, 

while regional means highlighted that not all regions have robust increasing trends 

and large uncertainty can exist in the magnitude of trends within and between datasets 

(Appendix 2). Specifically, at gridpoint scale, BEST showed two areas of cooling over 

the Sahara (Figure 14.2), despite the literature highlighting it as a region of amplified 

warming, with CRU, ERA5 and JRA-55 illustrating this warming (although at different 

magnitudes and spatial patterns). The western coast of southern Africa was shown as 

a particular hotspot of warming in ERA5 and JRA-55, associated with El Niño driving 

decreased cloud cover and rainfall, enabling higher average and extreme 

temperatures to occur during the austral summer.  

At monthly timescales, robust trends could be identified in regions with poor 

observational networks, such as the Congo basin. However, there was some evidence 

of a cooling temperature trend, particularly over the Sahel and western Sahara in 

February. There is only one instance (in the Sahel, Figure 15.1), where there is a 

robust trend evidence of a cooling trend. Further work improving the quality and time 

span of observations that cover the African continent is required to produce robust 

evidence of temperature changes at local and regional scales, at all temporal 

resolutions. This is of vital importance to improve the assessment and constraint of 

climate model projections examining temperature changes, that are used to inform 

regional and local climate adaptation and mitigation policies (Massonnet et al., 2016, 

Engdaw et al., 2021).  Studies undertaken at local scales (e.g national) should ensure 

they utilize high-quality local station data to validate and assess the performances of 

datasets (Ongoma and Chen, 2017), enabling appropriate datasets to be used during 

climate monitoring and projection studies. 
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analysis largely use those based on daily maximum temperatures and changes to 

extreme heat metrics. (IPCC, 2021). At both the 99th and 90th percentile, there is a 

robust increasing frequency in hot extremes for CAF (Appendix 3), while all but one 

region at the 90th percentile have a robust increasing frequency of extremes (Appendix 

3b), with studies commonly using metrics with the 90th percentile value (Zhang et al., 

2011). Consequently, it can be concluded that there is robust increasing trends in the 

changes to the frequency of observed heat extremes, although robust evidence for the 

magnitude of change is not available in all regions.  

Interestingly, regional analyses of CAF show ERA5 to have a lower magnitude trend 

than JRA-55 (Figure 17), despite showing larger trends values across most of the 

region (Figure 16). A time series analysis show ERA5 to have a very high number of 

days exceeding the 99th percentile in 1965-1966 (Figure 18), coinciding with a large 

drop in the number of observations over Africa, particularly affecting tropical Africa for 

this period in ERA5 (Simmons et al., 2021). Notably, JRA-55 shows both years to have 

no days exceeding the threshold, despite both datasets using the same land 

observations (ERA-40 data collection). Furthermore, ERA5 was shown to have large 

dry bias over the region during this period (Bell et al., 2021), with these issues, causing 

the dataset to be 0.4°C hotter over the whole of Africa, in comparison to other 

reanalysis datasets (Simmons et al., 2021). Drier conditions in CAF is linked to  

anomalously high temperature values (Hu et al., 2019), which would cause a high 

number of days exceeding the threshold value. Conversely, JRA-55 has a large 

departure from ERA5 and BEST in 1999, illustrating that over 50 days exceeded the 

99th percentile value. Large departures from the expected exceedance of the threshold 

occur at both the 99th and 90th percentile values (Appendix 4). While the author could 

find no discussion relating to JRA-55 performance over Africa for 1965-1966 and 1999, 

both the ERA5 and JRA-55 decadal trends are likely influenced by these anomalously 

high years. In particular, the ERA5 trend could be dampened, due the early occurrence 

of the anomaly year in the time series. 

North west Africa has been shown to be a region of intense summer warming 

(Ntoumos et al., 2020), exceeding at least 0.4°C a decade over Algeria (Figure 14.2), 

with Figure 16 and Figure 19 illustrating a hotspot of statistically significant increases 

in hot days at the 99th and 90th percentile in this region (west of 10°E and north of 

20°N), with evidence in the literature further highlighting strong trends (Lelieveld et al., 
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Figure 18. Time series of hot days for Central Africa (see Figure 9 for land area 

covered), expressed as days per year, over the 1960-2019 period, calculated using a 

linear regression. A hot day is calculated as a day above the all season 99th percentile 

(all months sampled due to its tropical location) for the 1961-1990 period. Decadal 

trend values are noted under the legend. 

