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�"�ã�ô�õ�ó�â�ä�õ

This thesis addresses �H�V�J�E�F�E �E�F�F�Q �M�F�B�S�O�J�O�H, a new perspective for dealingwith the real-world
challenges of deep learning applications such as animal analysis. The proposed methods seek
guidance from various sources in data such as spatiotemporal context, visual coherence, tem-
poral correspondence, and dynamic learning policies to facilitate learning. The results are
demonstrated on various computer vision tasks including animal detection, animal behaviour
understanding, action recognition, video representation learning, and generic object detection.

First, this thesis explores a �D�P�O�U�F�Y�U���H�V�J�E�F�E �E�F�U�F�D�U�J�P�O �N�P�E�F�M. It leverages spatiotemporal
context with the attention mechanism, building a spatio-local correlation and a long-range
temporal dependency to boost animal detection in the camera trap. The proposedmethod out-
performs state-of-the-art frame-based detection baselines on the PanAfrica Dataset, a dataset
of Great Apes filmed by camera traps in their natural habitats. Extensive experimental results
show the effectiveness of the proposed context guidance in scenarioswheremotion blur,major
occlusion, and camouflage effects �F�U�D��occur whereas the state-of-the-art detectors fail.

This thesis also offers insight into how to leverage visual coherence and temporal corre-
spondence in a video to guide visual representation learning without labels. The proposed
�T�F�M�G���H�V�J�E�F�E �U�F�N�Q�P�S�B�M �M�F�B�S�O�J�O�H �N�P�E�F�Mperforms forward-backward cycle predictions in time
and then guides the predicted cycles to be coherent (smoothly varying) and correspondent (cir-
cularly consistent). It shows competitive experimental results for action recognition onUCF101
andHMDB51. Also, self-guided learning demonstrates the potential in animal analysis where
a large amount of unlabelled animal videos can be exploited in a meaningful way.

Inspired by the success of semi-supervised learning using large quantities of unlabelled
data in other research fields, this thesis final argues that semi-supervised approaches can
benefit animal analysis to address the lack of data labels in animal datasets. However, the
current pseudo-label-based semi-supervised detection models that simultaneously utilise la-
belled and unlabelled data suffer from potential learning collapse. Herein, a �Q�P�M�J�D�Z���H�V�J�E�F�E

�T�F�N�J���T�V�Q�F�S�W�J�T�F�E �N�P�E�F�Mis proposed. The proposed curriculum learning policies can steer
learning towards a self-reinforced virtuous learning cycle that benefits the learning process
and improves model performance. Experiments on PanAfrica and Bee datasets demonstrate
the superior performance of policy guidance compared with state-of-the-art semi-supervised
detection. It also achieves state-of-the-art performance on MS-COCO and PASCAL VOC 2007
under a low-data regime.
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This thesis concludes that the proposed guided deep learning approaches benefit animal
analysis in tackling the real-world challenges.
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Animals have evolved to exhibit diverse behaviours, and analysing these animals and
their behaviours is a fundamental goal of disciplines such as neuroscience, biology,
ecology, and animal conservation. Animal analysis requires repeatable and scalable

measurements of animals and their behaviours that are not possible with traditional method-
ologies [191, 192, 194]which needsmanual observation and interpretation fromanimal experts
and specialists. Fortunately, the emergent field of computational ecology has shown promise
in this field, especially, when ecological data meets AI. Computational ecology leverages tech-
niques from computer science and engineering to facilitate automatic quantification of ani-
mal analysis and it is believed to be a game changer in the field of animal-related disciplines
[51, 175, 209].

In particular, computer vision, a subfield of computer science dedicated to understanding
visual data, is having a more andmore significant impact on animal analysis, especially, in the
deep learning era. Large quantities of animal visual data can be understood by AI thanks to
the current advanced computer vision technologies, boosted by deep learning. Lots of reusable
and scalable computer vision tools that can detect, track, count, and recognise animals, have
been introduced and applied in the animal ecology field [1, 9, 12, 14, 59, 108, 134, 136, 137, 156,
216]. However, several real-world challenges exist in ecological data that impede applying
state-of-the-art computer vision tools to the field of animal ecology.

This thesis addresses some of the real-world challenges in animal ecology. In particular,
a camera trap dataset (PanAfrica) is collected, annotated, and primarily used as the case to
demonstrate that these challenges are often too critical to be neglected in developing animal
analysis tools. In the face of these challenges, this thesis proposes guided deep learning ap-
proaches applied to solve the fundamental problems for animal analysis �J���F��the 3 �8 s: i) �8 hat
are they? ii) �8 here are they? iii) �8 hat are they doing?, aiming to bridge the state-of-the-art
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deep learning techniques to the application in the animal field. The proposed guided deep
learning approaches can actively seek guidance from various sources, such as motion (Chap-
ter 3), spatiotemporal context (Chapter 3), visual coherence (Chapter 4), temporal correspon-
dence (Chapter 4), and dynamic learning policies (Chapter 5), to facilitate training deep learn-
ing models from challenging ecological visual data. The guided deep learning approaches
presented in this thesis are built upon the current computer vision models, tailored for these
real-world challenges in the animal ecology field. They can meet the urgent needs of building
accurate and scalable animal CV applications.

������ �$�I�B�M�M�F�O�H�F�T

In this thesis, three main challenges of deep learning applied to animal recognition in videos
will be explored and briefly discussed in this section.

�$�I�B�M�M�F�O�H�F ���� �$�P�N�Q�M�F�Y�J�U�Z �P�G �$�B�N�F�S�B �5�S�B�Q �7�J�E�F�P �%�B�U�B

Large-scale data acquisition in the field of animal ecology is becoming accessible owing to in-
expensive and durable devices such as camera traps. Video footage captured by camera traps
in the natural habitats of wildlife is important to the conservation effort. However, due to
the harsh filming environment, this video footage is particularly challenging, �F���H��difficult il-
lumination, blurry backgrounds, major occlusion, video noise, motion blur as well as animal
camouflage effects. For example, the PanAfrica dataset [204] filmed via camera traps in jungle
environments constitutes such a setting, where apes are uniformly dark, blended into the for-
est, and occluded by vegetation during eating, playing or moving in groups (see Chapter 3 for
more details).

This becomes a major reason why the current recognition models [79, 81, 113, 149] are dif-
ficult to adapt to real-world animal data like PanAfrica Dataset. These models are designed
and trained in ideal situations, where objects are static with clear appearances in the image, �F���H��

MS-COCO [114] and PASCAL-VOC dataset [52]. Thus, these objects can be easy to be recog-
nised, when real-world challenges are not taken into consideration. For example, Figure 1.1
shows the challenges of animal recognition in PanAfrica dataset compared with MS-COCO
dataset.

�$�I�B�M�M�F�O�H�F ���� �4�Q�B�S�T�J�U�Z �P�G �-�B�C�F�M�M�F�E �%�B�U�B

Another challenge of deploying computer vision tools to animal ecology is a lack of human-
annotated large-scale training data for particular species despite evolving computer vision
tools.However, obtaining large-scale human-annotateddata in the animal domain is not trivial
as it is associated with the high cost of human labour. Moreover, some labels can only be
annotated by animal experts and specialists, for example, fine-grained type species.
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Figure 1.1: �$�I�B�M�M�F�O�H�F�T �J�O �$�B�N�F�S�B �5�S�B�Q �7�J�E�F�P �%�B�U�B��The first row illustrates the real-world challenges of recog-
nising great apes in the wild (images are adopted from PanAfrica dataset [204]). In contrast, the second row shows
some animal images which are used to train the current recognition models (images are adopted from MS-COCO
dataset [114]). Red boxes represent ground truth.

In contrast, public visual datasets [31, 43, 114] that fueled the advancement of computer
vision algorithms are usually large-scale and fully annotated. For example, PanAfrica dataset
[204] and Lindenthal Camera Traps dataset [76] contain 500 and 800 fully-annotated camera
trap videos, respectively, whereas popular action recognition datasets such as Kinetics [31]
includes over 500K human-annotated videos. For datawith image-level annotations, Snapshot
Serengeti [168] contains 2.6M annotated images, which is still far less than its counterpart,
ImageNet [43], consisting of � 14M labelled images.

Due to the sparsity of labelled animal data and the difficulties in animal label acquisition,
current methods for computational ecology [1, 9, 14, 134, 136, 137, 216] resort to transfer learn-
ing, where models are often pre-trained on the public visual datasets which are from different
domains. However, transfer learning on animal data from the other domains could suffer from
the problem of domain gap which worsens generalisation ability, resulting in detrimental per-
formance.

�$�I�B�M�M�F�O�H�F ���� �-�F�W�F�S�B�H�J�O�H �6�O�M�B�C�F�M�M�F�E �7�J�E�F�P �%�B�U�B

Most visual data are filmed by sensors deployed in the animal natural habitats such as camera
traps, UAVs, �F�U�D��. They are usually presented in video formats. For example, lots of camera traps
distributed in conservation centres can collect abundant video footage everyday. These video
data have immense potential to develop and advance algorithms for computational ecology;
however, they are usually been ignored as they do not have labels.

On the other hand, videos are naturally rich in spatiotemporal information that is ide-
ally suitable for learning without labels. However, defining which exact aspects of the video
should be exploited for effective learning of semantic representation, and how the resulting

3



CHAPTER 1. INTRODUCTION

embedding spaces are to be structured, constructed, and constrained is challenging. Existing
works explore the structured video data from the perspective of video dynamics [95, 106, 128,
188, 199], constructive video generation [70, 71, 189], and temporal speed [15, 142, 205]. How-
ever, the representative potential of temporal prediction within the video has not yet been
fully explored.

������ �$�P�O�U�S�J�C�V�U�J�P�O�T

This thesis investigates the guided deep learning approaches applied to animal recognition in
facing the aforementioned challenges. The key contributions can be summarised as follows:

• A publicly available, large-scale camera trap annotation dataset for great ape detection
in the wild is published, containing 180K frames with full annotation of per-instance
location, id, and species type. The data that are collected from the natural habitats con-
tain challenging scenarios which are suitable for training real-world animal recognition
models.

• A detection method that is dedicated to recognising animals from challenging video
footage is proposed where the guidance from video context is investigated via motion-
guided learning or spatiotemporal-attention-based learning. This method is robust to
occlusion, illumination, camouflage effects and other real-world animal detection chal-
lenges.

• A data-driven self-guided pretext task that learns video feature representation from the
video itself is presented where it offers insight on how to leverage visual coherence
and temporal correspondence to guide learning without labels, and useful training tech-
niques that can avoid learning collapse in self-guided learning are also provided.

• A novel end-to-end semi-supervised curriculum learning framework is introduced in
which a set of policies are proposed to guide the learning of this framework. The pro-
posed policies can support the semi-supervised detection towards a self-reinforced vir-
tuous training loop that benefits learning, and they show promise in effectively utilising
a large amount of unlabelled data for animal recognition.

������ �5�I�F�T�J�T �0�W�F�S�W�J�F�X

The rest of this thesis is organised as follows. Chapter 2 thoroughly surveys the literature on
works investigating object detection, self-supervised learning, and semi-supervised learning,
with a particular focus on those relevant to this thesis. Additionally, the chapter also elaborates
on deep learning applications in animal analysis.
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Chapter 3 introduces the PanAfrica dataset, one of the largest camera trap video footage
datasets for great apes. To enhance detection performance in PanAfrica, the chapter inves-
tigates context-guided deep learning by two approaches, i) motion-guided learning and ii)
spatiotemporal-attention-based learning. The initial approach exploits the hand-crafted mo-
tion feature, generated by Motion History Image (MHI) or optical flow, to facilitate learn-
ing with the temporal contextual information. The second approach which leverages the self-
attention mechanism in the spatiotemporal feature domain is proposed to alleviate these lim-
itations. Extensive experimental results show the effectiveness of the context-guided models
on challenging scenarios in the PanAfrica dataset. This study provides insight into the chal-
lenges of detecting animals from camera trap video and the necessity for models to reason by
temporal context.

Chapter 4 explores the temporal relationships in a video, demonstrating that such relation-
ships can be further exploited in a self-guided learning mechanism. A method that leverages
visual coherence and temporal correspondence, two naturally inherited characteristics in any
video, is proposed for video representation learning and experimentally evaluated under sev-
eral video understanding tasks. The learnt visual representation is proven to be beneficial to
animal behaviour recognition tasks, demonstrating the potential of self-guided learning in an-
imal analysis where a large number of unlabelled animal videos can be utilised to develop
powerful computer vision tools.

Chapter 5 considers a deep learning model that can recognise animals under a low-data
regime. The chapter studies a semi-supervised detection approach that is built upon a student-
teacher system in a self-trainingmanner with pseudo-labels. Experimental findings show that
the self-reinforcing loops within this system could lead to the bipolar behavioural dynamics
of learning. To mitigate this problem, this chapter explores curriculum learning policies to
guide model training. The proposed policy-guided method can steer learning towards a self-
reinforced virtuous learning cycle that benefits learning and improves performance. Detailed
experimental results as well as comparison experiments are demonstrated on various animal
datasets as well as standard object detection datasets, suggesting its effectiveness and wider
applications.

Finally, Chapter 6 closes the thesis with a conclusion of the works presented and avenues
for future works.
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This chapter offers a background of a range of the literature which is relevant to the
works presented in this thesis. The structure of this chapter can be conceptually split
into four parts. The first part focuses on the fundamental object detection task, starting

with Section 2.1.1 which analyses the prevalent anchor-based object detection models from
one-stage detectors to multi-stage detectors. Then, Section 2.1.2 discusses the anchor-free de-
tection pipeline, from keypoint-based convolutional methods to the recent transformer-based
architectures. Additionally, relevant works on detection in videos are reviewed in Section 2.1.3.

The secondpart addresses the usage of unlabelleddata from the perspective of self-supervised
learning and semi-supervised learning. Section 2.2.1 examinesmethods that leverage the unla-
belled imagedata, delving into details fromdiscriminative-based approaches to videopredictive-
based approaches. This is followedby Section 2.2.2which introduces video-based self-supervised
methods illustrated with representative works.

In the third part, Section 2.3 presents works that learn under a low-data regime, start-
ing with the consistency regularisation method in Section 2.3.1, followed by the pseudo-label
method in Section 2.3.2, concluding with the application of semi-supervised learning in object
detection in Section 2.3.3.

Finally, Section 2.4 reviews recent methods for animal recognition using computer vision
techniques.

������ �0�C�K�F�D�U �%�F�U�F�D�U�J�P�O

Object detection aims to distinguish the foreground objects with the backgrounds and also
locate all the instances appeared in the images. This area has advanced in leaps and bounds
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since the very start of the modern era of deep learning. It is one of the most important and
fundamental computer vision tasks in the animal ecology field.

In this section, a comprehensive review of the recent achievements in this field brought
about by deep learning techniques will be presented. This section will start with the early
anchor-based object detection methods and then the more recent anchor-free object detection
methods; finally, some representative video object detection methods will be reviewed.

���������� �"�O�D�I�P�S���C�B�T�F�E �0�C�K�F�D�U �%�F�U�F�D�U�J�P�O

Object detection requires to fulfil two tasks �J���F��localisation and classification of the content
of interest. Localising objects is not a trivial task as the objects could appear anywhere with
various sizes and aspect ratios in the image. Anchor box was first introduced in Faster-RCNN
[149] to address the scale and aspect ratio variation in detection. It leverages a set of pre-defined
shapes (�J���F��sizes and aspect ratios) as the initial guesses of object locations. Due to its effective-
ness in handling object scale and aspect ratio variation, this approach has beenwidely adopted
in many detection methods [24, 79, 113, 118, 146, 147, 149].

Figure 2.1: �5�X�P���T�U�B�H�F �.�P�E�F�M �B�O�E �4�J�O�H�M�F���T�U�B�H�F �.�P�E�F�M��Figure (a) demonstrates Faster R-CNN, a two-stagemodel,
that contains an extra proposal generation stage before final detection. Figure (b) exhibits RetinaNet as the repre-
sentative for one-stage model. One-stage model directly generates predictions without the proposal generation
stage. Figure adapted from [30].

Early anchor-based detectors contain two stages i) region proposals generation and ii) ob-
ject recognition. Two-stage detectors achieve good performance in general but introduce extra
computational overhead which is unsuitable for real-time applications. Later, single-stage de-
tectors use anchors without relying on region proposal networks (RPNs). They directly pre-
dict bounding boxes and class probabilities for each anchor box in the feature grid in a single
forward pass. They are fast in computation but usually suffer from inferior performance com-
paredwith two-stage detectors, due to the inconsistency between the pre-defined anchor boxes
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and real object boxes. The architectural difference between the two-stage and single-stage de-
tection methods is given in Figure 2.1.

More recently, both single-stage and multi-stage detection methods have been greatly ad-
vanced by faster and stronger network architectures [46, 53, 83, 122, 155, 170, 184, 186, 197],
more effective feature integrationmethods [62, 98, 112, 117, 145, 170, 187, 229],more robust loss
functions [34, 110, 113, 150, 221, 226] and more efficient training methods [29, 29, 78, 133, 160,
218]. Owing to these technical improvements, current anchor-based detectors have achieved
a better trade-off between accuracy and speed.

Next, the basic components of anchor-based detection networks will be explained. Then,
the reviews of some representative anchor-based detectors will be presented, including Faster-
RCNN [149], Cascade-RCNN [24], RetinaNet [113], and YOLO families [21, 146–148].

�#�B�T�J�D �-�P�T�T �'�V�O�D�U�J�P�O�T��Training detectors require to fulfil two objective functions, �J���F��the cat-
egorical classification and Bbox regression losses. The basic classification loss is usually mea-
sured by the Cross-Entropy (CE) of the predicted class distribution over the corresponding
ground truth:

L CE = �
Õ

8

�Õ

2=0

@¹2º
8 log¹?¹2º

8 º – (2.1)

where @¹2º
8 is the ground truth (GT) for the 2th category of 8th instance in an image, ?¹2º

8 repre-
sents the predicted probability for the 2th category of 8th matched prediction in an image. A
predicted box is assigned to a ground truth label only if its Intersection over Union (IOU) is
above a threshold. The regression loss is usually an MSE or MAE loss on all four bounding
box coordinates between the ground truth and the predicted Bbox. This is the foundation for
methods presented in Chapter 3 and 5.

�'�B�T�U�F�S���3�$�/�/��Previous research demonstrates the remarkable localising ability of fully �*�Q�M�p

layers; however, this ability is weakened when in the �6�*layers [75, 138, 223, 224]. Faster-CNN
builds a region proposal network (RPN) with fully �*�Q�M�players. RPN leverages the shared fea-
ture maps from the last �*�Q�M�player in the backbone as the input and outputs a set of candidate
boxes. Each candidate box is predicted with a class-agnostic confidence score representing the
foreground likelihood. RPN defines dense anchor boxes of different scales and aspect ratios
at each pixel in the feature map. The shape and size of anchor boxes are independent of the
input image. Each anchor box is responsible for predicting the object location coordinates and
objectiveness score. The proposed boxes can highly overlap with each other. Thus, the region
proposals are filtered by NMS, then mapped back to the feature maps via the ROI pooling
layer, and ultimately the feature representation for each region proposal is fed to the detec-
tion head for classification and Bboxes regression. This work is later used for comparsion in
Chapter 5, and the concept is also adopted for the methods presented in Chapter 4.
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�$�B�T�D�B�E�F���3�$�/�/��Anchor-based object detectors require anchor boxes to be assigned with pos-
itives or negatives at the training time, which is dependent on the IOU threshold. A low IOU
threshold can produce noisy detections with large false positives, but an increasing threshold
can degrade the performance with large false negatives. Cai �F�U �B�M��[24] believes that the expo-
nentially vanishing positive samples and mismatching between the object feature representa-
tions and region proposals account for these problems in anchor-based models. They propose
Cascade-RCNN [24], a multi-stage detection pipeline that regresses the object proposals re-
cursively, to address these problems. It consists of a number of cascaded sub-detectors that
are trained with a gradual increase of IOU thresholds. Each sub-detector relies on the region
proposals from the former sub-detector, it refines the proposals in a recursive fashion. This
design facilitates a curriculum learning from easy samples to hard samples such that early
stages can filter large quantities of easy negatives so that later stages can focus on handling
more hard samples. Cascade-RCNN can achieve better performances on popular benchmark
detection datasets (�F���H��PASCAL VOC [52], COCO [114]) than both two-stage and one-stage
anchor-based detectors in general, especially under higher quality evaluation metrics (such as
mAP75, mAP90). This work is later used for comparsion in Chapter 3.

�3�F�U�J�O�B�/�F�U��Althoughone-stage detectors have advantages in speed, the problem is that densely
pre-defined anchor boxes contain significantly larger amounts of negative samples than posi-
tive oneswithout the regionproposal stage. Lin �F�U �B�M��[113] attributes the foreground-background
imbalance in anchor-based one-stage detectors as a reason for the performance lag with multi-
stage detectors. They proposed a reformulated cross-entropy loss, named focal loss, to address
the imbalance problem. Focal loss applies a dynamicmodulating term to the cross entropy loss
so that the loss contribution from easy examples is reduced while focusing learning on hard
negative samples,

L focal = � 
 8¹1 � ?8º� ;>6¹?8º – (2.2)

where 
 8 is the weighting parameter, � 7 0 is the tunable modulating parameter. The ¹1� ?8º�

term is added to the standard cross entropy so that easy samples 8are usually associated with
high prediction probability ?8 are assigned with low weights, encouraging the learning of
hard negative samples. RetinaNet [113] is a one-stage object detector that leverages focal loss.
It utilises ResNet [81] extended with Feature Pyramid Network (FPN) [112] as the backbone,
and it contains two detection heads for classification and Bbox regression, respectively. The
multi-scale feature maps from FPN are passed to the subnets for detecting objects at various
scales. RetinaNet is simple to train, fast to converge, and easy to implement. It explores the po-
tential of one-stage detectors, and can achieve comparable performancewith two-stagemodels
while having a better speed/accuracy trade-off. Themethods presented in Chapter 3 are based
on this model.
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2.1. OBJECT DETECTION

�:�0�-�0 �G�B�N�J�M�Z��Two-stage detectors follow theworkflowof 1) detecting class-agnostic bboxes as
proposals and 2) refining the candidate bboxes and classifying each of them. However, YOLO
[146], the first one-stage detector, reframes detection as a regression problem that directly pre-
dicts the object score and bounding box attributes for each pixel in the image.More specifically,
The input image is divided into a ( � ( grid, the grid cell in which the object’s centre is located
is responsible for detecting it. This grid cell design is believed to be the early prototype of the
anchor box. A grid cell predicts � class scores and � bounding boxes. For each bounding box,
it consists of 5 elements: Bbox centre �J���F��¹G– Hº coordinates, BBox size �J���F��¹F– �º, and associated
confidence score B. Thus, the training target for YOLO is to predict an ( � ( �¹ � � 5¸ � º tensor for
each input image. In testing time, it leverages Non-Maximum Suppression (NMS) to remove
redundant detections. YOLO is fast; however, it fails in detecting small objects or clustered
objects, because each cell is limited for predicting one object. Thus, the number of objects that
can be detected in YOLO is limited by the size of its grid.

To alleviate this issue, YOLOv2 [147] is proposed leveraging several object detection tech-
niques in that time, such as Batch Normalisation (BN) [86] for training stability and fast con-
vergence, high-resolution classifier for small object detection, fully �*�Q�M�players in the detection
head for detection speed, anchor boxes for scale and shape variance problems in detection, and
a new DarkNet-19 backbone for improving speed.

Later, YOLOv3 proposes “incremental improvements” based on the previous YOLO ver-
sions [148]. It replaces the feature extractor network in YOLOv2 with a Darknet-53 network
[148] which is deeper and larger than DarkNet-19. It contains 53 �*�Q�M�players linked together
leveraging residual connections [81]. YOLOv3 also incorporates various training techniques
such as data augmentation, feature pyramids, multi-scale training �F�U�D��. Even though YOLOv3
is faster than YOLOv2 and has achieved good performance on small object detection, it lacks
any groundbreaking changes from its predecessor.

Most recently, YOLOv4 [21] incorporates lots of training and testing practices for object
detection from previous works. It proposes a concept of “Bag of Freebies” (BoF) which are the
techniques that only increase training time and do not affect the inference time and a concept
of ”Bag of Specials” (BoS) that can affect the inference time. For BoF, YOLOv4 includes a more
aggressive Mosaic data augmentation method that mixes 4 training images as augmentation,
a DropBlock regularisation method where a contiguous region in a feature map is dropped
together [61], a class label smoothing method for soft label assignment, an additional CIoU
loss [221], cross mini-Batch normalisation layers[206], a self-adversarial training technique,
and a cosine annealing scheduler [124] to improve training. For BoS, YOLOv4 leverages Mish
activation [127], Cross-stage partial connections (CSP) [183], SPP Block [80], PAN block [117],
Multi-input weighted residual connections (MiWRC) [170], �F�U�D��. It also applies an ImageNet
pre-trained CSPNetDarknet-53 [183] with SPP+PAN [80, 117] block as the backbone and a
detection head from YOLOv3. Even though lots of BoF has been applied for training YOLOv4,
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CHAPTER 2. BACKGROUND

it can still be easily trained on a single GPU, achieving state-of-the-art real-time one-stage
detectors. These works form the research background for Chapter 3 and 5.

���������� �"�O�D�I�P�S���G�S�F�F �0�C�K�F�D�U �%�F�U�F�D�U�J�P�O

Despite remarkable results that have been achieved by anchor-based detection approaches
[24, 79, 113, 147, 149], they suffer from several issues. i) Large quantities of pre-defined an-
chor boxes are needed to achieve high recall and to ensure sufficient coverage of the potential
objects in an image. In practice, only a fraction of anchor boxes which are assigned with the
ground truth labels is meaningful. This leads to a huge imbalance between positive and nega-
tive anchors, making the model hard to train and difficult to converge in practice. ii) Densely
pre-defined anchor boxes comewith a huge computation overhead and largememory require-
ment for pre-processing. iii) The pre-defined anchor boxes have a set of hyperparameters for
scales and aspect ratios which are dataset-dependent. Specifying these hyperparameters re-
quires heuristic tuning and empirical tricks which limits the ability to adapt to new datasets
and environments.

To mitigate the aforementioned issues, numerous anchor-free approaches that eliminate
the dense anchor boxes in their models have been recently proposed [26, 104, 167, 173, 229–
231]. They can be categorised as keypoint-prediction and set-prediction approaches. Inspired
by the fully convolutional pixel-prediction framework in semantic segmentation, keypoint-
prediction methods reformulate the detection problem as a per-pixel prediction. The feature
maps from a CNN are directly used to predict the heatmap which represents the likelihood
of keypoints such as corners or centres of objects [104, 173, 229]. They usually have a Siamese
network that predicts the attributes such as bounding boxes, categories, pose �F�U�D��along with
the keypoints.

More recently, set-prediction-based approaches build an end-to-end solution by viewing
object detection as a direct set-prediction problem. The feature maps from a CNN are directly
translated by the learnable object queries/dynamic proposals to classes and bounding boxes.
Different from the anchor-based methods, the output from object queries are permutation-
invariant. They utilise a bipartite matching algorithm to find the optimal solutions for pair-
ing the predictions to the ground truth in training. Set-prediction-based methods are end-to-
end as they eliminate the need for anchor-based target assignment pre-processing and non-
maximum suppression (NMS) post-processing which are prevalent in anchor-based object de-
tectors.

In this section, representative works for anchor-free object detection methods will be fo-
cused on, starting from keypoint-prediction approaches: CornerNet [104], CenterNet [229],
FCOS [173], then following with set-prediction-based method: DETR [26], deformable DETR
[231].
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2.1. OBJECT DETECTION

�$�P�S�O�F�S�/�F�U��Law �F�U �B�M��propose to view an object as a pair of keypoints, �J���F��top-left corner and
bottom-right corner of the bounding box, to represent object [104]. They use a CNN backbone
with two detection heads for predicting top-left corners and bottom-right corners, respectively.
Each corner is predictedwith a heatmap and an embedding vector in CornerNet. The heatmap
represents the corner likelihood whereas the embedding vector encapsulates the location and
the semantics of the object. The embedding vectors are also served to pair the top-left corners
with the bottom-right corners by the vector distance. The paired corners represent the two
keypoint coordinates of an object. CornerNet introduces the Corner Pooling layer that guides
�*�Q�M�players to localise the corners of objects. Corner Pooling assumeswhether a top-left corner
exists at a pixel location ¹G– Hº is determined by the image content that is located horizontally
towards the right ¹G5 G

0
5 F º and vertically towards the bottom ¹H5 H

0
5 � º of that pixel and

vice versa for the bottom-right corner. Corner Pooling takes one feature mapmax-pools all fea-
ture vectors to the right at each pixel location and the other feature map max-pools all feature
vectors directly below at each pixel location and then adds the two pooled results together
(See Figure 2.2 for details).

Figure 2.2: �$�P�S�O�F�S �1�P�P�M�J�O�H �0�Q�F�S�B�U�J�P�O��Corner pooling takes the maximum values (red dots) in two directions
on two feature maps, respectively. It outputs the sum of them. Figure from [104].

During training, CornerNet assigns the GT corners as positive corners at the heatmap and
assigns soft labels to the neighbouring corners around theGT corners using a 2DGaussian ker-
nel. In practice, multiple top-left and bottom-right corners can be detected, CornerNet lever-
ages the Associative Embedding method [131] to group corners. It measures the distances be-
tween the embedding of the top-left and bottom-right corners and introduces two additional

13



CHAPTER 2. BACKGROUND

losses to regularise the predicted embeddings:

L pull =
1
#

#Õ

: =1

� �
4¹Cº

: � 4:

� 2
¸

�
4¹1º

: � 4:

� 2
�

– (2.3)

L push =
1

# ¹# � 1º

#Õ

: =1

#Õ

9=1
9< :

max
�
0–� �

�
�4: � 49

�
�� – (2.4)

where L pull loss is trained to group matching corners and L push loss is trained to separate un-
matching corners; 4¹Cº

: and 4¹1º
: denotes embeddings for the top-left corner and the bottom-right

corner of object k, respectively. 4: is the mean embedding of 4¹Cº
: and 4¹1º

: ; � represents the mar-
gin. CornerNet, as an early keypoint-based anchor-free model, has achieved state-of-the-art
among existing one-stage anchor-based methods and is competitive with two-stage methods.
It motivates more keypoint-based detection methods [173, 229]. This work forms the research
background for Chapter 3 and 5.

�$�F�O�U�F�S�/�F�U��Zhou �F�U �B�M��[229] take a different approach of modelling objects as keypoints rather
than detecting objects as axis-aligned boxes. Their proposed CenterNet models an object as
the centre point of its Bbox. The Bbox size and other object properties are predicted by the
keypoint feature at the centre. In CenterNet, the input image is passed through a Fully Convo-
lutional Network (FCN), generating a heatmap whose peaks correspond to the object centres.
The object centre feature is used to predict the height and width of the Bbox. Architecturally,
CenterNet leverages a pre-trained Hourglass-101 [132] as the backbone and three detection
heads �J���F��one for heatmap regression which yields a tensor  . 2 R,

0
� �

0
� � (denotes heatmap

width, height and object classes); one for Bbox size prediction which outputs  ( 2 R,
0
� �

0
� 2,

where 2 represents the width and height of object centres; and the other one for centre points
x-y offset regression outputs  $ 2 R,

0
� �

0
� 2. Following [104], Soft label is used in training time

to assign a point ¹G– Hº at  . that is not one of the GT centres but is close to one GT centre.
Multitask loss of all three heads is back-propagated to feature extractor. During inference, the
outputs from three detection heads are combined to determine the object’s location and cat-
egory. Non-Maximum Suppression (NMS) is not required in CenterNet for post-processing.
CenterNet proposes a novel perspective of viewing objects as points in object detection. It is
more accurate and faster than its predecessors and can be also used for other tasks like 3D
object detection, keypoint estimation, pose, instance segmentation, orientation detection, �F�U�D��

[229]. This work forms the research background for Chapter 3 and 5.

�'�$�0�4��Tian �F�U �B�M��[173] reformulate object detection in a per-pixel prediction fashion in FCOS,
building a fully convolutional anchor-free detector. They find two issues associated with the
FCN-based detectors �J���F��i) low best possible recall (BPR)¹, and ii) the ambiguity from overlap-

¹Upper bound of the recall rate that can possibly achieve
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2.1. OBJECT DETECTION

Figure 2.3: �'�$�0�4 �"�S�D�I�J�U�F�D�U�V�S�F �%�F�U�B�J�M�T��FCOS produces a five-level feature pyramid which is fed to three heads
for classification, Center-ness and Regression, respectively. Figure taken from [173].

ping bounding boxes. Thereby, they propose multi-level prediction with FPN [112] to mitigate
these issues. FCOS backbone outputs a five-level feature pyramid using FPN, then the shared
heads perform pixel-by-pixel regression on top of each feature map. The multi-scale detection
in FCOS increases the recalls but also introduces low-quality predictions which are produced
by the points that are far away from the centre of the object. To avoid this, FCOS build an ad-
ditional center-ness branch as shown in Figure 2.3. FCOS leverages center-ness score to depict
the normalised distance from a point ¹;� – C� – A� – 1� º to the centre of the object:

� 8 =

s
min¹;� – A� º
max¹;� – A� º

�
min¹C� – 1� º
max¹C� – 1� º

– (2.5)

where ;� – C� – A� – 1� represents the distance to the left, top, right, and bottom sides of the Bbox,
respectively. The center-ness score can be used to down-weight the predictions produced by
the points which are far from the object centre. Those down-weighted predictions are deemed
as low-quality which can be eliminated during the NMS post-processing stage.

The overall structure is demonstrated in Figure 2.3. FCOS first extracts multi-level features
via a backbone and aggregates them using FPN [112]. Three detection heads are performed
on each level for classification, distance regression, center-ness prediction, respectively. Clas-
sification head outputs  � 2 R� � , � � , where � and , represent the height and width of the
feature map and � represents the number of categories. Different from CenterNet [229], the
regression head in FCOS predicts 4D vectors ¹;– C– A– 1º which encodes the relative distance to
the four sides of the bounding box. For center-ness head, it predicts the deviation of a pixel to
the centre of its corresponding Bbox as illustrated in Equation 2.5. In training, multitask loss of
all three heads is back-propagated. During inference, the final prediction score is weighted by
the center-ness score. FCOS completely avoids all computation and hyperparameters related
to anchor boxes and solves the object detection in a per-pixel prediction fashion, achieving
state-of-the-art performance among one-stage detectors. This work forms the research back-
ground for Chapter 3 and 5.
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�%�&�5�3��More recently, DEtection with Transformers (DETR) [26] build the first end-to-end

Figure 2.4: �%�&�5�3 �"�S�D�I�J�U�F�D�U�V�S�F �%�F�U�B�J�M�T��DETR contains a feature extraction backbone, an encoder-decoder trans-
former and prediction heads. Figure from [7].

detection pipeline based on an attention mechanism. DETR casts detection as a direct set-
predictionproblemwhich eliminates the need for anchor-based target assignment pre-processing
andNMSpost-processing stages. As shown in Figure 2.4, DETR consists of a feature extraction
backbone, an encoder-decoder transformer and prediction heads which make the final predic-
tion. Each layer of encoder and decoder consists of a Multi-Head Attention (MHA) module
[179] and a Feed Forward Network (FFN). As the input for the transformer is permutation in-
variant², thus the input is added or concatenated to the positional encoding before feeding it to
the encoder transformer. The decoder transformer takes the encoder features and transforms
# learnable object queries to # output embeddings via Multi-head Cross-Attention (MHCA)
[179], which are ultimately passed through detection heads to predict class and bounding
boxes.

During training, DETR assigns the predicted box with a ground truth label using bipartite
matching. This one-to-one mapping of each of the # queries to each of the # � ground-truths
is computed efficiently using the Hungarian optimisation algorithm. As # 7 # � in general,
some non-matching queries are deemed as non-objects in training. The objective of bipartite
matching is to find a permutation of # elements � 2 O# with the lowest cost:

� 8 = arg min
� 2O#

#Õ

8

L cost¹H8– H� ¹8ºº – (2.6)

where L cost¹H8– H� ¹8ºº represents a pair-wise matching cost between the label H8and the � ¹8ºth
prediction, L cost denotes the matching cost which considers both the classification and the
Bbox similarity between the label and the prediction. In practice, the GT sequence is padded
to # elements via non-objects ; for efficiency in computation. After matching, the DETR is
trained with cross-entropy loss for classification and GIOU loss [150] + L1 loss for Bbox re-
gression. The bipartitematching avoids the duplicate target assignment issues in anchor-based
methods and removes any hand-craftedmodules, like NMS or anchor generation. DETR is the

²The original Transformer architecture does not take into account the sequential order of input, thereby ne-
glecting significant spatial information contained in the order of image input.
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first to use a transformer-based detector. The performance is good and it is competitive with
the CNN-based detectors. However, it also has limitations regarding training efficiency, opti-
misation difficulties and inferior performance on small objects. Later, A line of further works
emerges to address these problems [116, 126, 231]. The methods presented in Chapter 5 are
developed based on this approach.

�%�F�G�P�S�N�B�C�M�F �%�&�5�3��DETR removes the need formany hand-designed components and builds
an end-to-end detection pipeline. However, Zhu �F�U �B�M��[231] argue that there are several issues
associatedwithDETR: i) DETRhas relatively lowperformance in detecting small objects.Mod-
ern object detectors use high-resolution feature maps to better detect small objects. However,
high-resolution feature maps would lead to an unacceptable computation complexity for the
MHA in the Transformer, which increases quadratically with respect to the size of the input.
ii) DETR requires many more training epochs to converge, because of the uniformly spread
attention initially during training.

Deformable DETR [231] proposes multi-head deformable attention (MHDA) to mitigate
these issues. Different from MHA, The deformable attention module only attends to  ¹ �

�, º numbers of key sampling points around a reference point ?@, regardless of the global
feature map G2 R� � � � , . For an input query @whose feature is denoted as I @and a reference
point ?@, the multi-head deformable attention is given as:

DeformAttn¹G– I@– Gº =
"Õ

<

, <
�  Õ

:

� ¹< º
: + ¹< º

»?@̧ � ?@¹: º¼

�
– (2.7)

where " denotes the total numbers of heads; , < indicates the weights for each head; : rep-
resents each key sampling point; � ¹< º

: is the attention weight for sampling point : at head <

which satisfies
Í

: 2 � ¹< º
: = 1; + ¹< º represents the value tensor at head < , � ?@¹: º represents

the relative position of sampling point : and »?@̧ � ?@¹: º¼represents the position of sampling
point : at an � � , value tensor. Deformable DETR replaces the original attention modules
with multi-head deformable attention for both the encoder and decoder. As MHDA has a
smaller computation overhead than MHA, it is possible to use larger feature maps as the in-
put for the deformable transformer. In practice, Deformable DETR applies multi-scale feature
maps for alleviating small object detection problems. In general, leveraging the deformable at-
tention module can mitigate the slow convergence and high complexity issues of DETR. The
methods presented in Chapter 5 are based on this approach.