Figure 19. As for figure 16, but a hot day calculated at the 90th percentile. 

4.2.2 Intensity of Hot Days 

While studies largely agree that the intensity of extreme heat events is increasing 

(Perkins-Kirkpatrick and Lewis, 2020), the variety of metrics used by studies make it 

difficult to produce robust conclusions on how these heat extreme characteristics have 

changed have changed at pan-African scales (Engdaw et al., 2021). Specifically, 
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numerous heat intensity metrics have been used, including the: annual or monthly 

maximum temperature (Iyakaremye et al., 2022, van der Walt and Fitchett, 2021); 

average intensity of a hot day; and cumulative heat (Perkins-Kirkpatrick and Lewis, 

2020, Feng et al., 2020). This section will seek to compare how average intensity and 

cumulative heat has changed over the last 60 years. 

Figures 20.1 and 20.2 illustrate the average anomaly of a hot day, with both the 99th 

and 90th percentile values showing spatial differences in the sign and magnitude of 

trends between datasets. In particular, BEST shows areas of cooling over southern 

Africa and western Africa, which are only statistically significant at the 90th percentile 

value but exceed 0.3°C a decade. All 3 regions at the 99th percentile show a region of 

cooling in central Africa, albeit not significant in ERA5 and of a lower magnitude in 

JRA-55. ERA5 does not show this cooling at the 90th percentile, while BEST and JRA-

55 do. Additionally, ERA5 shows much of Africa to be warming at both percentile 

values, although significant trends only cover most of Africa at the 90th percentile. 

There are only a small number of regions where (Central Southern Africa and North 

West Africa) datasets agree in significant warming trends, with Figure 21 highlighting 

that at the 90th percentile, only North Eastern-Africa has a robust increasing intensity 

of heatwaves. 

The magnitude of intensity trends are lower than those of annual, seasonal and 

monthly mean maximum temperature for many of the regions (Appendix 1 and Figures 

12.1 and 15.1) and few regions across all 3 datasets are significant. Due to the use of 

a fixed threshold, the average intensity is inversely proportional to the number of hot 

days, meaning that as the frequency of hot days increases, only small changes in the 

average intensity can be expected (Perkins-Kirkpatrick and Lewis, 2020), explaining 

the dampened intensity trend in comparison to maximum temperature trends. 

Interestingly, BEST has large regions of negative trends in intensity, not replicated in 

the other datasets. While these trends are largely only significant at the 90th percentile 

(Figure 20.2), the strong declining trend in intensity in southern Africa coincides in a 

region where largely, all four datasets agree in a warming of mean maximum 

temperature. Consequently, to specifically examine how the intensity changes 

independently from changes to hot days, and to explore if these declining trends are 

also seen in other intensity metrics, the annual cumulative heat, defined as annual 

sum of the excess heat, produced above the seasonal percentile values. 
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Figure 20.2. As for figure 20.1, but with a hot day calculated at the 90th percentile. 
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The spatial representation of the frequency of hot days, largely varied by magnitude 

between the datasets, with ERA5 and JRA-55 showing larger magnitude trends over 

much of Africa, compared to BEST. Differences in the sign and magnitude of trends 

were particularly notable over the Sahara and in southern Africa (Figure 19). While 

there is a dearth of stations over the Sahara in the BEST dataset, there appears to be 

a relatively large number of stations informing the dataset in southern Africa (Figure 

6). However, the time series and quality of these stations is unknown and could 

influence the sign and magnitude of change in the BEST dataset. Issues with the 

observations were also identified in ERA5 and JRA-55, with 1965-1966 known to be 

a year where tropical Africa saw a large drop in the number of observations (Simmons 

et al., 2021). While ERA5 produced a strong warming bias in this year, causing an 

anomalously high number of hot days over these years for Central Africa (Figure 18), 

JRA-55 did not. 1999 saw both ERA5 and JRA-55 produce a large number of hot days, 

albeit JRA-55 produced over 30 more. These differences could be attributed to 

differences in the data assimilation and forecast models, due to both datasets using 

the same land-based station dataset (Simmons et al., 2021). However, these 

anomalously high values, in different stages of the time series is likely to have 

impacted the decadal trends produced for the region. However, this study was able to 

provide robust trends in the increasing frequency of moderate heat extremes in nearly 

all regions (Appendix 3b), highlighting that robust increasing trends does exist in CAF, 

a region lacking the data or literature to identify a trend in the latest IPCC report (IPCC, 

2021). 