���������� �7�J�E�F�P �0�C�K�F�D�U �%�F�U�F�D�U�J�P�O

As an important branch of object detection, video object detection (VOD) is widely applied in
autonomous vehicles, surveillance cameras, UAVs, �F�U�D��. How to fulfil the detection task in video
fast and accurately has been an active research field in computer vision. Although the current
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image-based object detection algorithms have achieved remarkable results, simply extending
these state-of-the-art object detectors from the image domain to the video domain is still chal-
lenging. Video object detection suffers from the deteriorated quality of single frames such as
motion blur, video defocus, motion target ambiguity, rare poses, occlusion and truncation �F�U�D��.
For example, it may be hard for people to identify an occluded or motion-blurred object in a
frame by just referring to this frame without relying on the temporal context. Moreover, video
consists of highly redundant context information. Neighbouring frames are usually highly cor-
respondent with each other and similar in most of the content. Simply applying static object
detectors on video frame-by-frame is a waste of computation and inefficient. Therefore, it is
challenging to transfer the current detection methods to VOD. Studies on VOD mainly lever-
age the time dimension information [14, 42, 73, 92, 161, 232] to maintain the temporal and
spatial consistency of objects in the detection process, so as to improve the performance.

Earlyworks onVODrely on the single framedetection results. Theyperformapost-processing
stage that links the detections across the temporal dimension to enhance the performance. T-
CNN [92] is the first work that constitutes possibly the simplest form of temporal domain
exploration. T-CNN essentially runs region-based detectors per frame and enforces motion-
based propagation to adjacent frames. This classical tracking paradigm thereby extends detec-
tions into tubelets, which after re-scoring and suppression of overlaps yields the final set of
detected objects. Similarly, Seq-NMS [73] reconstructs sequences along temporally close, high-
confidence bounding boxes in consecutive frames and eliminates the sequences with low con-
fidence scores. Their governing metric for sequence association maximises overall confidence
and IOU scores, and sequence-based non-maximum suppression is utilised to fuse or filter
out overlapping tracklets. Later, D&T [58] interlinks single image detection and tracking in a
unified approach using ROI pooling on both single frame detection-based feature maps and
tracking-based correlation feature maps, where a specific correlation layer is introduced to
produce the latter. Whilst temporal consistency can be extrapolated this way, the spatial dis-
tortion effects across the temporal domain have been ignored as these methods are based on
the single frame detection where the temporal cue is not explored.

More recent video object detectionmethods are based on the integration of temporal frames
for detection. In this line of work, detection results are not determined by the single frame
but by the aggregation of multiple frames. In terms of how the frames are aggregated to per-
form detection, they can bemainly categorised into optical-flow-basedmethods and attention-
based methods. The following of this section will focus on the recent representative works
using these methods.

�'�(�'�"�� Zhu �F�U �B�M��[232] propose to improve the per-frame feature learning by exploiting tem-
poral information aggregation. The proposed FGFA merges nearby feature maps along the
motion path and improves the accuracy of video detection by supplementing the features of
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each frame. Given a key frame �8 and 2: reference frames � 9which are the neighbours of key
framewhere frame index 9subject to 9min = max¹8� :–0º 5 95 min¹8̧ :– ) ¸ 1º = 9max and 8< 9,
FGFA applies a CNN to extract feature and an off-the-shelf FlowNet [47] to extract optical flow
for each frame. Then, FGFA warps the reference frame feature 59 to the key frame 58 accord-
ing to the optical flow using a learnable bi-linear warping function, yielding a warped feature
59! 8. The final feature representation for key frame �8is the weighted average of all the warped
features:

58
8 =

9maxÕ

9= 9min

F 9! 859! 8 – (2.8)

where F 8! 9 is adaptive weight which is measured by the similarity between 59! 8 and 58 and
normalised with a softmax function:

F 9! 8 =
exp

4¹ 59! 8º�4¹ 58º
j4¹ 59! 8ºj j4¹ 58ºj

Í 9max
== 9min

exp 4¹ 5=! 8º�4¹ 58º
j4¹ 5=! 8ºj j4¹ 58ºj

– (2.9)

where 4¹�º represents a learnable embedding network. The aggregated feature 58
8 is used for

the final classification and Bbox regression. FGFA builds a feature buffer to reuse the extracted
frame feature and the optical flow to save computation. Starting from the first frame as the key
frame, FGFA first aggregates features in the feature buffer using the Equation. 2.8 and then
feeds them to the detection network. The output is ultimately used as the prediction for the
key frame �8. Then, FGFA moves the feature buffer forward and calculates the new feature but
drops the old feature. Feature buffer can be regarded as a sliding window, moving forward
synchronously with the key frame. FGFA densely aggregate nearby feature maps, providing
sufficient temporal information to make detection, obtaining a considerable improvement in
detection accuracy; however, this kind of method is inefficient as introduced lots of redundant
computation andmemory footprint, thus lacking in speed. Thismethod forms the background
for Chapter 3.

�0�(�&�.�/�� To enhance the feature representation in the video, alignment and aggregation are
commonly used to propagate feature maps of adjacent frames [37, 42, 115, 161, 232]. Due to
the low storage efficiency of feature maps, it is difficult to store feature which spans a long
period of time. Object Guided External Memory Network (OGEMN) [42] exploits the long-
range dependency storage problem in the VOD tasks by leveraging the external memory. In
external memory, the size and content address are independent of the detection network and
the input frame. OGEMN leverages object-guided hard attention that selectively writes salient
features intomemory to improve storage efficiency. It enables long-term temporal information
propagated through external memory.

In practice, OGEMN builds two external memory matrices " ?8Gand " 8=BCfor storing the
pixel feature and instance feature, respectively. As shown in Figure 2.5, for each input frame,
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Figure 2.5: �0�(�&�.�/ �"�S�D�I�J�U�F�D�U�V�S�F �%�F�U�B�J�M�T��OGEMN contains three stages: 1) aggregating video frame-level fea-
tures from memory " pix to current frame feature; 2) aggregating instance-level features from memory " inst to
the region proposals of current frames; 3) selectively storing features to the memory " inst and the memory " pix.
Figure adopt from [42].

a CNN feature encoder is performed to extract frame-level feature � , then feature � and mem-
ory " ?8Gare aggregated via self-attention. The aggregated feature ¡� is used to produce region
proposals. Given the region proposals, PSROI-Pooling [40] is performed on the feature map (

which is mapped by ¡� to produce instance-level feature ' . By referring to the memory " 8=BC,
the instance feature ' is aggregated with self-attention weights, yielding the aggregated in-
stance feature ¡' . The final results are generated by the detection head based on ¡' . During
training, the useful information of ¡' is selectively stored into " 8=BC, and ¡� is guided by the
detection result before being updated to memory " ?8G. The selective memory writing mecha-
nism proposed in OGEMN improves storage efficiency andmakes the modelling of long-term
temporal dependency possible. This method forms the background for Chapter 3.

�-�-�5�3��Shvet �F�U �B�M��[161] argue that single-frame object detectors can perform on some videos,
even without referring to temporal context. However, scenes such as occlusion, motion blur,
and video noise are hard to be resolved without temporal awareness. They propose Lever-
aging Long-rang Temporal Relationships (LLTR) to mitigate this issue. The core of LLTR is
the temporal relation block which is operated on the instance-level feature. It can be easily
integrated into single-frame detectors.

Given # key proposals and " support proposals which are pooled from the feature map
via RoIAlign [79], the temporal relation block constructs an attention mechanism that attends
the support proposals to update the key proposals. As shown in Figure 2.6, the temporal rela-
tion block takes key frames proposals - : 2 R# � � and supporting proposals - B 2 R" � � . Both
tensors are embedded by �G�B�M�2���`layers, then they are fed to the �L�Q�`�Klayer, yielding a corre-
lation matrix � 2 R# � " . The correlation matrix � is served as the weight for aggregating the
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Figure 2.6: �5�F�N�Q�P�S�B�M �3�F�M�B�U�J�P�O �#�M�P�D�L �J�O �-�-�5�3��Temporal Relation Block in LLTR is operated on region proposals
that use an attention mechanism to aggregate the supporting proposals to the key proposals. Figure adopt from
[161].

supporting proposals - B to key proposals - : . As matrix � measures the correlation between
- Band - : , LLTR introduce GraphLoss to penalise the � 8–9where the proposal 8and proposal 9

are unrelated instances and to reward � 8–9when 8and 9are the same instances. The GraphLoss
is described in a form of contrastive loss:

L graph = 1¹8– 9º
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� i 2
– (2.10)

where 1¹8– 9º is the indicator whose value is 1 if 8and 9are same instance, � represents a mar-
gin hyperparameter. The GraphLoss together with the standard classification loss and Bbox
regression loss are co-optimised during training. To alleviate the computation overhead and
memory footprint, LLTR applies sparse sampling of frames to acquire the long-term depen-
dency. It also leverages the frozen models to generate support proposals during training so
that no gradient back-propagates through the support proposals. LLTR introduces a novel
temporal correlation module that can be integrated into single-frame detectors with a slight
modification. It can improve the accuracy of the single-frame detector without increasing the
amount of calculation. This method forms the background for Chapter 3.

�$�P�O�U�F�Y�U���3�$�/�/��Beery �F�U �B�M��[14] exploit useful contextual information from nearby frames to
improve detection performance at the same camera. They leverage the attention mechanism
which is built upon short-term and long-term memory banks constructed on a per-camera ba-
sis and aggregate contextual features from other frames to enhance the detection. As shown in
Figure 2.7, Context-RCNN is operated on a window of frames which consists of one key frame
and multiple reference frames. It first generates region proposals by applying the first stage
of Faster-RCNN [149], then the region proposals are routed through the short-term attention
module and the long-term attention module, sequentially. For the short-term attention mod-
ule, Context-RCNN builds a short-term memory bank, denoted as " short 2 R, � # � � , which
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Figure 2.7: �$�P�O�U�F�Y�U���3�$�/�/ �"�S�D�I�J�U�F�D�U�V�S�F �%�F�U�B�J�M�T��Context-RCNN models the context information between the
first stage and the second stage of a Faster-RCNN detector. It builds short-term and long-term dependency using
attention modules. Figure adopt from [14].

consists of the local context features from nearby frames, where , represents a small window
size, # denotes proposals per frame, � represents feature dimension. The attention module
is operated following the cross attention defined in [179]:

- context = Softmax
�
, : - � , @"

�
p

�

�
, E" – (2.11)

where � denotes the softmax temperature hyperparameter, , : , , @and , E represent the learn-
able weights for key, query and value in an attention module, respectively; - is the key pro-
posal with a dimension ' " � � , " represents " short or " long. For the long-term attention mod-
ule, a corresponding long-term memory bank " long is built. " long relies on a pre-trained
single-frame Faster R-CNN as a frozen feature extractor, thus back-propagation is not con-
sidered in long-term memory. The long-term memory bank can be modified to store different
periods of time depending on the needs from minutes to months. To be efficient in storage,
" long saves only a spatially pooled representation of each tensor concatenatedwith spatiotem-
poral encoding of the date time and box position. The Long-term attentionmodule follows the
same operation as defined Equation 2.11 for generating context-award feature - final. The final
detection is based on the - final via the second stage of Faster-RCNN. Context-RCNN builds
the first detection model that can leverage per-camera temporal context for up to a month, it
provides a reliable solution for stationary camera detection, improving detection performance
over single-frame detectors on both camera trap and traffic camera data. This method forms
the background for Chapter 3.

������ �4�F�M�G���T�V�Q�F�S�W�J�T�F�E �-�F�B�S�O�J�O�H �	�4�4�-�


A large amount of labelled data is usually required to train deep neural networks in order
to boost performance in visual feature learning from images or videos for computer vision
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applications. However, obtaining annotations is not trivial, especially in the field of animal
ecology. Collecting and annotating large-scale datasets is limited by the high cost of human
labour. Moreover, some species annotations can only be produced by animal specialists or
exports, making large-scale label acquisition inaccessible. Self-Supervised Learning (SSL) has
emerged to learn general image or video features from large-scale unlabelled data for pre-
training deep models. It provides a promising solution for using large amounts of unlabelled
visual data to learn feature representation and improve the generalisability of deep models.
SSL trains the model for a pre-defined proxy task³ which are derived from the training data
itself. The pre-trained model is then used as initialisation for the target dataset, where it is
fine-tuned using the available labelled samples.

This section provides a review of modern self-supervised visual feature representation
learning methods from images and videos.

���������� �4�4�- �G�P�S �*�N�B�H�F�T

Various self-supervised learning objectives or pretext tasks have been proposed for learning
from image data [28, 29, 35, 67, 77, 78, 210]. They can be categorised to predictive SSL ap-
proaches and discriminative SSL approaches based on the learning objectives.

The predictive SSL approaches learn from unlabelled data by fulfilling a classification or
regression task where each unlabelled image is assigned a proxy-label which comes from the
image itself. For example, randomly rotating an image can generate a rotated image ¡- and
rotation information . which can be served as proxy-label in SSL. Consequently, this pretext
task is to predict whether the given input image has been rotated or predict the direction of
rotation. Early predictive SSL approaches build proxy tasks such as relative patch prediction
[45], image rotation prediction [99], image colourisation [217], image inpainting [140], image
jigsaw puzzle [135], �F�U�D��[3, 63, 176].

The discriminative SSL approaches learn from the unlabelled images by differentiating
between the similar/positive pairs and the dissimilar/negative pairs or by maximising the
agreement between a pair of positive views. Positive pairs are constituted by an input image
and one of its other views, which is generated from random image augmentations such as
flipping, rotating, randomcropping, colour jittering �F�U�D��, while negative examples are any other
images different from the transformed views. A discriminative model is trained to maximise
the similarity between the positive pairs and minimise it with the negative pairs.

This sectionwill introduce some recent discriminative SSLmethods:MoCo [78], BYOL [67],
SwAV [28], Barlow Twins [210] and a representative predictive SSL method: MAE [77].

�.�P�$�P��He �F�U �B�M��[78] propose Momentum Contrast (MoCo) to build large and consistent dic-
tionaries in contrastive learning. MoCo treats contrastive learning as training an encoder for

³also refer to as pretext tasks
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a dictionary look-up task. Given a query image embedding @and a set of key image embed-
dings f : 0– :1– :2– • • •g in a dictionary. Contrastive representation learning is to maximise the
similarity between the query embedding @and the matched key : ¸ in the dictionary, and to
minimise the similarity between @and all the other keys f : � g in the dictionary. MoCo applies
InfoNCE loss [176] for contrasting positives with negatives:

L InfoNCE = � log
exp¹@� : ¸ • � º

Í  
8=0 exp¹@� : 8• � º

– (2.12)

where � is a temperature coefficient in learning. As illustrated in Figure 2.8, MoCo consists of
two networks �J���F��encoder 5@andmomentum encoder 5: . The encoder produces a query image
embedding @from a query image input. The momentum encoder is responsible to generate a
set of key image embeddings f : 8g 

8=0. The dictionary is designed as a queue of f : 8g 
8=0, where

the current mini-batch of image embeddings pushes to the head of a queue while popping the
same number from the tail of a queue. The key concept of MoCo is to maintain a large and
consistent queue of f : 8g 

8=0. In practice, MoCo uses a large  value to ensure a large queue. On
the other hand, the keys of the dictionary are derived from a group of previous mini-batches,
they need to be updated regularly to be consistent in training. Herein, MoCo leverages the
momentum encoder to achieve consistency. The momentum encoder is updated based on the
exponential moving average of 5@:

� :  < � : ¸ ¹ 1 � < º� @– (2.13)

where � : and � @are the parameters of 5: and 5@, respectively; < represents the momentum co-
efficient. During training, only the encoder 5@can be updated by back-propagation, while the
momentum encoder @: is updated by Equation 2.13. The momentum update scheme can sta-
bilise the training and avoid learning collapse effectively. This method forms the background
for Chapter 4.

�#�:�0�-��Bootstrap Your Own Latent (BYOL) [67] is an implicit contrastive learning approach
that encourages the closeness of positive samples but omits the negative samples. It consists of
two encoders as shown in Figure 2.8. The first encoder is an online network 5� which contains
an additional prediction head ?� . The second encoder is a momentum encoder 5� which has
the same architecture as 5� except for the prediction head. It is updated by the exponential
moving average (EMA) of 5� . During training, two augmented views ¹- 1– -2º are generated
from the input image - by applying two different augmentation transformations ¹C–ŸCº. Conse-
quently, two augmented views are fed to the two encoders, respectively, yielding ¹. � – .� º. The
. � is further served as the input for predictor ?� , generating / � . Following that, both / � and
. � are normalised and accordingly theirmean squared error (MSE) is calculated as the training
objective. It is worth noting that the gradients flow back only over the encoder 5� and stopped
for the momentum encoder. Since the momentum network acts as the moving average of the
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Figure 2.8: �"�S�D�I�J�U�F�D�U�V�S�F �%�F�U�B�J�M�T �G�P�S �%�J�T�D�S�J�N�J�O�B�U�J�W�F �4�F�M�G���T�V�Q�F�S�W�J�T�F�E �.�P�E�F�M�T��This figure shows the difference
among three prevalent discriminative SSL approaches including MoCo, BYOL and Barlow Twins.

online network, the online representations should be predicted by the target representations.
BYOL can learn semantic features byminimising similaritymetrics between the output of each
network. Hence, both encoders learn interactively from each other from the same image. This
method forms the research background for Chapter 4.

�#�B�S�M�P�X �5�X�J�O�T��The problemwith current discriminative SSLmethods is the existence of trivial
constant solutions. Zbontar �F�U �B�M��[210] propose a novel objective function that can avoid this
learning collapse bymeasuring the cross-correlation between the outputs of two identical neu-
ral networks fed with different views of the same image. This method does not require large
batches, gradient stopping, EMA techniques, and other techniques, instead, it leverages the
high dimensional vectors to avoid learning collapse. As demonstrated in Figure 2.8, Barlow
Twins have two identical networks 5� with trainable parameters � . For an unlabelled input
image, it obtains two different views by data augmentation. The two different views - 1 and
- 2 are fed to two identical networks 5� , generating embeddings / 1 and / 2, respectively. The
loss function of Barlow Twins regularises the cross-correlation matrix with an invariance term
and a redundancy reduction term. The invariance term encourages the diagonal elements of
the cross-correlation matrix to be 1. The redundancy reduction term requires the off-diagonal
elements of the cross-correlation matrix to be 0. The loss function is formulated as

L BT =
Õ

8

¹1 � C 88º
2

|           {z           }
invariance term

¸ �
Õ

8

Õ

9<8

C89
2

|           {z           }
redundancy reduction term

– (2.14)

where � denotes the balancing coefficient that is a positive constant; C is the cross-correlation
matrix whose elements is defined by

C89,
/ ¹8º

1 � / ¹9º
2




 / ¹8º

1




 �




 / ¹9º

2






– (2.15)
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where 8– 9are the indexes for the mini-batch of view - 1 and the mini-batch of view - 2, respec-
tively. Traditional discriminative SSL methods require a large batch size to get good perfor-
mance; however, Barlow Twins is robust to batch size, but it needs to construct large dimen-
sionality of / 1 and / 2 to avoid learning collapses. It has achieved state-of-the-art performance
for linear evaluation on ImageNet [43] and competitive results for transfer learning on MS-
COCO [114] and VOC07+12 [52] dataset. This method forms the background for Chapter 4.

�4�X�"�7��While previous discriminative SSL methods are based on discriminating different im-
ages [35, 67, 78, 210], Swapping Assignments between multiple views (SwAV) [28] proposes
an online clustering-based SSL method. Offline clustering assignment SSL methods [8, 27]
require a complete pass over the dataset to compute the clusters assignment, which is com-
putationally unacceptable if the dataset is large. Instead, SwAV proposes an online clustering
that can map the encoded views of the current batch / = f I 1– � � � – I� g to a prototype cluster
� = f 21– � � � – 2 g, where � is the batch size and : is the number of clusters. However, in prac-
tice, the model would collapse to a trivial solution that assigns all the embeddings to a single
cluster. SwAV addresses this issue by adding the equipartition constraint to the cost matrix so
that this cluster assignment problem can also be treated as an optimal transportation problem:

max
Q2Q

Tr
�
Q> C> Z

�
¸ � � ¹Qº – (2.16)

where Q is the one-hot cluster assignment matrix; Q represents a set of Q containing all the
possible assignment; � ¹Qº is the entropy of matrix Q: � ¹Qº = �

Í
89Q89logQ89and � denotes

the balancing factor. In practice, SwAV uses the iterative Sinkhorn-Knopp algorithm to solve
this problem.

SwAV builds a pretext task in a swapped prediction way in which two image embeddings
I Cand I B from different augmentations of the same image are encouraged to predict the clus-
ters @B and @C, respectively, for each other. Thus, The learning objectives of SwAV can be for-
mulated as

L swav = �
 Õ

: =1

�
@¹: º

B log
exp¹I >

C � 2: º
Í

: 0 exp¹I >
C � 2: 0º

¸ @¹: º
C log

exp¹I >
B � 2: º

Í
: 0 exp¹I >

B � 2: 0º

�
– (2.17)

where @¹: º
B and @¹: º

C are obtained by optimising equation 2.16.
SwAV also proposes a multi-crop strategy for online clustering assignment. It generates

multiple views of the same image without increasing the memory and computational require-
ments during the training. This is achieved through generating two global views with stan-
dard resolution crops, �F���H��, 224 � 224, and + local views with smaller resolution crops, �F���H��,
96 � 96. SwAV demonstrates that the multi-crop data augmentation strategy not only works
well on the cluster-assignment SSL approach but also can benefit general discriminative SSL
approaches such as SimCLR [35]. This method forms the background for Chapter 4 and the
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methods presented in Chapter 5 are built upon this method.

�.�"�&�� He �F�U �B�M��[77] propose a predictive SSL approach to learn from the unlabelled image

Figure 2.9: �.�"�& �"�S�D�I�J�U�F�D�U�V�S�F �%�F�U�B�J�M�T��MAE contains a transformer encoder and a transformer decoder. The
encoder takes the unmasked image patches as input, the decoder reconstructs the original image given the output
from the encoder. Figure borrowed from [77].

data. Their proposed MAE masks random patches of the image and then the pretext task is
to reconstruct the missing pixels. Figure 2.9 illustrates the architecture of MAE. It leverages
an asymmetric transformer encoder and transformer decoder architecture. The encoder only
operates on the unmasked image patches, and a lightweight decoder is built to reconstruct
the original image from the output of the encoder plus masked tokens. MAE applies a high
masking ratio (�F���H���
75%) as they believe that images are different from other natural signals
�F���H���
language. Images contain heavy spatial redundancy so that the missing patch can be re-
covered with the neighbouring patches by high-level semantic information. Their ablation
findings support such a high masking ratio is beneficial for fine-tuning and linear probing.
MAE is specifically designed for pre-training vision transformers. It has achieved state-of-the-
art fine-tuning results on fundamental computer vision tasks such as image classification on
ImageNet [43], object detection and segmentation onMS-COCO [114], semantic segmentation
on ADE20K [225]. This method forms the background for Chapter 4.

���������� �4�4�- �G�P�S �7�J�E�F�P�T

Driven by the success of SSLmethods in the image domain, SSL for the video domain has been
greatly advanced [15, 71, 119, 142, 144, 198, 199]. Videos contain rich spatiotemporal informa-
tion that is naturally suitable for unsupervised learning. However, it is not trivial to extend
the image-based approaches directly to the video domain due to the additional temporal di-
mension in video.

Early SSL works leverage video dynamics or temporal continuity to build the pretext tasks.
Wang �F�U �B�M��[188] construct positive samples from the tracker, together with the negatives that
were sampled randomly, were deployed in a metrics learning framework with a pre-designed
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Siamese-triplet network for self-supervised learning. Later, Shuffle & Learn [128] discrimi-
nates the non-chronologically ordered frames from a video to enforce the learning of temporal
relations among frames. Similarly, OPN [106] designs the learning task by reordering the shuf-
fled frames from a video which enforces the learning of temporal continuity. More recently,
VCOP [199] predicts and sorts the order of shuffled video frames relying on the temporal co-
herence within video clips. Rather than sorting whole frames, ST-puzzle [95] constructs the
shuffled non-overlapped spatiotemporal patches and builds the proxy task to re-order per-
muted 3D spatiotemporal snippets.

Recently, constructive video generation and prediction-based SSL methods have received
a great deal of interest. TimeCycle [189] generates patch features from a sequence of frames
by tracking forward and backwards in time to learn the affinity matrix between nearby frames.
DPC [70] predicts the future period feature representation of video by observing an earlier
period of a video using a recurrent network. Mem-DPC [71] extends DPC by appending a
memory mechanism that queries a similar pattern from the memory bank when making pre-
dictions.

More recent works tend to exploit speed information from videos to form SSL tasks, �F���H��,
[15, 142, 205]. PRP [205] randomly drops frames from a video clip at different playback rates,
introducing multi-task learning objectives that enforce the model to reconstruct the dropped
frames as well as predict the playback rate. SpeedNet [15] seeks to learn the appearance and
motion by explicitly adjusting video play speed and building a pretext task to predict whether
an object is moving at a normal speed or faster speed. Later, RSPNet [142] extends this to a
relative speed perception task by applying a speed augmentation strategy and it also builds an
additional appearance branch tomake the network learn appearance-related content explicitly.

The following of this section will focus on the representative video SSL works for each as-
pect, including i) VCOP [199], a video dynamics-based SSL method; ii) DPC [70], a prediction-
based SSL method; and iii) PRP [205] and RSPNet [142], video speed based methods.

�7�$�0�1��Xu �F�U �B�M��[199] propose Video Clip Order Prediction (VCOP) that can learn the spa-
tiotemporal representation of the video by predicting the order of the shuffled clips. Different
from its predecessor [60], VCOP is operated on the clip level which can better preserve the
video dynamics and temporal continuity in learning. It applies a 3D convolutional neural net-
work for extracting features from video clips. Given a video input, VCOP first samples some
non-overlapping clips and shuffles them to random order, then the 3D CNNs are applied to
extract feature representation for each sampled clip respectively. Lastly, each clip feature is
paired with the rest of the clips separately and fed to MLPs to predict the order in each clip.
VCOP only sample a small number of clips in training, as a large number of clips can intro-
duce complicated permutations which makes this task too hard to solve. In practice, VCOP
only samples 2 to 5 clips so that the possible order classes in VCOP are less than 120. VCOP
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achieves remarkable results in transferring learning to downstream video tasks such as video
retrieval on UCF101 [165] and action recognition on UCF101 andHMDB51 [100]. This method
forms the background for Chapter 4, and it is also used for comparsion in Chapter 4.

�%�1�$��Han �F�U �B�M��[70] point out that the prediction-based SSL method suffers from the non-

Figure 2.10: �%�1�$ �"�S�D�I�J�U�F�D�U�V�S�F �%�F�U�B�J�M�T��DPC uses aggregation model to generate feature prediction  I Ç 1 itera-
tively. The right figure shows how the positives and negatives are formed in DPC. The figure is taken from [70].

deterministic future prediction problem. But they suggest that it is no need to waste model
capacity in modelling stochasticity of frame appearance in detail if the ultimate goal of SSL
is to learn a global video feature representation. They propose DPC that learns from the pre-
dictions of the future representation based on the recent past. DPC consists of a video clip
encoder 5, an aggregation module 6 and a predictive module ) . During training, the video is
partitioned into several non-overlapping clips f G1–� � � – G=gand fed to encoder 5, yielding fea-
ture representation f I 1– � � � – I=g. Then, the aggregation module iteratively fuses the current
feature I Cinto a global context representation 2Cby

2C= 6¹I 1– I2–� � � – ICº – (2.18)

where 6¹�º is the aggregation module which is implemented with a one-layer Convolutional
Gated Recurrent Unit (ConvGRU). The predictive module is operated on the global context
representation 2C, which outputs prediction  I Ç 1. DPC considers ¹  I ¹8–9º

: – I¹?–@º
< º as the positive

pairs only if < = :– ? = 8– @= 9, where :– < denote the temporal position and ¹8– 9º–¹?– @º de-
note the spatial position in feature I . DPC leverages the InfoNCE loss [176] to pull the distance
between the positives pairs and push the distance between the negatives pairs, which can be
formulated as
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DPC can be pre-trained end-to-end. The pre-trained representations achieve state-of-the-art
self-supervised performance on UCF101 and HMDB51. This method forms the background
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Figure 2.11: �.�P�U�J�P�O �"�U�U�F�O�U�J�P�O �1�J�Q�F�M�J�O�F �J�O �1�3�1��Motion attetnion is generated in four stages: frame difference
in RGB, 3D down-pooling, activation, 3D upsampling. Figure taken from [205]

for Chapter 4, and it is also used for comparsion in Chapter 4.

�1�3�1��Motivated by the motion perception mechanism in the primate visual system, Yao �F�U

�B�M��[205] propose a pretext learning method that predicts the video playback rates based on
the dilated sampled video clips. The dilated sampling strategy can generate video clips with
various playback rates. Based on different playback rates of the same video, PRP [205] propose
two proxy tasks: a discriminative task to capture the long-term relation and a generative task
to model the short-term fine details. Both tasks are based on the video clip feature generated
by a 3D-CNN video encoder (�F���H��C3D [74], R3D [174], R(2+1)D [174]). For the discriminative
task, PRP pre-defines a set of playback rates as the categories for classification. The video clip
feature is fed into fully connected layers (FC) to predict the probability for different playback
rates and the cross entropy loss is utilised to regularise the classification. For the generative
task, PRP needs to reconstruct the slow-down video clips. PRP builds a feature decoder net-
work that contains several 3D deconvolutional blocks. The decoder takes the clip feature as
input and predicts the interpolated frames. As PRP aims to learn long-short term video repre-
sentations rather than the low-level pixel variation in each frame. Herein, a motion attention-
based MSE loss is proposed to focus on the motion foreground and dilute the background
during reconstruction:

L PRP-G =
1

), �

)Õ

C=1

,Õ

8=1

�Õ

9=1

" ¹8–9º
C ¹  . ¹8–9º

C � � ¹8–9º
C º2 – (2.20)

where  . ¹F–�º
C represents the pixel at ¹8– 9º of the predicted frame at time step C; � represents

the ground truth; " is the motion attention map which is generated by the frame difference.
As shown in Figure 2.11, the difference of two adjacent frames is first calculated; then a 3D-
Pooling operation is performed, followed by an activation that transforms the difference map
into a fixed range »� 1–� 2¼. The final attention map " is obtained by 3D upsampling it to the
same spatiotemporal size as � . During training, PRP co-optimises both discriminative task
and generative task. PRP is pre-trained on the UCF101 dataset without labels. It achieves com-
petitive results evaluated on UCF101 and HMDB51 for action recognition. This method forms
the background for Chapter 4, and it is also used for comparsion in Chapter 4.
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�3�4�1�/�F�U��Chen �F�U �B�M��[142] argue that it is non-trivial to obtain absolute speed labels for videos

Figure 2.12: �3�4�1�/�F�U �"�S�D�I�J�U�F�D�U�V�S�F �%�F�U�B�J�M�T��RSPNet takes video clipswith different relative speed as inputs. video
features are extracted after the inputs are fed to a shared spatiotemporal encoder, and then the RSP task and the
A-VID task are performed. Figure adopted from [142].

as the same action may be performed at different speeds by different people. They propose
RSPNet which exploits the relative speed of two video clips for pretext learning. RSPNet can
jointly learn from motion and appearance features in a video by Relative Speed Perception
(RSP) task and Appearance Video Instance Discrimination (A-VID) task. As shown in Fig-
ure 2.12, RSPNet first samples a set of video clips with different playback speeds, and then a
spatial-temporal encoder is applied to extract the clip feature. RSPNet builds two project heads
for the RSP task and the A-VID task respectively. Given a clip feature / B

: 8
which is sampled

from the 8th clip of video : with playback speed B, RSP task considers features with different
relative speed �J���F��f / =

: 9
g=<B should be away from / B

: 8
whereas feature / B

: 9
which is sampled

from the same video with the same relative speed should be similar in the latent space. Thus,
A triplet loss is applied for the RSP task:
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where ;3 denotes the feature distance function, � 7 0 represents the margin. For the A-VID
task, RSPNet uses a different projection head that maps a clip feature to . B

: 8
space. In this

task, video clips are distinguished based on the clip content regardless of the relative playback
speed. For a feature . B

: 8
, A-VID considers f . C

< g< < : as the negative samples and f . C
: 9

g8< 9as the
positive samples. InfoNCE loss [176] is applied in A-VID which is formulated as
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where � represents the temperature in InfoNCE. RSPNet leverages the multi-task learning ob-
jectives to learn from the unlabelled video data. It is pre-trained on the Kinetics-400 dataset.
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The fine-tuning results on UCF101 and HMDB51 achieve state-of-the-art performance for ac-
tion recognition. This method forms the background for Chapter 4, and it is also used for
comparsion in Chapter 4.

������ �4�F�N�J���T�V�Q�F�S�W�J�T�F�E �-�F�B�S�O�J�O�H

Semi-supervised learning exploits the potential of unlabelled data to facilitate model learning
with a limited amount of annotated data. It leverages a large amount of auxiliary unlabelled
data which are often drawn from the same data distribution as the labelled data, aiming at
boosting models performance in conjunction with labelled data. In the field of animal ecology,
however, the unlabelled data are usually ignored, while they have been widely explored in
various generic computer vision tasks such as image classification [17, 102, 163, 213], image
retrieval [88], semantic segmentation [139], pose estimation [141, 202], and object detection
[89, 171, 200].

Semi-supervised learning can be categorised into i) consistency regularisation approaches
[102, 172, 180]; and ii) pseudo-Label approaches [17, 105, 163, 213] based on how they utilise
the unlabelled data. For consistency regularisation, themodel is regularised to generate consis-
tent predictions on data with different augmentations. For pseudo-label, the model generates
pseudo-labels for unlabelled data and is updated by training on a mix of unlabelled data with
pseudo-labels and labelled data with manually annotated labels.

In this section, these two concepts for semi-supervised learning will be reviewed and fol-
lowed by their applications on object detection tasks.

���������� �$�P�O�T�J�T�U�F�O�D�Z �3�F�H�V�M�B�S�J�T�B�U�J�P�O

In this line of work, the models are assumed to predict consistent outputs under variation of
input data. If a perturbation⁴ is applied to an unlabelled sample, consistency regularisation
models assume the prediction should not change significantly. Because i) labelled data with
distinct labels are assumed to be well separated in their latent space; and ii) unlabelled data
satisfy the same distribution as labelled data. Thus the likelihood of unlabelled data changing
labels or classes after a perturbation is small.

Formally, given an unlabelled data point G 2 � D and its other form after perturbation  G,
the objective of consistency regularisation is to learn a model 5� (parameterised with � ) to
minimise the distance between Gor  Gin the latent space,

� 8 = arg min
�

;3
�
5� ¹Gº– 5� ¹  Gº

�
– (2.23)

⁴For example, colour jittering on image data
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2.3. SEMI-SUPERVISED LEARNING

where � 8 denotes the optimal solution for model 5 and ;3 represents the distance metric.
The popular ;3 used in consistency regularisation are mean squared error (MSE) [102, 172],
Kullback-Leiber divergence (KL) [129, 163, 213].

In the following of this section, some representative works of consistency regularisation
methods will be introduced.

� ���.�P�E�F�M��Neural networks contain regularisation techniques, which are robust to the data

(a) � -Model. (b) Temporal Ensembling Model

Figure 2.13: � ���.�P�E�F�M �B�O�E �5�F�N�Q�P�S�B�M �&�O�T�F�N�C�M�J�O�H �.�P�E�F�M��Figure (a) illustrates the � -Model, where input data
variation is encouraged to be consistent. Figure (b) demonstrates the temporal ensembling model, where an ad-
dtional EMA model is constructed based on � -Model. Figure adopted from [102].

variation, such as data augmentation, feature dropout �F�U�D��. Laine and Aila [102] exploit these
characteristics exhibited in a neural network by proposing two self-ensembling models: � -
Model and its temporal ensembling version. � -Model encourages the consistency of input
data variation after passing through model 5� . As illustrated in Figure 2.13, an 5� generates
features ¡H1 and ¡H2 with different views of same image G. The objective of � -Model is to obtain
the consistency of the prediction as well as to optimise the labelled input images:

L � = �
1
#

Õ

G2� D




 ¡H1 � ¡H2




 2

2 ¸
1
"

Õ

G–H2� G

L CE¹H– 5� ¹Gºº – (2.24)

where � D represents the unlabelled datawith # samples, � Gdenotes the labelled datawith "

samples, � is a weighting term and L CE represents the cross entropy loss (details in Equation
2.1). In practice, � -Model first feeds all the samples in � D to obtain a set of predictions f  Hg

and then optimise the model based on Equation 2.24. The problem with this is that f  Hg are
based on the single evolution of 5� whereas � changes dynamically during learning. Laine
and Aila [102] propose temporal ensembling to address this problem. As shown in Figure
2.13, they keep track of  Husing exponential moving average of ¡Hso that the current prediction
of themodel ¡Hshould be consistentwith the temporal ensembled  Hema in temporal ensembling
model, where  Hema is updated by

 Hema =
<  Hema ¸ ¹ 1 � < º ¡H

1 � < C
– (2.25)

where < is a momentum in EMA, the denominator 1� < Cis the bias correction term following
[97] that corrects the for the initialisation bias at the first Citerations. The temporal ensem-
bling technique stabilises the training of � -Model and achieves better performance. Temporal
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ensemble � -Model surpasses prior state-of-the-art results on semi-supervised image classifi-
cation tasks. This method forms the background for Chapter 5.

�.�F�B�O �5�F�B�D�I�F�S��Tarvainen �F�U �B�M��[172] address the two issues associatedwith the � -Model [102],
i) the target labels are updated at a slow pace, where it performs exponential moving average
once per epoch. When the dataset becomes larger, the model has more infrequent updates. ii)
the samemodel plays a dual role, as a teacher and a student. As a teacher, the model generates
the targets which are used by itself as a student for learning. If the unsupervised loss and the
supervised loss are not balanced, the model would be prone to a trivial solution. To mitigate
these issues, Mean Teacher [172] proposes to use two separate models so that one for gener-
ating the learning target and the other for learning from the data. It utilises a teacher model
that averages model weights over time instead of averaging the prediction in � -Model so that
the teacher model can generate the updated targets following the training pace. The student
model 5� and the teachermodel 5� 0 have the same number of parameters but � 0is the temporal
ensemble of � :

� 0  < � 0 ¸ ¹ 1 � < º� – (2.26)

where < is the momentum in EMA. The overall training objective for Mean Teacher is

L MT = �
1
#

Õ

G2� D




 5� ¹Gº � 5� 0¹Gº




 2

2 ¸
1
"

Õ

G–H2� G

L CE¹H– 5� ¹Gºº – (2.27)

where � D represents the unlabelled data with # samples, � Gdenotes the labelled data with
" samples, � is a weighting term and L CE represents the cross entropy loss in classification.
With those improvements, Mean Teacher shows faster converge speed and better performance
than � -Model on SVHN and CIFAR-10 image classification tasks. This method forms the back-
ground for Chapter 5.