Two metrics were used to examine changes to the intensity of heat extremes. The 

average intensity illustrated disagreements in the sign of trends between BEST, JRA-

55 and ERA5, particularly in southern Africa and the Western Sahel (Figures 20.1 and 

20.2). Results showed the trends to be lower than annual, seasonal and monthly 

trends in maximum temperatures, which can be explained through the use of fixed 

percentile in the calculation of the metric, causing the intensity to be inversely 

proportional to hot days (Perkins-Kirkpatrick and Lewis, 2020). Consequently, a 

cumulative heat metric was calculated, examining if hot days are producing increasing 

amounts of excess heat. While a similar spatial representation exists between the two 

metrics, larger areas of Africa in BEST see statistically significant trends. However, 

disagreements between the datasets still exist, with ERA5 showing large increasing 
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trends (upwards of 70% or 20°C a decade) for most of Africa at the 90th percentile, 

while BEST and JRA-55 still show areas of cooling (Figure 22.2). Regional analyses 

were able to show an robust increasing trend in the intensity of hot days for CAF 

(Figure 23). This study provided the first comprehensive assessment of changes to 

heat extremes over Africa, producing the essential information required for regional 

scale climate change adaptation, mitigation and litigation (Engdaw et al., 2021). 

4.3 How much does the temperature of the hottest days vary between years? 

What counts as an extreme hot day in different regions? 

Extreme temperature events can cause damages to the livelihoods and health of 

communities, in addition to the environment (Omondi et al., 2014). While changes to 

African heat extremes has seen relatively little attention compared to Europe, 

numerous studies have examined changes to the projected characteristics of these 

events (Nangombe et al., 2019). However, there is a dearth of studies that examine 

the characteristics of these events during the observational period for Africa 

(Iyakaremye et al., 2022), with the variability of observed temperatures used to 

constrain and validate model projections of extreme temperature (Freychet et al., 

2021) and the distribution of extreme temperatures within datasets influencing 

changes to the frequency of events (Loikith et al., 2018). Accurate projections of how 

the frequency and magnitude of temperature extremes are essential for the 

development of sustainable and effective adaptation plans (Gebrechorkos et al., 

2019). This section will aim to explore how datasets represent the absolute 

temperature of extremely hot days and how the temperature of these days are 

statistically distributed. 

4.3.1 Variability between datasets of maximum temperatures 

The most extreme daily annual events are often used in generalized extreme value 

distribution fits (Kharin et al., 2013). Analyses of observational data is useful for 

understanding the variability of extreme heat, which is often used to inform the 

robustness of policies that aim to reduce damages caused by these events. Sectors 

that are influenced most by absolute temperatures, such as agriculture find this 

information particularly useful (Turasie, 2021, Knox et al., 2012). Figure 24 illustrates 

how each dataset represents a 1/5 year ERA5 event, with the BEST dataset showing 

this magnitude of event occurs more frequently than in the ERA5 and JRA-55 
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The finding that these datasets have vastly contrasting estimates of what constitutes 

an extreme annual temperature, suggests that they have a different representation of 

temperature variability at a regional scale. This has implications for recent work which 

attempts to use temperature variability to constrain future projections. Freychet et als. 