�*�$�5More recently, Verma �F�U �B�M��[180] propose an efficient consistency regularisation method
that incorporates a MixUp operation [215] to replace random perturbation used in previous
consistency regularisation methods. MixUp operation interpolates two data points in the la-
tent space �J���F��Mix� ¹0– 1º = � 0¸¹ 1� � º1, where � is a balancingweight randomly sampled from
a Beta distribution. Their proposed ICT train the model 5� to provide consistent predictions
given different mixup of data points G9and G9which are randomly sampled from unlabelled
data � D. ICT is built uponMean Teacher [172], and enforce the consistency between themixup
of the data points and mixup of the model predictions:

5�
�
Mix� ¹G8– G9º

�
� Mix�

�
5� 0¹G8º– 5� 0¹G9º

�
– (2.28)
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where 5� 0 is the EMA of 5� . Following Equation 2.27, the overall objective of ICT is given at

L ICT = �
1

# 2

Õ

G8–G92� D




 5�

�
Mix� ¹G8– G9º

�
� Mix�

�
5� 0¹G8º– 5� 0¹G9º

� 

 2
2 ¸

1
"

Õ

G–H2� G

L CE¹H– 5� ¹Gºº –

(2.29)
where � D represents the unlabelled data with # samples, � Gdenotes the labelled data with
" samples, � is a weighting term and L CE represents the cross entropy loss. ICT considers the
mixup operation as an alternative for random perturbations, alleviating the problem of inef-
ficiency of random perturbations for high-dimensional data space. It achieves state-of-the-art
performance when applied to standard neural network architectures on CIFAR-10 and SVHN
benchmark datasets. This method forms the background for Chapter 5.

���������� �1�T�F�V�E�P���-�B�C�F�M

The pseudo-labeling approach is first proposed in [105], whereby it involves the assignment
of pseudo or synthetic labels to unlabeled samples, relying on the model’s prediction and
the associated confidence score. Subsequently, the model is trained and updated concurrently
using both labeled and unlabeled samples in a purely supervised setting.

The pseudo-label methods differ from the consistency regularisation methods in that the
consistency regularisation methods usually rely on consistency constraints of the same data
with different views. In contrast, pseudo-labelling methods rely on the high confidence of
pseudo-labels, which can be added to the training data set as labelled data.

In general, pseudo-label methods first use the labelled data � G to train a prediction func-
tion 5� . The unlabelled data � D then can be assignedwith pseudo-labels by forwarding them to
the trained prediction function 5� and selecting the most confident predictions which should
be higher than a pre-defined threshold # as the pseudo-labels. Then, the model is trained
again using the augmented labelled set and producing pseudo-labels for the rest of � D. This
process is repeated until the model is incapable of producing confident predictions.

In the following of this section, some representative works of pseudo-label methods will
be reviewed in detail including MixMatch [17], FixMatch [163], and FlexMatch [213].

�.�J�Y�.�B�U�D�I��Berthelot �F�U �B�M��[17] propose MixMatch, a holistic pseudo-label semi-supervised
method that unifies the components from the dominant semi-supervisedmethods. Given a set
of labelled data � G containing " samples and a set of unlabelled data � D containing # sam-
ples,MixMatch first conducts data augmentations for both sets. For a labelled sample G2 � G, it
produces its augmented version  G. For an unlabelled sample GD 2 � D, it produces  augmenta-
tions, denoting as f  GD1 –� � � – GD g. ThenMixMatch feeds the k augmentations f  GD1 –� � � – GD g to
prediction model 5� , yielding the predictions f  HD1 –� � � – HD g. Then the pseudo-label for sam-
ple GD is obtained by averaging the predictions  H = 1•  

Í  
: =1  HD: . To encourage confidence

in the model’s predictions, the pseudo-labels in the form of the probability distribution are
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sharpened by adjusting the temperature � in the Softmax operation:

 H¹2º
D =

�
 H¹2º
D

� 1• �

Í �
==1

�
 H¹=º
D

� 1• �
– (2.30)

where  H¹2º
D represents the probability of class 2out of � categories. Theunlabelled set f  GD1 –� � � – GD g

together with their sharpened pseudo-labels f  HD1 –� � � – HD g are mixed together with � G and
� D using the MixUp operation [215] same as ICT [180], yielding a new augmented set � 0

G

and � 0
D, respectively. The overall training objective for MixMatch using the new augmented

labelled and unlabelled data is formulated as

L MM = �
1
#

Õ

 GD– HD2� 0
D




 5�

�
 GD

�
�  HD

� 

 2
2 ¸

1
"

Õ

G–H2� 0
G

L CE¹H– 5� ¹Gºº – (2.31)

where � represents a weighting term and L CE represents the cross entropy loss. MixMatch
intelligently unifies several recent techniques used in semi-supervised learning such as low-
entropy labels, MixUp, pseudo-label, consistency regularisation �F�U�D��. It obtains state-of-the-art
results by a large margin on the CIFAR-10 and STL-10 datasets. This method forms the back-
ground for Chapter 5.

Figure 2.14: �'�J�Y�.�B�U�D�I �"�S�D�I�J�U�F�D�U�V�S�F �%�F�U�B�J�M�T��a weakly-augmented view and a strongly-augmented view are gen-
erated by the same unlabelled input. The weakly-augmented view is used for generating pseudo-label for training
the model with strongly-augmented data. Figure taken from [163].

�'�J�Y�.�B�U�D�I��Sohn �F�U �B�M��[163] propose FixMatch, a simple yet efficient semi-supervised method
that leverages pseudo-labelling techniques. Instead of utilising the MSE loss for consistency
regularisation, FixMatch uses cross-entropy that directly measures the predictions with the
pseudo-labels. Given an unlabelled sample GD 2 � D and a labelled sample G– H2 � G, FixMatch
generates a weakly augmented version using a random weak augmentation⁵ � F as shown

⁵Weak augmentation is a standard flip-and-shift augmentation
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in Figure 2.14. Then it considers the prediction from this augmented image as the pseudo-
label if the highest class probability is greater than a pre-defined threshold # . FixMatch also
produces  strongly augmented samples using random strong augmentations⁶ � Band assigns
them with the pseudo-labels generated by the weakly augmented sample. Then the loss can
be formulated as

L FM = �
1

 #

Õ

GD2� D

Õ

 

1
�
max¹ 5� ¹� F ¹Gººº 7 #

�
L CE

�
5� ¹� F ¹GDºº– 5� ¹� B¹GDºº

�
¸

1
"

Õ

G–H2� G

L CE¹H– 5� ¹Gºº –

(2.32)
where � � denotes the model, � represents a weighting term and L CE represents the cross en-
tropy loss. The notation 1 represents the conditional indicator that suggests only applying
those predictions whose confidence score is greater than threshold # . Despite FixMatch being
simple and easy to implement, it obtains state-of-the-art performance on SSL and CIFAR-10
benchmarks. This method forms the background for Chapter 5.

�'�M�F�Y�.�B�U�D�I��More recently, Zhang �F�U �B�M��believes the limitation of FixMatch [163] is that the
pre-defined constant threshold for all categories is applied. They suggest that it fails to con-
sider the different learning status during training and learning difficulties for each category.
While FixMatch can make sure that only high-quality pseudo-labels can be leveraged in train-
ing, it neglects a considerable amount of other unlabelled data, especially at the early stage of
training. Their proposed FlexMatch utilises a curriculum pseudo-labelling (CPL) strategy that
can flexibly adjust thresholds for different categories during training. CPL adjust thresholds
based on the learning effect of category 2 at time step C, denoted as � ¹2º

C . Given an unlabelled
sample GD 2 � D, CPL can be formulated as:

� ¹2º
C =

Õ

GD2� D

1
�
max¹ 5� C¹GDºº 7 #

�
� 1

�
arg max¹ 5� C¹GDºº = 2

�
– (2.33)

where 5� C is the model parameterised with � at time step C, # denotes the threshold. � ¹2º
C is

normalised and scaled with the fixed threshold # , yielding the dynamic threshold:

	 ¹2º
C = #

� ¹2º
C

max
8

� ¹8º
C

• (2.34)

FlexMatch replaces the constant threshold in FixMatchwith a dynamic threshold 	 ¹2º
C which is

dependent on the learning status for time step Cas well as the learning difficulties for category
2. Based on Equation 2.32, the learning objective for the unlabelled data part at time step Cis
formulated as:

L unlabelled
FlexM =

1
#

Õ

 GD2� F ¹� Dº
¡GD2� B¹� Dº

1
h
max¹ 5� C¹  GDºº 7 	

¹arg max¹ 5� C¹  GDººº
C

i
L CE

�
5� C¹  GDº– 5� C¹ ¡GDº

�
– (2.35)

⁶Strong augmentation is AutoAugment [39] + Cutout [44]
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where  GD,  GD denote unlabelled data sampled fromweakly augmented data (� F ) and strongly
augmented data (� B), respectively. FlexMatch introduces a heuristic approach for determin-
ing the dynamic threshold, it does not require passing through the test data for evaluating
the learning status of a model. It achieves better performance on tasks with extremely lim-
ited labelled data. This method forms the background for Chapter 5 and inspires the method
presented in Chapter 5.

���������� �4�F�N�J���T�V�Q�F�S�W�J�T�F�E �0�C�K�F�D�U �%�F�U�F�D�U�J�P�O

Similar to semi-supervised learning in the image classification domain, semi-supervised object
detection methods also have two categories: the consistency regularisation methods [89, 90]
and pseudo-label methods [120, 164, 171, 200].

Semi-supervised object detection is explored even before the resurgence of deep learn-
ing, Rosenberg �F�U �B�M��[153] leverage self-training and Expectation-Maximization on a hand-
crafted object detector using unlabelled or weakly labelled samples. Lately, several works
[11, 94, 138, 185] utilise weak labels in images, �F���H��per-image categories, to boost object detec-
tion algorithm. Recently, CSD [89] proposes a consistency-based approach for object detection,
which encourages consistency between the predictions of an input image and its augmented
version. Inspired by CSD, ISD [90] extends the prediction consistency of two views of the
same images to the interpolated images and proposes interpolation regularisation to mitigate
the problem of applying ICT [180] in object detection.

Lately, pseudo-label-based semi-supervised object detectionmethods have been greatly ad-
vanced [120, 164, 171, 200]. STAC [164] combines self-training and consistency regularisation
that leverages a weak data augmentation for model training and a strong data augmentation
for pseudo-labelling. SoftTeacher [200] alleviates the issue of unreliable pseudo-labels gener-
ated by the teacher by proposing a soft teacher model. UbTeacher [120] jointly trains a student
and a teacher in a mutually-beneficial manner by applying class-balance loss. More lately, sev-
eral pseudo-label-basedworks [96, 171, 228] address the importance of generating reliable and
high-quality pseudo-labels in semi-supervised object detection.

This section will dive into deep of the recent state-of-the-art methods for semi-supervised
object detection.

�$�4�%��Jeong �F�U �B�M��[89] make full use of available unlabelled data in object detection by propos-
ing Consistency-based Semi-supervised Detection (CSD). CSD applies consistency constraints
for both Bbox classification and Bbox regression. Consistency regression requires the pertur-
bation of a sample to be similar to itself after passing through a feature encoder; however, this
is difficult to be implemented in object detection as different perturbations may have differ-
ent numbers of boxes with various locations and sizes. To achieve one-to-one correspondence,
CSD considers horizontal flip as augmentation. Given an input image G,its flip version ¡G, a
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backbone network ) , a classification head 5cls and a location head 5loc. CSD builds the consis-
tency objective for the classification task by enforcing the class probability between 5¹8º

cls ¹) ¹Gºº

and 5¹80º
cls ¹) ¹ ¡Gºº to be equivalent, where ¹8º represents the ith prediction output in the feature

grid of an anchor-based detector. ¹80º represents the corresponding horizontal flip position of
¹8º. CSD uses Jensen-Shannon Divergence to measure the distance of two distributions, thus
the loss for classification consistency in CSD can be formulated as

L cls
CSD =

1
2#

#Õ

8

�
� KL

�
5¹80º
cls ¹) ¹ ¡Gºº–

1
2

�
5¹8º
cls ¹) ¹Gºº ¸ 5¹80º

cls ¹) ¹ ¡Gºº
� �

¸ � KL

�
5¹8º
cls ¹) ¹Gºº–

1
2

�
5¹8º
cls ¹) ¹Gºº ¸ 5¹80º

cls ¹) ¹ ¡Gºº
� �

�
–

(2.36)

where � KL represents the Kullback-Leibler divergence, and # is the total number of anchors
in the feature grid. CSD also introduces the consistency objective for the localisation task. It
encourages the consistency of Bboxes:

L loc
CSD =

1
4

�
k2G¹8º � ¹� ¡2G¹80ººk2

2 ¸ k 2H¹8º � ¡2H¹80ºk2
2 ¸ k F ¹8º � ¡F ¹80ºk2

2 ¸ k � ¹8º � ¡� ¹80ºk2
2 –

�
(2.37)

where »2G¹8º– 2H¹8º– F¹8º– �¹8º¼are the output of 5¹8º
loc¹) ¹Gºº and » ¡2G¹80º– ¡2H¹80º– ¡F ¹80º–¡� ¹80º¼are the out-

put of 5¹80º
loc ¹) ¹ ¡Gºº. Since a horizontal flip is applied to image ¡G, the x coordinate of BBox should

be consistent with the negation of flipped one, as shown in Equation 2.37. CSD co-optimises
the weighted combine of L loc

CSD and L cls
CSD as the final unlabelled loss in training. It demon-

strates its effectiveness for both one-stage and two-stage detectors and achieves competitive
results on Pascal VOC andMS-COCOdatasets using extra unlabelled data. Thismethod forms
the background for Chapter 5, and it is also used for comparsion in Chapter 5.

Figure 2.15: �6�C�5�F�B�D�I�F�S �"�S�D�I�J�U�F�D�U�V�S�F �%�F�U�B�J�M�T��UbTeacher contains burn-in stage and teacher-student mutual
learning stage. In the burn-in stage, model learns from labelled data. In the teacher-student mutual learning stage,
the teacher model produces pseudo-labels for student to learn and the teacher model is refined by EMA of student
model. Figure adopted from [120].

�6�C�5�F�B�D�I�F�S��Liu �F�U �B�M��[120] address the bias issue in pseudo-labels in the current pseudo-
labels approaches and propose UbTeacher that can jointly train a student and a gradually
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progressing teacher in a mutually-beneficial manner. Figure 2.15 illustrates the architecture
of UbTeacher. It consists of two training stages i) In the burn-in phase, the object detector (�F���H��

Faster-RCNN [149]) is trained only using the limited labelled data. Then UbTeacher utilises
the pre-trained detector to initialise the teacher and student model. ii) the teacher and student
perform mutual learning on unlabelled data, where the teacher generates pseudo-labels to
train the student and the student updates the teacher via the EMA mechanism. However, Liu
�F�U �B�M��argue that object detection has foreground-background imbalance problem, it is even
worse when mutual learning is performed on unlabelled data. Models are prone to predict
prevailing classes. UbTeacher leverages focal loss [113] to address this imbalance. Focal loss
can assign higher weights to the samples with low-confident scores which compensate for
the learning of foreground categories. In the student-teacher mutual learning mechanism, the
teacher is updated by the EMA of the student. Liu �F�U �B�M��believe this EMA updates can also
alleviate the class bias problem as well, because EMA enables slowly altering decision bound-
aries so that the predictions are less likely to change drastically. With these simple yet effective
techniques, the performance of UbTeacher on MS-COCO and VOC is competitive with other
state-of-the-art Methods. This method forms the background for Chapter 5, and it is also used
for comparsion in Chapter 5.

�4�P�G�U�5�F�B�D�I�F�S��The previous pseudo-label semi-supervised objective detectionmethod [164] ap-
plies a high confidence threshold (�F���H��0.9) to obtain reliable pseudo-labels. However, Xu �F�U �B�M��

[200] believes that this can lead some foreground box candidates to be mistakenly assigned as
background when generating pseudo-labels. They propose SoftTeacher to address this issue.
SoftTeacher reassesses the reliability of each background pseudo-label by weighing its back-
ground loss during training. More specifically, for a set of Bbox f 18g#

8=1 predicted the student
model, SoftTeacher first splits it into two sets f 1fg

8 g
# fg
8=1 and f 1bg

8 g
# bg
8=1 representing foreground

Bbox and background Bbox, respectively, by thresholding on their confidence scores, where
# fg¸ # bg = # . A reliableweighting term is introduced in SoftTeacher toweigh the background
loss in training. Thus, the unlabelled loss in SoftTeacher can be formulated as:

L u
ST =

1
# fg

# fgÕ

8=1

L CE¹1fg
8 – 6º ¸

# bgÕ

8=1

B8
Í # bg

9=1 B9

L CE¹1bg
8 – 6º – (2.38)

where L CE represents the cross-entropy loss,  6 denotes the corresponding pseudo-label which
is generated by the teacher model, and B8•

Í # bg
9=1 B9 is the reliable weight termwhere Bindicates

the confidence score from the teacher model.
For the Bbox regression task, SoftTeacher finds that the high-confident foreground score

does not correspond to accurate Bbox location. Instead, it proposes Bbox regression variance
to measure the reliability of the Bbox location. The Bbox regression variance is based on the
consistency of the predictions of the jittered Bboxes, the same concept that is utilised in consis-
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tent regression approaches [89, 90]. With the aforementioned two techniques, SoftTeacher can
gradually improve pseudo-label qualities during training, and better pseudo-labels in turn
benefit the whole training. SoftTeacher achieves state-of-the-art semi-supervised object detec-
tion performance on MS-COCO under partially labelled data settings (PLD) as well as fully
labelled data settings (FLD). This method forms the background for Chapter 5, and it is also
used for comparsion in Chapter 5.

������ �"�O�J�N�B�M �3�F�D�P�H�O�J�U�J�P�O �X�J�U�I �$�P�N�Q�V�U�F�S �7�J�T�J�P�O

Protection of wildlife is critical in ensuring the global biodiversity, as well as maintaining a
balanced ecosystem. Wildlife conservation requires monitoring species diversity, geo-spatial
distribution, population dynamics. Thanks to the availability of inexpensive sensors, large-
scale data acquisition forwildlife conservation is becomingmore andmore accessible.Massive
amount of visual data can be collected fromwildlife conservation area by various sources such
as camera trap, UAVs and surveillance camera, they can be utilised to guide resourcing and
strategies for wildlife protection. However, analysing andmonitoring large-scale conservation
visual data is a labour-intensive and time-consuming task. These data can bewasted if they are
collected without further analysing. Fortunately, the success of computational ecology have
shown promises for automatic analysis of ecological data.

Figure 2.16: �%�F�N�P�O�T�U�S�B�U�J�P�O �P�G �-�J�U�F�S�B�U�V�S�F�T �G�P�S �"�O�J�N�B�M �"�O�B�M�Z�T�J�T��(1) [14] illustrates the animal detection from
camera trap; (2) [22] shows the facial recognition for Gorillas; (3) [9] depicts the animal behaviour recognition for
great ape; (4) [109] demonstrates the results for animal image matting; and (5) [234] shows the 3D animal pose
estimation for Zebra.

A significant share of this success can be attributed to deep learning. Recent years see the
emerging of deep learning based animal recognition tools [9, 14, 136, 137, 154], these methods
can be categorised based on on the different types of data that they are performed. One type
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CHAPTER 2. BACKGROUND

of animal data can be obtained from animal-attached wearable devices or bio-logging tags
that collect data on the animals’ environment, movement and behaviours [2, 151, 152, 193].
However, this type of data is expensive to acquire, and impossible to collect in large-scale.

Another prevalent type of data, onwhich this thesis henceforth focus due to its wide popu-
larity in animal science is image/video footage. With the recent advances in computer vision,
automatic animal recognition using visual data are widely adopted in studies of various disci-
plines such as biology, ecology, and animal conservation, due to the accurate, fast, robust and
powerful tools or platforms have been specifically developed in analysing animal-related tasks
such as animal locomotion understanding [1, 38, 156], behaviours understanding [9, 108, 154,
207], animal tracking [59, 182, 216], counting [12, 136, 137], detection [14, 22, 94, 134, 204], pose
estimation [66, 103, 107, 143, 234] and species identification or re-identification [136, 137, 158],
�F�U�D��[18, 19, 109, 130, 220]. Figure 2.16 visualises some literatures for animal analysis using com-
puter vision. In the following of this section, some representativeworks for animal recognition
using visual data will be reviewed in details.

�/�P�S�P�V�[�[�B�E�F�I�F�U �B�M��[137] is one of the earliest works that explores the automation of animal
identification, counting, and behaviour understandings using deep learning models. They
train deep CNNs to identify, count and describe the behaviours of 48 species on the Snap-
shot Serengeti dataset [168]. More specifically, they build a two-stage pipeline that contains
an identification stage and an information extraction for automating animal analysis. The first
stage concerns a binary classification task �J���F��detecting if an image contains an animal, using
CNN models. In the second information extraction stage, three tasks are involved including i)
species recognition, ii) animal counting, and iii) animal attributes description (their behaviour).
They proposed amulti-task learningmodel to perform the aforementioned four tasks simulta-
neously. For the binary classification task, they tailor the input data so that the empty and the
non-empty classes are balanced. For the species identification task, the corresponding output
layer produces the probability for each species out of 48 possible species. For the animal count-
ing task, they treat it as a classification task where 12 possible bins are assigned to each input
image, representing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-50, or +51 individuals respectively. For the
behaviour understanding task, they utilise 6 behaviour attributes provided by the Snapshot
Serengeti dataset. It is a multi-label classification task as the labels are not mutually exclusive.
They propose to use 6 different binary classification heads for determining whether that be-
haviour exists in the image. To improve accuracy, they also train 9 CNNs with different archi-
tecture and apply model ensemble to produce the final results. The experimental results sug-
gest that this automation system can achieve 90% accuracy on the Snapshot Serengeti dataset
and can effectively aid the animal labelling effort. This method forms the research background
for Chapter 3.
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2.4. ANIMAL RECOGNITION WITH COMPUTER VISION

�/�P�S�P�V�[�[�B�E�F�I�F�U �B�M��[136] propose an active learning pipeline for animal recognition to accel-
erate the automatic labelling of camera trap images. They argue that the accuracy of deep
models depends on the abundance of the training data, however, the volume of labelled data
is not enough in the animal ecology field. They aim to address this label shortage issue by
taking the advantage of the advancement of transfer learning and active learning. Specifically,
they propose a three-step learning pipeline: i) applying a pre-trained Faster-RCNN [4] (also
known asMegaDetector) to obtain animal crops from the input images with a high confidence
threshold, ii) embedding the crops into a lower-dimensional space via an embedding network
which is pre-trained using triplet losses on the large unlabelled dataset, and iii) running an ac-
tive learning loop over the entire data where 100 unlabelled images that can maximise the pre-
defined image selection criteria are chosen for manual labelling in each iteration. In practice,
they explore model uncertainty selection and density-based selection as their active learning
selection criteria. They find the proposed learning pipeline can tackle several challenges of ap-
plying deep models in the field of animal ecology including transferability issues, inaccurate
counting, and limited-data problems. In addition, They can reach state-of-the-art performance
on par with their previous work [137] with a significant reduction of label demands. With the
proposed system applied to animal datasets, they conclude that efficient usage of human ex-
pertise and a dramatic reduction of human labelling effort can be achieved. Thismethod forms
the research background for Chapter 3, 4, and 5.

�#�B�J�O�F�U �B�M��[9] propose a fully automated pipeline that can detect and track wild chimpanzees
behaviours. They investigate two distinctive behaviours from chimpanzees: buttress drum-
ming and nut cracking by learning from audio and visual modalities. The pipeline contains
two stages: i) chimpanzee detection and tracking, and ii) audiovisual action recognition. For
chimpanzee detection and tracking, they first apply an SSD detector to detect individuals and
then link the detection crops temporally into tracklets using a pre-trained Siamese tracker. For
the audiovisual action recognition stage, a spatiotemporal CNN and a spectrogram CNN are
trained to extract features from visual modality and audio modality respectively. They apply
a 2D ResNet-18 which is pre-trained on VGGSound for the audio input data and a 3D ResNet-
18 for the tracklet inputs. Both visual and audio branch output 512-dimensional embeddings
which are concatenated together before feeding to the final predictive layer. The final predic-
tive layer which consists of two neurons and a softmax activation function produces the final
action recognition results. The proposed method is the first automation system that leverages
multi-modality for animal behaviour recognition. It achieves 87% and 85% accuracy rates for
buttress drumming and nut cracking behaviours recognition on camera trap video footage,
respectively, demonstrating the potential for behavioural analysis with a fully automated sys-
tem and also shedding light on exploiting large datasets in the field of animal ecology. This
method forms the research background for Chapter 4.
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CHAPTER 2. BACKGROUND

Figure 2.17: �4�4�- �G�S�B�N�F�X�P�S�L �G�P�S �"�F�S�J�B�M �*�N�B�H�F�S�Z��This self-supervised framework is designed for constrasting
animal UAV data. MoCo branch and CLD branch are combined in this SSL framework. Figure is adopted from
[220].

�;�I�F�O�H�F�U �B�M��[220] consider a self-supervised approach to address the scarcity issues of anno-
tated animal data in aerial imagery. They propose a self-supervised pretext task for wildlife
recognition on UAV image data. This pretext task takes advantage of the recent advance of
contrastive learning approaches including MoCo [78], CLD [190]. They argue that directly
using the current SSL approaches such as MoCo [78], SimCLR [35] for animal UAV images
pre-training is not applicable because these approaches assume that training samples are dif-
ferent from each other. However, images acquired by UAVs contain strong-correlated samples
where lots of similar images are captured in short time intervals. This can lead to the incorrect
formulation of negative pairs in contrastive learning. Thus, they propose to combine cross-
level instance-group discrimination (CLD) [190] to tackle the highly correlated UAV image
data. Their main framework is shown in Figure 2.17. First, two views �1 and � ¸ are produced
by the input image � , followed by a standard MoCo procedure which has been described in
2.2.1. For CLD branch, another view �2 is fed to the same query encoder 5@fromMoCo branch.
Then, a different projection head is applied to project the representation I 2 to 62 and I 1 to 61,
where I 1 is generated in the MoCo branch. Finally, a K-Means clustering algorithm is used to
search : centroids for each batch of data. They use the centroid � ¹61º which is the centroid
for the cluster that 61 is assigned as the positive key for 62 in contrastive learning. The loss of
MoCo branch L MOCO is the same as the one illustrated in Equation 2.12, and the loss of CLD
branch can be formulated as

L CLD = �
Õ

8< 9

log
exp¹68 � � ¹69º• � º

Í
f 2:

9g exp¹68 � 2:
9• � º

– (2.39)

where f 2:
9grepresents the set of : centroids. The overall training objective is theweighted sum-

mation of Equation 2.12 and Equation 2.39. The results show that this method can outperform
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2.4. ANIMAL RECOGNITION WITH COMPUTER VISION

the detection models which are pre-trained on ImageNet using supervised learning and can
effectively recognise wildlife under low-data regimes. This method forms the research back-
ground for Chapter 4

�,�F�M�M�F�O�C�F�S�H�F�S�F�U �B�M��[94] consider a model that can reduce labelling efforts for training animal
detectors in UAV images. They propose to leverage weak labels like animal counts or pres-
ence/absence animals to learn an object detector. They believe that the weakly-supervised
models can overcome the storage of instance-level labels by leveraging image-level labels,
where the former ones are harder to obtain. This is common in the UAV dataset for animals.
However, a fullyweakly-supervisedmodel is not on parwith fully-supervisedmodels in terms
of performance, thus, they propose to combine a fraction of instance-level labels for boosting
their weakly-supervised detection model. They employ a fully-convolutional CNN that out-
puts a heatmap  . 2 R# � " . The cells with high values in the heatmap  . are expected to contain
animals in those locations. In contrast, the value that is close to zero represents the background.
They apply smooth L1 loss, given the weak labels of animal counts, it can be formulated as:

L weak = ! 1¹H– Hº = f
1
2¹H�  Hº2– if jH�  Hj 5 �

jH�  Hj � 0•5� otherwise
– (2.40)

where H is the weak label that represents the animal count in the input image,  H is the sum-
mation of all the values in the heatmap  . , and � is a pre-defined threshold. If the weak labels
are in the format of animal presence �J���F��binary case, they apply a conditional loss:

L weak = f
0 if H= 1 and  H � 1

! 1¹H– Hº otherwise
• (2.41)

For some inputs with instance-level ground truth labels, they replace the weakly-supervised
loss with a supervised loss which is a spatial version of binary CE loss:

L BD?= �
#Õ

8=1

"Õ

9=1

�
H89log

�
 H89

�
¸

�
1 � H89

�
log

�
1 �  H89

�
�

– (2.42)

where H89and  H89represent the value for each cell in ground truth . and prediction  . , res-
pectively. Ground truth . is an instance-level label that contains value one where an object
is present, and zero elsewhere. They train the model end-to-end using a limited amount of
instance-level annotations and a large amount of image-level annotations on a UAV image
database. They find that leveraging only 1% of instance-level and image-level counts as re-
maining ground truth can achieve competitive performance with the fully-supervisedmodels.
This method forms the research background for Chapter 5.
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������ �0�Q�Q�P�S�U�V�O�J�U�J�F�T �G�P�S �'�V�S�U�I�F�S �3�F�T�F�B�S�D�I

With the rapid advancement of computer vision, recent years see a great development in the
field of computational ecology. However, there are still lots of important directions that has
not been reached by previous literatures. Specifically, this thesis summaries the following gaps
and challenges: i) most computer vision algorithms presented in Section 2.1, 2.2, 2.3, have been
developed and evaluated on large-scale open datasets, whichmay not be directly applicable to
animal analysis due to domain gaps and real-world challenges. Therefore, there is a pressing
need to address these challenges to enhance the applicability of computer vision algorithms
in animal analysis. ii) the field of animal ecology currently lacks large-scale fully annotated
open datasets to power deep learning animal models. Especially, the datasets that can reflect
the real-world scenarios that biologists or animal experts are facing. As such, there is a critical
need to establish such dataset for the further advancement in this field. iii) the potential of
large quantities of unlabelled data in animal analysis has been neglected. This is particularly
concerning, given that many quantitative studies about animals rely on labelled data which
can be difficult to obtain. Therefore, there is a need to explore the potential of unsupervised
learning techniques for animal analysis. iv) the development of fast and robust computer vi-
sion tools or standard pipelines for animal analysis that can be directly deployed in research
studies has not been addressed. v) it is worth noting that the field of animal analysis currently
lacks large pretrained models, whereas large deep learning models have been demonstrated
to be highly effective in other areas of AI. Therefore, there is a need to explore the effectiveness
of developing large scale models for animal ecology. Overall, these identified gaps and chal-
lenges can serve as directions for further research in the field of animal analysis. This thesis
is motivated by several of these challenges and has endeavored to address specific aspects of
gaps i), ii) and iii). To that end, this thesis has undertaken the establishment of a camera-trap
dataset and a detection benchmark for animal recognition in real-world settings, as well as
exploring the utilization of unlabelled data to facilitate animal recognition. These efforts can
contribute to advancing the state of the art in animal analysis.

������ �$�P�O�D�M�V�T�J�P�O

This chapter presented an overview of the related works upon which this thesis builds. The
overview of the related works discussed in this chapter can be found in Table 2.1. First, from
a general perspective on the existing approaches for object detection, Section 2.1 briefly dis-
cussed some early anchor-based one-stage and two-stage detection models, then their evo-
lution towards anchor-free models. This section also specifically addresses the challenges of
video object detection and how the representative works enhance detection performance by
leveraging the temporal information. Some representative works in this section are the foun-
dation of Chapter 3, 4 and 5. In the following Section 2.2, The related works which learn from

46
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the unlabelled data have been reviewed, including both discriminative and predictive self-
supervised learning approaches. Then some related works on video self-supervised learning
that cover the background related to Chapter 4 have been discussed in detail. Next, related
methods that boost learning by exploiting a large amount of unlabelled data are presented
in Section 2.3. This section illustrates the prevalent semi-supervised methods from the per-
spective of consistency regularisation and pseudo-labelling. In particular, some consistency
regularisation applications as well as pseudo-label-based applications on object detection are
explored which are related to Chapter 5 in this thesis. Finally, Section 2.4 surveys the relevant
works using computer vision technologies to facilitate animal recognition.
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�$�B�U�F�H�P�S�Z �-�J�U�F�S�B�U�V�S�F�T �7�F�O�V�F���E�B�U�F�3�F�M�B�U�F�E �$�I�B�Q�U�F�S�T

�0�C�K�F�D�U �%�F�U�F�D�U�J�P�O

Faster-RCNN [149] NIPS 2015 Chapter 3, 4, 5
Cascade-RCNN [24] CVPR 2018 Chapter 3
RetinaNet [113] ICCV 2017 Chapter 3
YOLO [146] CVPR 2016 Chapter 3, 5
CornerNet [104] ECCV 2018 Chapter 3, 5
CenterNet [229] Arxiv 2019 Chapter 3
FCOS [173] ICCV 2019 Chapter 3, 5
DETR [26] ECCV 2020 Chapter 5
Deformable-DETR [231] ICLR 2020 Chapter 5

�%�F�U�F�D�U�J�P�O �J�O �7�J�E�F�P

FGFA [232] ICCV 2017 Chapter 3
OGEMN [42] ICCV 2019 Chapter 3
LLTR [161] ICCV 2019 Chapter 3
Context-RCNN [14] CVPR 2020 Chapter 3, 5

�4�F�M�G���4�V�Q�F�S�W�J�T�F�E �-�F�B�S�O�J�O�H

MoCo [78] CVPR 2020 Chapter 4

�G�P�S �*�N�B�H�F

BYOL [67] NIPS 2020 Chapter 4
Barlow Twins [210] ICML 2021 Chapter 4
SwAV [28] NIPS 2020 Chapter 4
MAE [77] CVPR 2022 Chapter 4

�4�F�M�G���4�V�Q�F�S�W�J�T�F�E �-�F�B�S�O�J�O�H

VCOP [199] CVPR 2019 Chapter 4

�G�P�S �7�J�E�F�P

DPC [70] ICCVW 2019 Chapter 4
PRP [205] CVPR 2020 Chapter 4
RSPNet [142] AAAI 2021 Chapter 4

�4�F�N�J���4�V�Q�F�S�W�J�T�F�E �-�F�B�S�O�J�O�H
� -Model [102] Arxiv 2016 Chapter 5

�X�J�U�I �$�P�O�T�J�T�U�F�O�D�Z �3�F�H�V�M�B�S�J�T�B�U�J�P�O
Mean Teacher [172] NIPS 2017 Chapter 5
ICT [180] Arxiv 2019 Chapter 5

�4�F�N�J���4�V�Q�F�S�W�J�T�F�E �-�F�B�S�O�J�O�H
MixMatch [17] NIPS 2019 Chapter 5

�X�J�U�I �1�T�F�V�E�P���-�B�C�F�M
FixMatch [163] NIPS 2020 Chapter 5
FlexMatch [213] NIPS 2021 Chapter 5

�4�F�N�J���4�V�Q�F�S�W�J�T�F�E �-�F�B�S�O�J�O�H
CSD [89] NIPS 2019 Chapter 5

�P�O �0�C�K�F�D�U �%�F�U�F�D�U�J�P�O
UbTeacher [120] ICLR 2021 Chapter 5
SoftTeacher [200] ICCV 2021 Chapter 5

�"�O�J�N�B�M �3�F�D�P�H�O�J�U�J�P�O

Norouzzadeh �F�U �B�M��[137] NAS 2018 Chapter 3
Norouzzadeh �F�U �B�M��[136] Ecology 2021 Chapter 3, 4, 5
Bain �F�U �B�M��[9] Science 2021 Chapter 4
Zheng �F�U �B�M��[220] CVPR 2021 Chapter 4
Kellenberger �F�U �B�M��[94] CVPRW 2019 Chapter 5

Table 2.1: �4�V�N�N�B�S�Z �P�G �S�F�M�B�U�F�E �-�J�U�F�S�B�U�V�S�F�T �B�O�E �U�I�F �3�F�M�B�U�J�P�O �J�O �5�I�F�T�J�T��The information provided in this table
offers a comprehensive overview of the previous research. It presents a summary of the related literature reviewed
in Chapter 2 and its relevance to the following chapters in the thesis.
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Context guided learning refers to the local or global region around the object that affects
or leads the model learning. The context, usually presented around our main interests,
forms the condition for supervised learning from labelled data. In the animal detec-

tion task, the context could be spatially or temporally close to the target, which seems to be
irrelevant to the detection task itself, but they are crucial to guide the detection. For example,
the spatial context of a tree in Figure 3.1(a) can guide the model in learning that an object on
a tree is likely to be a bird, even though the tree is not our target/interest. The underwater
context shown in Figure 3.1(b) can lead the model to be more likely to recognise objects as
fishes instead of birds. The temporal context of consecutive frames, illustrated in Figure 3.1(t,
t+1, t+2) (where t is a frame instant) aids the model in locating the animals.

Figure 3.1: �3�P�M�F �P�G �4�Q�B�U�J�B�M �$�P�O�U�F�Y�U �B�O�E �5�F�N�Q�P�S�B�M �$�P�O�U�F�Y�U �J�O �3�F�D�P�H�O�J�U�J�P�O��The first row shows the spatial
context guide themodel learning (adopted from INaturalist Dataset [178]). The second row demonstrates the effect
of temporal context in video detection (adopted from PanAfrica Dataset [204]).

49



CHAPTER 3. CONTEXT GUIDED LEARNING FOR ANIMAL DETECTION

This chapter offers a deeper insight into algorithms that learn the location of the body and
the type of animal species from labelled images/videos that incorporate contextual informa-
tion �J���F��spatial context and temporal context in a supervised manner.

First, the PanAfrica dataset of great apes from camera traps is introduced. This dataset is
particularly challenging, consisting of scenarios where illumination is difficult, backgrounds
are non-static, objects of interest are occluded, and animal camouflage effects frequently oc-
cur. Then, we give insight on how to incorporate contextual information via two approaches.
We show that significant detection performance improvement can be achieved, leveraging the
contextual information, on this challenging dataset.

To study which contextual information can benefit detection algorithm in this challenging
dataset, first, we investigate the temporal context, using motion to guide the model to detect
animals from the camera trap video footage. Then, we give a proof of concept on the impor-
tance of temporal-contextual in guiding the learning and improving the benchmark. However,
we also observed its limitation in modelling fast-moving objects and non-static background
scenes. To address these issues, the motion-guided model is upgraded by a spatiotemporal
context guided model that integrates two key contextual-modelling modules: spatial context
module (SCM) and temporal context module (TCM). Finally, a significant performance im-
provement is achieved compared with the model without the guidance of contextual informa-
tion.

������ �1�B�O�"�G�S�J�D�B �%�B�U�B�T�F�U

���������� �*�O�U�S�P�E�V�D�U�J�P�O

Growing challenges such as a wide range of activity, poaching, loss of habitat, and others
have made the conservation of wildlife an increasingly difficult task. The need for tools that
can rapidly assess wildlife diversity, distribution, and population dynamics on a large scale
is an emerging field of study for conservation. Traditional conservation methods for assess-
ing wildlife are based on the manual collection of data from the field workers who count the
animals and observe their behaviours; such efforts are not only labour-intensive, and time-
consuming but also expensive [195]. Recently, with more inexpensive and accessible sensors
available for conservation, animal data acquisition on a large scale is becomingmore accessible,
opening new doors for ecological study at scale [101]. Many previously inaccessible conserva-
tion areas can now be studied through remote sensing devices, collecting a large amount of
data. High-resolution remote digital devices such as camera traps are commonly used for this
effort [64].