(2021) study examined how the frequency of temperature extremes will change during 

the 21st century, constraining these future projections through comparing the variability 

of maximum temperature (98th percentile value subtracted from mean maximum daily 

temperature) between observational datasets and models. The observational 

uncertainty range is calculated using the difference between ERA5 and CHIRTS 

variability results, with models selected from CMIP5 and CMIP6 if they can replicate 

the observational uncertainty (plus natural variability). While Freychet et al (2021) 

demonstrated an underestimation in the frequency of hot days in unconstrained 

ensembles over tropical Africa when compared to constrained projections, results 

shown in Figure 24, highlight large observational uncertainties in variability of 

maximum temperatures, over all regions of Africa (Appendix 5). While a small 

observational uncertainty could generally be expected between ERA5 and CHIRTS, 

due to the role of ERA5 in producing the CHIRTS dataset (Verdin et al., 2020), 

datasets that share measurements still increase the confidence of projections 

(Borodina et al., 2017). 

However, data sparse regions such as Africa (Gleixner et al., 2020), and the lack of 

intercomparison studies examining observed variability in maximum temperatures 

(Alexander, 2016), can make it difficult to produce a robust observational constraint. 

The large uncertainties shown between datasets here indicate that using a single 

observational product would make producing a robust and accurate constraint difficult 

for each region. This could impact the selection of the appropriate models, which can 

increase model projection uncertainties and influence estimates of biases in climate 

forecasts, which are produced by comparing constrained and unconstrained ensemble 

projections (Freychet et al., 2021). 
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Figure 24. Return Periods of the regional annual maximum temperature, over the 

1960-2019 period. A Generalised Extreme Value (GEV) was fit over the hottest day of 

each year of the study period (1960-2019), for the AR6 African regions. The dots 

represent each datasets hottest annual temperatures in °C, with 5th and 95th percentile 

of the data point and GEV fit represented by the solid colored lines. A 1000 sample 

bootstrap calculates the percentile values. The dashed horizontal line is defined as a 

1/5 year event in the ERA5 dataset for each region, with the dashed vertical lines 

representing where the data point and GEV line exceed the threshold. The colored 

range either side of the dashed vertical lines represent the 95% confidence interval of 

the return period of the event. All confidence intervals are calculated through a 1000 

bootstrap sample. 
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4.3.2 The distribution of maximum temperature 

While regional changes in heat extremes have been shown to occur with changes in 

the mean temperature (Thompson et al., 2022), changes to the distribution of 

temperatures are known to also influence the frequency and magnitude of events 

(Lewis and King, 2017). Shifts to short tailed distributions have been highlighted a key 

indicator of regions that will experience rapid changes to the frequency of heat 

extremes (Loikith et al., 2018).  

To examine how the distribution of maximum temperatures vary between 

observational data products, Quantile-Quantile (Q-Q) plots where produced for the 

eight AR6 regions of Africa, allowing the distribution and representation of the most 

extreme annual events to be compared between datasets. Figure 25 focuses on 

examining the distribution of maximum temperatures in the Sahara, Central-Africa and 

Eastern Southern-Africa regions. The BEST dataset generally produces temperatures 

hotter than JRA-55 and ERA5 in the Sahara and Central-African regions, except for 

the most extreme event in the Sahara, in the last 60 years, with BEST producing hotter 

temperature values than ERA5 and JRA-55 in nearly all regions (Appendix 6). To 

quantify the distribution of each dataset, the skewness of datasets is examined, with 

a negative skewness a common indicator of short tailed distributions (Loikith et al., 

2018). A negative skew can be identified through a downwards deviation in relation to 

45 degree solid black line at the lowest percentile values, with the skew relating to the 

dataset on the y axis. ERA5 and JRA-55 show a negative skewness in all regions in 

Figure 25. Therefore, while BEST is the hottest annual maximum temperatures in 

nearly all regions, ERA5 and JRA-55 are likely to have a shorter warm tail in these 

regions, meaning trends in the frequency of heat extremes would be expected to be 

larger in these datasets. Additionally, comparisons between datasets show that in 

these regions, extreme events do not share a gaussian distribution, rarely occurring 

across all regions (Appendix 6). A gaussian distribution can be identified through data 

plotted in a straight line. Therefore, the exceedance rates of thresholds and magnitude 

changes of extreme events will be influenced by the distribution of each dataset. These 

differences in the distribution between datasets, in combination with the varying sign 

and magnitude of mean temperature change (as evidenced in Figures 11-15), could 

result in large differences in the trends shown in heat extreme metrics. Additionally, 

these results highlight that there is not robust evidence of distribution of maximum 
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temperatures across Africa, and studies should seek to use multiple data products to 

provide a robust observational constraint, that can be used to appropriately select 

models. 