Camera trap video footage, filmed in the natural habitats of animal species is an impor-
tant resource to help with the conservation effort in ecological field studies. Camera traps that
are triggered by animal movement via passive infrared motion sensors are placed in the habi-
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3.1. PANAFRICA DATASET

tats to collect high-resolution audio-visual data [166]. Figure 3.2 illustrates the camera trap
and its placement environments. Compared to human observer-based data collection, it has
demonstrated significant advantages[166]; however, even a small network of camera traps can
generate large volumes of video footage.

(a) Camera Trap Device (b) Camera Trap Placement (c) Camera Trap Placement

Figure 3.2: �$�B�N�F�S�B �5�S�B�Q �B�O�E �1�M�B�D�F�N�F�O�U �P�G �$�B�N�F�S�B �5�S�B�Q��The first image shows the camera trap used in animal
ecology. The second and third images display the environment that the camera trap is placed. Images are adapted
from [5].

�1�B�O�"�G[5], the largest and most diverse camera trap dataset for great ape recognition, was
originally collected to understand and model the lives of the great apes: their behaviours, re-
lationships, and environments, as well as the socioecological and demographic of great apes
diversity, and also to extrapolate new ideas about human origins and cultural evolution. It
contains around 20K curated videos of the species of various types, collected across various
animal habitats from camera traps in 15 African countries. The majority of the species filmed
in this footage are chimpanzees and gorillas. Figure 3.3 displays some snapshots from the
camera trap video footage.

Figure 3.3: �4�O�B�Q�T�I�P�U�T �G�S�P�N �1�B�O�"�G �$�B�N�F�S�B �5�S�B�Q �'�P�P�U�B�H�F��The source videos are captured from the natural
habitats of great apes.
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���������� �%�B�U�B�T�F�U �-�B�C�F�M�M�J�O�H

�$�I�J�N�Q���4�F�F �1�S�P�K�F�D�U��The manual labelling of raw video footage is important in advancing
the deep learning models which are developed for automating species identification in the
field of animal ecology. To annotate large-scale video data, Arandĳelovic �F�U �B�M��[6] launched a
web-based citizen platform Chimp&See. It enables the public to view the PanAf videos online
and annotate which species are present and the behaviours they exhibit in each video. Deep
learning models are notoriously data-hungry. Later, driven by these large crowd-sourced la-
belled data, Pri-matrix Factorization [48] host an online competition for developing species
identification deep models. It attracts data scientists around the world to devoting themselves
into this field. This has greatly advanced the algorithms for automating species identification
from camera trap footage.

Visually identifying the presence and locations of animals and recognising their behaviours
from their natural habitats are important to automate the interpretation of large-scale conser-
vation data. The Chimp&See project has offered large-scale but coarse video-level annotations,
and Pri-matrix Factorization competition has motivated the development of species identifi-
cation algorithms. However, there is still a lack of fine-grained annotations for each animal
for this video footage and the corresponding algorithms that can identify and localise each
animal as well as its behaviour.
�1�B�O�"�G�S�J�D�B �%�B�U�B�T�F�U��To study the species-typical appearance and locomotion across video snip-
pets, we manually annotated with accurate per-frame animal bounding boxes on a small sub-
section of the PanAf dataset, comprising 500 randomly selected videos. Each of the frames
across all videos was annotated with the full-body location of great apes, specie type, as well
as intra-video great ape identities. We call this subset of the PanAf dataset, containing 500
videos with around 180K per-frame annotations, as PanAfrica Dataset. Figure 3.4 shows ex-
ample annotations of the location of the species as well as the species type for the PanAfrica
dataset.

The annotation of the PanAfrica dataset is an essential step towards acquiring training data.
In this case, the annotation taskwas undertaken by the author, with the assistance of a student,
and it is worth noting that this undertaking necessitated a considerable investment of time and
effort, amounting to approximately six person-weeks of work.

However, after completing the initial annotation, it came to our attention that a certain
number of annotation errors were present in approximately 1.7K frames of the original an-
notations, accounting for roughly 1% of the total frames. The primary cause of these errors
was attributed to false interpolation of the bounding boxes. As a result, we had to undertake
a manual correction process to rectify these errors, ensuring that the correction was carried
out with accuracy and consistency. To prevent a recurrence of such errors, we implemented
a meticulous review process for the annotated videos. This involved a manual verification of
each annotated video by the author.
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3.1. PANAFRICA DATASET

It is pertinent to note that most of the results presented in this thesis were based on the
corrected version of this dataset, which may exhibit some variations when compared to the
dataset presented in the 2019 publication [204].

Figure 3.4: �7�J�T�V�B�M�J�T�B�U�J�P�O �G�P�S �1�B�O�"�G�S�J�D�B �%�B�U�B�T�F�U��The figure shows randomly sampled frames from the PanAfrica
dataset with the label of location and species class. Bounding boxes with blue colour represent chimpanzees and
green bounding boxes annotate the gorillas.

�1�B�O�"�G�S�J�D�B �&�Y�U�F�O�T�J�P�O��To study the behaviour of great apes, Sakib and Burghardt [154] ex-
tended the PanAfrica dataset with the per-instance behaviour of the great apes for each frame.
Nine basic behaviours of the great ape shown in the video footage are annotated: sitting, stand-
ing, walking, running, climbing up, climbing down, hanging, sitting on (mother’s) back, and
camera interaction. These behaviours were chosen as they were deemed to be within the capa-
bilities of an amateur annotator to label accurately, thereby circumventing the need for expert
input. Examples of full-body location with behavioural annotations are shown in Figure 3.5.
Videos were labelled on a frame-by-frame with a frame rate of 24fps. The fine-grained nature
of the annotation makes the boundaries between transitioning behaviours difficult to define.
Therefore, the labels are not strictly definitive in these instances and are subject to interpreta-
tion.

PanAfrica and its extension are the first and the largest datasets that include frame-by-
frame annotations for full-body location, intra-video ape identification, species classification
and basic behaviours or actions.

���������� �%�B�U�B�T�F�U �4�V�N�N�B�S�Z

�1�B�O�"�G�S�J�D�B �4�U�B�U�J�T�U�J�D�T��As the subset of PanAf dataset, The PanAfrica dataset contains 500 ran-
domly selected videos. Each video is cropped to 15 seconds at the frame rate of 24, containing
approximately 360 frames, with each manually annotated with the per-frame accurate bound-
ing box of the animal body location, species type and behaviour information. In summary,
there are around 180K fully annotated frames with around 200K instance annotation of loca-
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Figure 3.5: �"�O�J�N�B�M �#�F�I�B�W�J�P�V�S�T �J�O �1�B�O�"�G�S�J�D�B �%�B�U�B�T�F�U��This demonstrates the PanAfrica dataset annotated with
per-instance location and behaviours. Nine basic behaviours are annotated for this dataset. Different colours rep-
resent different behaviours.

tion and behaviours, making the PanAfrica one of the largest camera trap datasets for great
apes.
�%�B�U�B�T�F�U �4�Q�M�J�U��The PanAfrica dataset is partitioned into training, validation and testing sets
with the ratio of 80%, 5% and 15% respectively. The videos in each set are randomly sampled
from the PanAfrica dataset ¹. The details of the split are shown in Table 3.1.

Splits Ratio Videos Frames

Train 80% 400 143,958
Validation 5% 25 9,000
Test 15% 75 26,998

�5�P�U�B�M 100% 500 179,956

Table 3.1: �1�B�O�"�G�S�J�D�B �%�B�U�B �4�Q�M�J�U��The dataset is split into a training set, a validation set and a test set with the
ratio of 80%, 5% and 15% respectively.

�%�B�U�B �%�J�T�U�S�J�C�V�U�J�P�O��The distribution of the species and the behaviours is summarised in Figure
3.6. Our random split shows the train and validation split have a noticeably higher abundance
of chimpanzees compared to gorillas. However, this pattern is reversed in the test split, where
the number of chimpanzees is slightly smaller than that of gorillas. Regarding the distribution
of animal behaviours, the dataset consists of three dominant categories: sitting, walking, and
standing, which account for approximately 90% of all behaviours. Conversely, the remaining
six rare behaviours make up only 10% of the dataset. This long-tailed distribution property
in PanAfrica makes the behaviour understanding task more challenging. Furthermore, due to
the validation and test splits comprising only 5% and 15%, respectively, the evaluation set ex-
hibits a biased distribution towards these rare behaviours. The discrepancies observed in both

¹See �?�i�i�T�b�,�f�f�/���i���X�#�`�B�b�X���+�X�m�F�f�/���i���f�/���i���b�2�i�f�y�y�7�8�8�8�e�9�8�#�����R�R�e�8�8�#�e�3�#�9�e�j�3�#�2�d�e�+�N�/for our splits.
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Figure 3.6: �4�Q�F�D�J�F�T �B�O�E �#�F�I�B�W�J�P�V�S �%�J�T�U�S�J�C�V�U�J�P�O �J�O �U�I�F �1�B�O�"�G�S�J�D�B �%�B�U�B�T�F�UThis Figure presents the distribution
of species types and behaviours across the train, test, and validation splits. The bar graph utilizes a log scale (with
4 as base). The green bar represents the Chimpanzee and the blue bar represents the Gorilla in Figure (a). The
darker color at the bottom represents the Chimpanzee, while the lighter color at the top represents the Gorilla in
Figure (b). The y-axis frequency is displayed on a log scale for both species.

species type and animal behavior distributions highlight the need for careful consideration
when interpreting and generalizing the performance of models trained on such splits.

Interestingly, we find that the gorillas are shown to be less likely to have some behaviours
like hanging, climbing up, and climbing down than the chimpanzees, but demonstrate more
frequent behaviours such as interacting with the camera.

Each great ape instance is annotated with the body location by a bounding box. We sum-
marised the location distribution in Figure 3.7. We can see that most of the great apes are
located in the centre, and a few of them are located in the bottom right and top left of the
frame.

������ �.�P�U�J�P�O���H�V�J�E�F�E �'�F�B�U�V�S�F �"�H�H�S�F�H�B�U�J�P�O �G�P�S �"�O�J�N�B�M �%�F�U�F�D�U�J�P�O

���������� �.�P�U�J�W�B�U�J�P�O

Much effort has been put into the study of the appearance and locomotion of wildlife from
videos [23, 157, 219]. Camera traps, as powerful tools for non-invasive wildlife research and
conservation, attract lots of research interests [157, 169, 208]. The recent advance in computer
vision opens up a door for zoologists to have a thorough understanding of wildlife ecology
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Figure 3.7: �%�J�T�U�S�J�C�V�U�J�P�O �P�G �U�I�F �#�P�V�O�E�J�O�H �#�P�Y �J�O �1�B�O�"�G�S�J�D�B �%�B�U�B�T�F�U��The bounding box location distribution of
great apes is illustrated separately for the train, val, and test splits. The relative position with respect to the image
resolution is represented on the X and Y axes. Notably, the center point of each bounding box is utilized to depict
the location. No significant bias is observed in the distribution across the different splits of the data.

bymonitoringwildlife through camera trap footage leveraging data-drivenAI-based technolo-
gies. However, the problemof visually identifying the presence and locations of animal species
filmed in natural habitats is of central importance for automating the interpretation of large-
scale camera trap imagery.

Due to the fact that camera traps are deployed in varieties of the natural habitats, the
video footage captured is particularly challenging in scenarios where lighting is difficult, back-
grounds are non-static, and major occlusion, image noise as well as animal camouflage effects
occur (filming great apes via camera traps in jungle environments constitutes one such set-
ting). There, animals appear uniformly dark and blend into the forest during eating, playing
or moving in groups, sometimes behind trees or thickets. Figure 3.8 illustrates such settings.

Figure 3.8: �$�I�B�M�M�F�O�H�F�T �P�G �7�J�T�V�B�M�M�Z �3�F�D�P�H�O�J�T�J�O�H �"�O�J�N�B�M�T �J�O �1�B�O�"�G��The first column shows the difficulty of
visually locating animals because of the occlusion and the camouflage effects; the second column demonstrates
the blurred frames due to video noises and motion; the third column suggests that the difficult lighting condition
exacerbates the problem.

To the best of our knowledge, the currentmethods for analysing camera trap data are either
manual or automated observation. Monitoring by humans is becoming impractical with the
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exponential growing of data; thus, the AI-assisted automation for wildlife monitoring shows
the promise in the era of big data. However, the recent works for AI-based wildlife monitor-
ing mostly build on the state-of-the-art detection or tracking method [137, 157]. They work
well in standard environment settings, but show high false positives and false negatives when
applied to camera trap footage, mostly due to the aforementioned challenges exhibited in the
video footage captured in the natural habitats of wildlife. They rely on the visual of a single
frame for detecting wildlife, ignoring the natural temporal cue provided freely from the video
footage, thus leading to poor performance, especially in scenarios where a single frame fails,
�F���H��animals are occluded or merge with background due to camouflage effects �F�U�D��. Given that,
we believe that the animal visual presence and location from camera trap video footage can
often be determinable by linking selective spatial and temporal contextual information about
species typical appearance and locomotion across video snippets.

We address the challenges exhibited in the camera trap footage videos forwildlife detection
by incorporating the temporal context that is naturally inherited from video. Figure 3.9 illus-
trates the importance of temporal context in detecting animals. The first three rows show that
the animals are heavily occluded by the bushes or thickets in the jungle or blended with the
environment due to the camouflage effects. However, the location of the animal is ‘betrayed’
by the motion (optical flow or MHI). The last three rows demonstrate that if the animal is
visually occluded, we can still infer its location by referring to the neighbouring/supporting
frames.

Motivated by these observations, we believe that the surrounding temporal context of the
target frame can be exploited to facilitate the feature representation learning of the target frame.
Supporting frames that contain more salient motion should contribute more to the target fea-
ture representation. Thereby, we propose a motion-guided feature blending framework, illus-
trated in Figure 3.10, for accurate animal detection from camera trap video footage.

���������� �.�P�U�J�P�O���(�V�J�E�F�E �'�F�B�U�V�S�F �#�M�F�O�E�J�O�H

�1�S�P�C�M�F�N �%�F���O�J�U�J�P�O��We aim to locate and recognise the animal from the video footage of
the camera trap. This task can be deemed as the object detection task from the video. Let us
consider a camera trap video dataset V that contains = videos, each of which is annotated
with the per-frame label of bounding boxes and species class. Our goal is to train the detection
model D on this dataset V supervised by the annotated ground truth. Given the input video
frames »� 0–� � � – �< ¼sampled from video +8, the model needs to output the corresponding
detection results for each frame ». 0–� � � – .< ¼.
�.�F�U�I�P�E �0�W�F�S�W�J�F�X��As illustrated in Figure 3.10, we incorporate the short-term temporal con-
text in our design via a novel architecture that aggregates the features from neighbouring
frames to enhance the target feature representation. Let us suppose a snippet ( � is randomly
sampled from video +8and then sub-sampled to frames »� � � C–� � � – �� –� � � – �� ¸ C¼at a frequency
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Figure 3.9: �&�Y�B�N�Q�M�F�T �P�G �$�I�B�M�M�F�O�H�J�O�H �$�B�T�F�T��The targets (in green bounding boxes) are hard to be visually iden-
tified. The first three rows show that animals are blended with the environment, but with the assistance of the
motion (depicted in Motion History Image (MHI) and optical flow), one can localise the animal. The last three
rows show that the temporal cue assists the detection: the neighbouring frames (in yellow bounding boxes) can
help to localise the occluded animal (in green bounding box).

of F . The model D takes the target frame as well as the nearby frames, aggregating their fea-
ture representations by the motion adaptive weights », � � C–� � � – , � –� � � – , � ¸ C¼which are pre-
computed by the motion of the input snippet. Then the aggregated feature 6�

� is responsible
for detecting the animals in the target frame � � . Here, we only consider a small size of nearby
frames, because the frames that are located far from � � temporally are less semantically corre-
latedwith the target frame than the nearby frames. Thus,we apply a slidingwindowapproach,
with the consideration of the neighbouring frames whose temporal length is within Cframes
from the target frame, arriving at the total window size of 2C¸ 1, consisting of 2Csupport
frames and 1 target frame.
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Figure 3.10: �.�P�U�J�P�O���(�V�J�E�F�E �'�F�B�U�V�S�F �#�M�F�O�E�J�O�H �/�F�U�X�P�S�L��The model takes a target frame � � and a couple of
support frames »� � � 1–� � � – �� � C– �� ¸ 1–� � � – �� ¸ C¼sampled from the temporal context of the target frame. First, we
extract the motion information for all input frames and derive the motion adaptive weights based on the motion
significance for each frame. Then, we merge the feature representation of these frames by the motion adaptive
voting scheme using the motion adaptive weights. Lastly, the aggregated feature represents the target frame used
for the detection task.

�.�)�*���C�B�T�F�E �'�F�B�U�V�S�F �"�H�H�S�F�H�B�U�J�P�O��Related works on video object detection achieve the tem-
poral coherence of the frame-level detections to enhance performance [91, 93, 232]. The most
representative work is FGFA [232], which incorporates off-the-shelf optical flow, wrapping
the features from the nearby frames to the centre frame for detection from the sequential in-
puts. Inspired by the FGFA, we propose a neighbouring feature adaptive voting strategy for
aggregating the nearby frames to enhance the feature representation of the target frame in
the detection task (see Figure 3.10). Considering the extensive computation loads for obtain-
ing the optical flow, we propose to use motion history image (MHI) to calculate the per-pixel
adaptive voting weights for each frame-level feature. The per-pixel adaptive voting weights
are formulated by

W 8–9
: =

4
cM 8–9

:

Í � ¸ C
< =� � C4cM 8–9

<

– (3.1)

where : represents the relative time stamp in the sliding window »� � C–� � � –� –� � � –� ¸ C¼and
cM 8–9

: denotes the motion history intensity for each pixel ¹8– 9º. It can be derived from two re-
cursive functions that calculate the MHI intensity backward and forward, respectively,

M �
: = 5mhi¹� : –M �

: � 1º–where : 2 »� � C–� � � –� –� � � –� ¸ C¼and M � � C� 1 = 0 (3.2)

M ¸
: = 5mhi¹� : –M ¸

: ¸ 1º–where : 2 »� � C–� � � –� –� � � –� ¸ C¼and M � ¸ Ç 1 = 0 (3.3)

M : =
1
2

¹M �
: ¸ M ¸

: º (3.4)

cM : = Downsample¹M : º – (3.5)

where 5mhi denotes the module for calculating MHI intensity which is implemented using
OpenCV toolbox and � : represents the frame at time step : . Themotion adaptive votingweight
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Figure 3.11: �&�Y�B�N�Q�M�F�T �P�G �.�J�T�H�V�J�E�B�O�D�F �C�Z �.�)�*��Although themajority of themovement in the PanAfrica dataset
is from the animals, there are some cases where the background motion is more significant than the foreground
motion, causing misguidance of motion for model learning. The first row demonstrates the scenes where the back-
ground moves; the second row shows the motion history image (MHI).

W : is used for guiding the feature blending in the window,

6�
� =

� ¸ CÕ

: =� � C

W : ¹6: ¸ %¹: ºº – (3.6)

where 6: denotes the original input feature for frame : , 6�
� represents the aggregated feature

representation for target frame � � , % represents the positional encoding. For positional en-
coding, we follow the implementation from [179], using cosand sin functions to encode each
channel:

%¹: º = kC
2=1

8>><

>>
:

sin
�

:
100002•C

�
– if 2 � 0 mod 2

cos
�

:
100002•C

�
– if 2 � 1 mod 2

9>>=

>>
;

– (3.7)

where k represents the concatenation operation that concatenates the encoding for each chan-
nel. C is the total number of channels.