While the CHIRTS dataset is shorter in length than BEST, ERA5 and JRA-55, Q-Q 

plots enable different sample sizes to be compared (Lazoglou et al., 2019). Figure 26 

provides evidence that the skewness of CHIRTS varies region to region, with BEST, 

ERA5 and JRA-55 negatively skewed against CHIRTS in north eastern-Africa. 

Interestingly, neither of ERA5 and BEST share a gaussian distribution with CHIRTS, 

despite both datasets being utilized in the production of CHIRTS (Funk et al., 2019). 

Furthermore, CHIRTS is hotter than ERA5 and JRA-55 in most regions, with BEST 

producing the hottest absolute temperatures in some regions (Appendix 6). Verdin et 

al (2020) found that ERA5 and the GHCN dataset (that contributes a large proportion 

of stations in BEST) to underestimate the number of days exceeding 40.6°C in 

comparison to CHIRTS, over Africa. Figure 27 highlights that there is a large absolute 

temperature difference (roughly 1.5°C) between CHIRTS and the other datasets at 

this threshold over the Sahara. Additionally, it highlights that temperatures are higher 

for all of the most extreme events, but this is not the case in all regions, where 

temperatures can be lower (Appendix 6). While the inclusion of satellite data into the 

CHIRTS product is thought to improve the reliability of the dataset over data sparse 

regions such as Africa (Verdin et al., 2020), the satellite component of the dataset is 

known to have issues over the Sahel and in tropical regions, due to the changes in 

satellites informing its values. While CRU data is used to calibrate values from different 

satellites sources, the sparse CRU coverage in these regions, and high cloud levels 

can lower the accuracy of the satellite data informing the product (Funk et al., 2019). 

While this could affect the Sahara, western-Africa and central-African regions used in 

this study, the CHIRTS product has been shown to improve with time over Africa (Funk 

et al., 2019). However, Africa as a region has received relatively little validation 

attention, with further work required on the influence of satellite data on the CHIRTS 

products, as this could affect the representation of extreme events (i.e the absolute 

magnitude) and trends in their characteristics. 
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Figure 25. Quantile-Quantile (Q-Q) plots for selected regions of annual maximum 

temperature, over the 1960-2019 period. 
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Figure 26. Quantile-Quantile (Q-Q) plots for selected regions of annual maximum 

temperature, over the 1960-2019  period for BEST, ERA5 and JRA-55, and 1983-2016 

for CHIRTS. 
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Figure 27. As for Figure 26, but over the Sahara. 

4.3.3 Summary: distribution of maximum temperature 

Examining the most extreme events to occur in each of the last 60 years, research 

question 3 aimed to assess how the variability and distribution of these events are 

represented in each dataset. 

Across all regions of Africa, there is no robust evidence that the datasets are able to 

consistently represent the frequency of the most extreme events. Observed maximum 

annual temperatures from a single observational dataset are often used to constrain 

model ensembles that examine projected changes in temperature extremes or to bias 

correct model data (Donat et al., 2018). Results in Figure 24 highlight that return 

periods of annual maximum temperature do not fall within each datasets 95% 

confidence intervals, for any region, with the variability of extreme temperatures not 

consistent between datasets. Furthermore, the results in Figures 25-27 provide 

evidence that at extreme values, these datasets do not have a common distribution, 

relative to each other. Many regions see ERA5 and JRA-55 negatively skewed, with 

this distribution associated with rapid increases in the frequency of extreme events 

(Loikith et al., 2018). However, the differences shown here highlight that the magnitude 

of change to the frequency of events could be influenced by the choice of dataset. 

Consequently, studies that use a singular observational dataset to constrain or bias 

correct model data could still lead to the selection of models that do not capture the 

distribution or variability of present day temperatures. Studies should follow the 

methodologies that produce a observational uncertainty range, by using multiple 

datasets to constrain ensembles of models (Freychet et al., 2021, Lewis et al., 2019), 

in order to increase the confidence in projected changes, even in tropical and African 
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regions, where access to high resolution data is sparse (Borodina et al., 2017, Gleixner 

et al., 2020). 

5. Conclusions 

A lack of studies have examined the observed changes to mean and extreme 

temperatures at pan-African scales in multiple datasets (Engdaw et al., 2021, 

Ceccherini et al., 2017), despite the importance of understanding recent change for 

developing effective adaptation policy (Engdaw et al., 2021) and constraining future 

projections (Hegerl et al., 2021). Coupled with the high vulnerability of the region to 

climate impacts (Field et al., 2012), and the observational uncertainty in many parts of 

the continent, it is important to provide a comprehensive assessment of the observed 

changes in temperature across Africa. This study examined a range of commonly used 

observational and reanalysis datasets, aiming to assess whether the representation 

of absolute temperature and extreme heat metrics is consistent amongst these 

datasets, while also seeking to highlight areas of robust changes, at a variety of 

spatiotemporal scales. The consistency of the representation of trends and events is 

a theme crosscutting through each research question, and is answered within 

questions 2-4. 

5.1. How has the mean temperature changed through time, across the African 

continent, over the past 60 years?  

To examine changes in temperature across Africa, a variety of spatiotemporal scales 

were analysed, seeking to identify regions that have undergone the largest warming 

and how trends are represented between datasets. There is a great deal of evidence 

in the literature that annual mean temperatures are increasing across the continent 

(Pörtner et al., 2022). This study supports this previous work, adding further 

confidence to trends over the Sahara and central Africa, regions where the limited 

accessibility to station data contributes to the observational uncertainty in temperature 

changes (Pörtner et al., 2022, Tsalefac et al., 2015). All 4 datasets agree in an 

increasing trend in these regions, although there remains some uncertainty in the 

magnitude of these trends, namely over central Africa. Parts of north west Africa and 

the south-western coast of Africa have seen the largest increasing trends in annual 

mean maximum temperature. Specifically, areas of Algeria and Tunisia saw trends 

exceeding 0.5°C in ERA5 and JRA-55. However, it was difficult to identify the areas 
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will help to inform future policy and provide estimates of the observational uncertainty, 

that could be used to constrain future projections over the region. The 99th percentile 

illustrated that fewer regions saw increases in the frequency and intensity of extreme 

events, specifically affecting the magnitude of these trends in the BEST dataset. 

Additionally, the spatial representation of areas with the largest changes differed 

between datasets, making it difficult to identify hotspots of change. 

5.3. How much does the temperature of the hottest days vary between years? 

What counts as an extreme hot day in different regions? 

Africa is particularly vulnerable to the impacts of extreme heat (Field et al., 2012), so 

it is important that observational datasets accurately represent extremely hot days to 

ensure useful observational constraints can be applied to projection studies and 

reduce the uncertainty in attribution studies. The highest daily maximum temperature 

for every AR6 region, in each of the last 60 years, was taken from the BEST, ERA5 

and JRA-55 datasets. Each region was compared to how it represented a 1/5 year 

event in ERA5. No region saw agreement in the magnitude of this event. For instance, 

a 1/5 year event in Western Africa is roughly 37°C in JRA-55, 38°C in ERA and 39.5°C 

in BEST. Absolute values of extreme temperatures are relevant to agriculture and 

infrastructure resilience (Horton et al., 2016), which are tied to the health and 

livelihoods of communities. However, these datasets, during this time period, could 

not provide a consensus on the magnitude of the most extreme events to occur. 

Furthermore, the statistical distribution of each datasets differed between these 

regions, with numerous domains seeing ERA5 and JRA-55 negatively skewed against 

BEST, which is synonymous with more rapid increases in the frequency of extreme 

heat events. This could explain why ERA5 and JRA-55 have larger decadal trends in 

the percentage change in hot days in most regions, compared to BEST. Consequently, 

the choice of dataset is shown to influence the representation of trends in moderate 

extremes and the intensity of the most extreme hot days to occur over Africa.  

5.4. Limitations and future work 

Despite the data sparsity over much of Africa (Gleixner et al., 2020), a number of 

observational and reanalysis products covering the whole continent exist (Dinku, 

2019). These data products are produced to examine a variety of temperature metrics 

at a wide range of spatiotemporal scales, with the dataset chosen influencing how 
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comparable the results are. BEST is a daily TMAX product, calculated from a mean 

climatology and daily anomaly, ERA5 is the TMAX calculated from hourly data, while 

JRA-55 is TMAX calculated from 6-hourly TMP means. In particular, the use of this 

JRA-55 dataset could average out peak temperatures and influence the representation 

of extreme events. However, the representation of the most extreme events in JRA-

55 was comparable to ERA5 in most regions. Future work should seek to assess which 

datasets/data processing procedures enable a more direct comparison of the 

representation of mean and extreme temperature across Africa. 

The most commonly used metric to assess the changes to extreme heat over Africa 

is the calendar day hot day, where each day is assessed to whether it exceeds a daily 

percentile value, for each gridpoint. Each percentile value is calculated by a moving 

window period. This accounts for the seasonal cycle of temperature and for the 

variability in temperature across the season that is sampled, while also increasing the 

sample size (Zhang et al., 2011). The seasonal percentile value in this study has been 

used in assessments of extreme heat and has been shown to effectively identify hot 

days with high percentile values. However, they do assess different sample sizes and 

value ranges, which could influence results (Sulikowska and Wypych, 2020). 

Evaluating changes to the intensity and frequency of hot days, using the calendar day 

method, will help to place the context of these results into the wider literature, further 

aiding our understanding of how extreme heat characteristics are changing.  

Studies should continue to examine the spatiotemporal representation of trends and 

events between datasets across Africa during the observational period, as continual 

developments to datasets aim to improve data quality. This will help to identify how 

new updates influence the performance of the datasets to represent past temperatures 

over Africa, helping to further constrain the projections of extreme heat. Developing 

our understanding of changes to extreme heat is important evidence required by policy 

makers to produce informed and effective adaptation and mitigation plans. 

Furthermore, studies could seek to identify the drivers of why these datasets produce 

varying sign and magnitude trends, helping to inform future updates of data products 

over Africa. Additionally, improving accessibility to relevant data and increased 

monitoring networks will help studies to examine changes in temperature and reduce 

observational uncertainty. This will aid the production of more accurate assessments 

of the role climate change plays in amplifying the characteristics of specific extreme 
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heat events. These attribution studies form a crucial part of our toolkit to communicate 

climate change to the general public. Finally, pan-African assessments could explore 

how wet-bulb metrics have changed, particularly across the tropics where humidity 

plays a key role, alongside temperature in the heat stress humans experience 

(Freychet et al., 2021). This study has provided evidence that the region has 

experienced increases in mean TMAX and TMP, along with increases in the frequency 

and intensity of dry-bulb extreme heat, however, it did not explore changes to wet-bulb 

metrics.  

5.5. Concluding remarks 

This study provides evidence that Africa has seen robust increases in annual mean 

maximum temperatures, in all regions. The uncertainty in the sign and magnitude of 

changes increases with temporal resolution. Furthermore, it highlights that nearly all 

African regions have seen robust increases in the frequency and intensity of hot days. 

The most recent IPCC assessment noted Central Africa as a region lacking the 

information to identify a trend in hot extremes, with this study providing robust 

evidence that at the 90th percentile, there is an increasing trend in the frequency and 

intensity of hot days over the region. The BEST dataset illustrates sign and magnitude 

trend differences over the Sahara which could be due to the lack of stations informing 

temperature values over the region. Additionally, in nearly all regions, the intensity of 

the hottest temperatures of the last 60 years is higher in the BEST dataset, with no 

agreement in the magnitude of a 1/5 year events in any region. These differences 

between the datasets are likely due to the data processing procedures and (lack of) 

observations used in their development. This suggests that studies using just one 

observational product could produce misleading representations of observed 

temperatures at all spatiotemporal scales, influencing the credibility and plausibility of 

projected changes in temperature and extreme heat. While it is not clear which data 

product is the best, using multiple observation based datasets will help to account for 

observational uncertainty. 

 

 

 


















































