���������� �-�J�N�J�U�B�U�J�P�O�T

Although themotion adaptive voting scheme can guide themodel to seek the temporal context
where the motion is significant, it is under the assumption that the motion is only triggered by
the animals. However, the video footage filmed in the field can be noisy and any movements
can be sensed by the motion extractor �F���H��the movement of vegetation as shown in Figure 3.11.
In this case, themodel can bemisguided by themotion from the non-static background, result-
ing in the undesirable aggregated feature representation, and harming the detection results.

Another assumption is that themovement of the animalswithin the slidingwindowshould
not be too fast. As this framework considers the fusion of the nearby frame features within the
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sliding window, fast movement of the objects may cause the inconsistency of the features,
while aggregating these features may lead to the imprecise estimation of the bounding boxes.
More discussion of the limitations and proof of concept is given in Section 3.6.

������ �4�Q�B�U�J�P�U�F�N�Q�P�S�B�M �$�P�O�U�F�Y�U �(�V�J�E�F�E �'�F�B�U�V�S�F �"�H�H�S�F�H�B�U�J�P�O �G�P�S

�"�O�J�N�B�M �%�F�U�F�D�U�J�P�O

���������� �.�P�U�J�W�B�U�J�P�O

�$�I�B�M�M�F�O�H�F�T��Animal detection in the wild is challenging, mainly due to the fact that

• �"�O�J�N�B�M�T �Q�B�S�U�J�B�M�M�Z �P�D�D�M�V�E�F�E��Animals can be partially occluded by the edges of the frame
or partially hidden in the environment due to camouflage or far from the camera or
behind trees or thickets.

• �1�P�P�S �W�J�E�F�P �R�V�B�M�J�U�Z��The camera traps placed in natural habitats could have poor video
quality due to illumination conditions, motion blur, obscured byweather conditions, �F�U�D��.

The PanAfrica dataset, filming great apes via camera traps in jungle environments, constitutes
such a setting.
�*�N�Q�S�P�W�F�N�F�O�U �P�O �.�P�U�J�P�O���H�V�J�E�F�E �.�P�E�F�M��Themotion-guidedmodel, introduced in Sec. 3.2 ex-
plores the hand-craftedmotion as temporal context to guide the blending of temporally nearby
frames. It follows the concept of linking the selective temporal information about species-
typical appearance and locomotion across video snippets to improve detection. However, as
illustrated in the previous Sec. 3.2.3, this method suffers from the distraction from the back-
ground motion and demonstrates unstable performance in fast-moving scenes.

To improve the motion-guidedmodel, we propose spatiotemporal self-attention to replace
the off-the-shelf motion estimation method, based on i) self-attention mechanism is less likely
to be distracted by the non-static background than the motion weights, and ii) spatiotemporal
self-attention can build a long-term spatiotemporal correspondence which can contribute the
effective blending of contextual information. In practice, the weights for each frame are adap-
tive, where it depends on the input video rather than the pre-computed offlinemotionweights.
This adaptive weighting scheme can alleviate the issues in motion-guided model, where the
large variations of input frames or the fast-moving scenes can result in the inaccurate estima-
tion of motion weights.

We build our improvedmodel by following the sameprinciple of themotion-guidedmodel
that links the selective spatial and temporal information across video snippets, but the offline
motion estimationmodule is replacedwith two online contextual weights estimationmodules.
Both contextual weights estimation modules use self-attention mechanism. In particular, we
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decouple the contextual weights estimation module as the spatial attention and temporal at-
tention modules. These attention components are effective in learning how to ‘blend’ spatially
and temporally distributed visual cues in order to reconstruct object locations under dispersed
partial information; be that due to occlusion or lighting.

The proposed attention components can be integrated into the current state-of-the-art de-
tection systems, that learns to cooperate the spatial/temporal surrounding of the target to en-
hance the detection. This system is especially suitable for animal detection from fixed camera-
trap viewpoint, where it can selectively utilise the nearby spatial and/or temporal contextual
information to locate and recognise animals.

Whilst the self-attention concept has been used recently in various application contexts
[25, 187], we tailor it here to the object detection from the sequential data from a fixed camera
viewpoint using spatiotemporal context by proposing a flexible component set-up that can be
utilised as an add-on to different backbone networks. Experiments show that the approach is
beneficial in scenarios where distinctive species appearance and motion signatures are only
partly accessible and intermittently dispersed across the spatial and temporal domains.

���������� �4�Q�B�U�J�P�U�F�N�Q�P�S�B�M �$�P�O�U�F�Y�U �(�V�J�E�F�E �'�F�B�U�V�S�F �#�M�F�O�E�J�O�H

�0�W�F�S�B�M�M �$�P�O�D�F�Q�U��As shown in Figure 3.12, our integrated backbone extends a standard feature
pyramid network (FPN) by two extra components: SCM and TCM. Each of these modules is
driven by a self-attentionmechanism that learns how to emphasise themost relevant elements
of a feature given its context. Both components follow a principledworkflow similar to the one
described by Cao et al [25] and visualised in Figure 3.13.

Essentially, after grouping inputs along the dimensions of attentional interest (spatial or
temporal), features are embedded into a lower-dimensional space and a self-attention map of
the feature is created. This map is then applied back onto the features in order to ‘blend’ it
and emphasise elements important to the detection process whilst suppressing other content.
Critically, these components are trainable as part of the network and can be rolled out across
space and time so that dispersed species-distinctive information can be selected from within
the spatiotemporal volume.

For a given spatial or temporal module and position 8in the input feature G8, the context-
enhanced and ‘blended’ output feature I 8can in its simplest form be expressed as:

I 8 = G8 ¸ 5

�
1
#

#Õ

9=1

B
�
48¹G8º– 49¹G9º

�
48¹G8º

�
– (3.8)

where G8is the 8th descriptor of the residual featuremap, 4¹�º is the embedding function, 5¹�º is
the transform function, B¹�º is the correlation function, # is the number of the descriptors that
are encoded the overall context information, �F���H��# = �,) for a video sequence (� denotes
height, , denotes width, ) denotes snippet length), and 9enumerates all the positions across
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Figure 3.12: �0�W�F�S�W�J�F�X �P�G �4�Q�B�U�J�P�U�F�N�Q�P�S�B�M �$�P�O�U�F�Y�U �(�V�J�E�F�E �%�F�U�F�D�U�J�P�O �1�J�Q�F�M�J�O�F��Our framework processes video
snippets (top left) and robustly detects per-frame great ape locations (bottom right). The architecture extends a
traditional detection backbone (blue) by two self-attention components, which select and ‘blend’ most relevant
temporal (TCM, red) and spatial (SCM, green) information via SoftMax folding. Blended feature maps are fed
back into the feature pyramid network (yellow) before fuelling the detection head, which contains bounding box
regression (black) and classification streams (grey).

the context. The embedding function 4¹�º and transfer function 5¹�º can be implemented via
linear transformation function �F���H��1 � 1 �*�Q�M�poperation.
�4�Q�B�U�J�B�M �.�P�E�V�M�F��Figure 3.14 describes the SCM We use a simplified non-local attention com-
ponent applied across the spatial context of the feature map. The module can be defined as

G(� "
8 = G8 � F 3

#Õ

9=1

 
4F 1 G9

Í #
0=1 4F 1 G0


 ¹ F 2G9º

!

– (3.9)

where 9enumerates all the pixels in the spatial context, G8represents the 8th pixel in the feature
map, F 1– F2– F3 are the learnable linear transformation matrices in function 4¹�º, 4¹�º, 5¹�º

of Equation 3.8, with dimensions of R1� � – R� � � – R� � � respectively, � denotes element-wise
broadcast addition, 
 denotes the matrix product of tensor elements.
�5�F�N�Q�P�S�B�M �$�P�O�U�F�Y�U �.�P�E�V�M�F��Figure 3.15 visualises the temporal contextmodule in detail,which
follows the general principle of attention-based blending in Equation 3.8. In particular, the
TCM module is constructed to apply self-attention across a short-term temporal context R) =
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Figure 3.13: �1�S�J�O�D�J�Q�M�F�E �8�P�S�L���P�X �P�G �U�I�F �#�M�F�O�E�J�O�H �'�S�B�N�F�X�P�S�L��i) Input features are grouped by the target
dimension; ii) Each location of the feature map is embedded by its position; iii) A correlation map is computed
and reduced. This map is then applied back to the embedded feature via matrix multiplication (marked as

Ë
º

implementing the self-attention principle. iv) The resulting feature is finally transformed, before iv) being fused
with the residual to form the blended output. Key functions are shown at the point of application as annotations.

Figure 3.14: �4�Q�B�U�J�B�M �$�P�O�U�F�Y�U �.�P�E�V�M�F��First, the input feature G 2 R� � , � � is projected to R� � , � 1 with �*�Q�M�p
parameterised F 1; then the spatial attentionweights � Bat each pixel in the featuremap is calculated by the �b�Q�7�i�K���t
operation; Lastly, the spatial attention weights � B are applied to the transformed feature with matrix product
(denoted as 
 ) to generate per-channel attention map R1� 1� � .

»� � � C–� � � – �� –� � � – �� ¸ C¼. For each input frame � C, a feature GC is embedded by a linear func-
tion 4¹�º with weights F 4 2 R1� � . Subsequently, its temporal correlation functions B¹�º is mod-
elled by a global SoftMax C¹�º across a temporal context window of ) = 2Ç 1 selected nearby
frames. For each position on the feature map 82 R�, at time step C2 R) , the global attention
weights A C–8are defined as:

A C–8=
exp¹F 4GC–8ºÍ

< 2R) exp¹F 4G<–8º
– (3.10)

where frame < enumerates all ) frame positions, and F 4 is the linear embedding parameter.
Then we normalise the attention weights for each time step individually, yielding a tem-

poral attention map for time step Cas:

 A C–8= F 8
A C–8� E92R�, »AC–9¼
q

V92R�, »AC–9¼ ¸&
¸ F 1 – (3.11)
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Figure 3.15: �5�F�N�Q�P�S�B�M �$�P�O�U�F�Y�U �.�P�E�V�M�F��The embedded features with the dimensions of R� � , � 1 are merged
by Softmax operation that applied on the descriptors whose spatial positions are same. Temporal-attention based
feature for each frame is generated from normalising these temporal-attention weights (�*�O�T�U�B�O�D�F �/�P�S�N) then apply-
ing to the original features (matrix multiplication and residual addition). Finally, the centre frame is enhanced by
the aggregation of temporal-attention based feature with adaptive weights.

where E»�¼and V»�¼represent the mean and variance operation respectively, &is a small value
added to the denominator for numerical stability, F 8 and F 1 are learnable scalar and bias
for normalisation layer. In order to visually illustrate this concept, two examples of temporal
attention maps projected back into the image domain are depicted in Figure 3.22. Temporal
attention maps highlight distinctive, dispersed features for context-aware inference, revealing
target object locations despite heavy partial occlusion.

These maps are subsequently applied back onto the original feature by matrix multipli-
cation 
 , element-wise broadcast addition � , and two linear transformations. One transform
learns adaptiveweights (�J���F��F 5) to ‘blend’ between original and attention-adapted features, the
other linear transformation encodes the relative position with 2C¸ 1 weights (�J���F��F ?

< – < 2 ) )
for each time step. Finally, an additive connection to the target input G� –8is made to ensure
learning stability yielding:

G)� "
� –8 = G� –8̧

Õ

< 2R)

F ?
< ¹G<–8� F 5

Õ

92R�,

 A <–9
 G<–9º • (3.12)
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������ �%�F�U�F�D�U�J�P�O �1�J�Q�F�M�J�O�F

Section 3.2 and 3.3 give details on how to generate the enhanced feature representations for
the detection task. In this section, we will describe how to generate the detection results from
the feature representations.

Let us suppose that the final representation 6�
� is used for the classification and localisation

task. We explore the state-of-the-art RetinaNet [113] as the great ape detection pipeline. It is
a prevalent single-stage object detector that can achieve a good trade-off between running
speed and detection performance. We follow the original design of RetinaNet that consists of
a ResNet backbone [81], a Feature Pyramid Network (FPN) [112] and an anchor-based single-
stage detection head [113].
�#�B�D�L�C�P�O�F��Residual Network, or ResNet, learns residual functions with reference to the layer
inputs. It stacks residual blocks on top of each other to form a deep neural network[81]. It
down-samples the input half with respect to the spatial resolution five times so that the output
feature for the last layer is 1/32 of the original resolution.
�'�1�/�� The outputs from the last three layers of the ResNet backbone are used as the input
for FPN. FPN outputs five feature maps, each with a different resolution ranging from %3 to
%7 (where %8 represents the spatial down-sampled 1•28 from the input size). %3, %4 and %5

features are up-sampled from the high-level features and the lateral connected from the last
three layers of the ResNet backbone respectively. %6 is produced from %5 with a stride 3 � 3

�*�Q�M�poperation. %7 is generated with the same operation but on top of %6. For feature pyramid
from %3 to %7, the motion adaptive voting weights W : are re-scaled with the corresponding
resolution by Equation 3.5.
�"�O�D�I�P�S�T �B�O�E �(�S�P�V�O�E �5�S�V�U�I �"�T�T�J�H�O�N�F�O�U��The anchor boxes are densely pre-defined with dif-
ferent sizes, aspect ratios on different resolutions of the feature pyramid. After applying sev-
eral linear transformations on the feature pyramid, each feature from %3 to %7 is pre-defined
with anchor boxes that cover the spatial receptive field from 322 to 5122, respectively. More
specifically, each pixel in the feature map is pre-defined with nine different anchor boxes that
cover three aspect ratios (1

2 –1–2
1) and three scales (20–21•3–22•3) separately. Thus, given an in-

put image with a spatial resolution of R�, , the total number of pre-defined anchors in the
feature maps is Nanchor = 9�,

Í 7
?=3

1
2? . Each anchor is assigned a one-hot encoded classifica-

tion target and an encoded localisation target in training. We assign anchor � 9to a foreground
class only if its IOUs with the closest ground truth are

=
max
8=1

�$* ¹� 9– �) 8º � 0•5• (3.13)

For those anchors whose IOUs are

0•5 �
=

max
8=1

�$* ¹� 9– �) 8º � 0•4• (3.14)

66



3.4. DETECTION PIPELINE

are ignored during training. The rest of the anchors are assigned as the background class. The
anchors that are pre-defined as the foreground in Equation 3.13 are also assigned with the
normalised offset representing the ground truth bounding box location coordinates, denoted
as (� G–� H–� F–� � ), where

� G=
G6

<8= � G0
<8=

G0
<8=

� F = ;>6
¹G6

<0G � G6
<8=º � ¹ G0

<0G � G0
<8=º

G0
<0G � G0

<8=

(3.15)

� H=
H6

<8= � H0
<8=

H0
<8=

� � = ;>6
¹H6

<0G � H6
<8=º � ¹ H0

<0G � H0
<8=º

H0
<0G � H0

<8=

– (3.16)

where (G6
<8=, H6

<8=, G6
<0G, H6

<0G) are the ground truth bounding box coordinate, (G0
<8=, H0

<8=, G0
<0G,

H0
<0G) are the coordinate for the anchor box.

�%�F�U�F�D�U�J�P�O �)�F�B�E��The object detection task requires inferring the ‘where’ and the ‘what’ for
each object that appeared. The ‘where’ can be treated as a regression problem that estimates
the coordinates of the bounding box. The ’what’ is a classification problem that predicts the
category of the object. Two sub-modules are designed for classification and regression in the
detection pipeline. The classification sub-module predicts the probability for each class for
each per-defined anchor. It is operated on top of the FPN features (%3 to %7), consisting of 4
cascaded 3 � 3 �*�Q�M�players followed by �_�2�G�lactivation. The last �*�Q�M�poutputs a feature map
with a dimension of R9¹� ¸ 1º� � � F , where 9¹� ¸ 1º represents the 9 pre-defined anchors for the
� ¸ 1 classes (� classes plus one background class), �F denotes the resolution of the feature
map that is determined by the level of the feature pyramid %8. The bounding box regression
sub-module predicts the coordinate offsets with respect to the anchor boxes. It has a similar
architecture with classification sub-net except for the last �*�Q�M�poutputs a feature map with a
dimension R36� � � F , where each spatial location in the feature map is responsible to predict
the four coordinate offset for nine pre-defined anchors.
�-�P�T�T �'�V�O�D�U�J�P�O�T��The detection pipeline is supervised with amix of two learning signals imple-
mented with classification and regression losses. We use the focal loss [113] which is the ex-
tended loss from cross entropy loss as the classification loss and the soft L1 loss for the bound-
ing box regression loss. Focal loss is first adopted to tackle the foreground and background
imbalance problem. This problem is common in anchor-based object detection pipelineswhere
most of the anchors are pre-defined with background class by equation 3.14. It adaptively as-
signs weights for the easy samples (background most) and the hard samples (foreground):

L 2;B= � 
 C¹1 � ?Cº� log¹?Cº – (3.17)

where

?C=

(
?– if assigned to the foreground
1 � ?– otherwise

and ? refers to the predicted foreground probability, � and 
 Care the focal intensity factor that
controls the weights for the hard and easy samples.
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The soft L1 loss for bounding box regression is defined as

� ;1¹G– Hº =

(
0•5¹G� Hº2 • � – if jG� Hj 5 �

jG� Hj � 0•5 � � – otherwise
– (3.18)

where � is the threshold for smooth L1 Distance. It is applied on the pre-assigned ground
truth bounding box coordinates in Equation 3.15 and Equation 3.16 to regularise the predicted
bounding boxes,

L ;1 =
1
4

�
� ;1¹�  G–� Gº ¸ � ;1¹�  H–� Hº ¸ � ;1¹�  F–� F º ¸ � ;1¹�  �– � � º

�
– (3.19)

(�  G–�  H–�  F–�  � ) represent the predicted x-y offsets and the width and height offsets.
Overall, the training loss is the combination of Equation 3.17 and Equation 3.19, balanced

by a hyperparameter � :
L 0;; = L 5 >20;̧ � L ;1 • (3.20)

�1�P�T�U���1�S�P�D�F�T�T�J�O�H��Although our detection pipeline utilises a sequence of frames for detection,
the detection results for each frame usually do not transit smoothly, as demonstrated in Figure
3.16.We hypothesise that this is because of the slidingwindowused in the feature aggregation
of each target frame. When the target/centre frame changes, the corresponding aggregation
features within the window change, causing a non-smooth transition of the feature represen-
tation. We believe that the detection result can further be refined by regularising the tempo-
ral coherence property naturally inherited in the video. We propose to incorporate the global
temporal coherence from the video in theNon-MaximumSuppression (NMS) post-processing
stage in the test time, to filter the jittering boxes for each frame, linking the frame-level predic-
tions to the smooth tracklets.

Figure 3.16: �%�F�U�F�D�U�J�P�O �3�F�T�V�M�U�T �X�J�U�I�P�V�U �1�P�T�U���Q�S�P�D�F�T�T�J�O�H��We show the non-smoothly transits of the predicted
bounding boxes for individual frames before the Non-Maximum Suppression (NMS) operation.

Following the Seq-NMS [73], we eliminate the traditional NMS post-processing process in
the object detection pipeline. Instead, the Viterbi Algorithm [181] is applied on the raw detec-
tion results (before the Non-Maximum Suppression) to suppress the non-smooth bounding
boxes in the nearby frames transition as well as the non-maximum bounding boxes. This algo-
rithm for suppression and smoothing post-processing in video detection can be summarised
in five steps:
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1. Find the most confident prediction Bbox � �
8 (suppose it is the 8th of all prediction %� in

frame � � ) in the video.

2. Propagate the prediction forward and backward according to the IOU and the confi-
dence score by Equation 3.21 using Viterbi Algorithm.

3. Link the propagated predictions to tracklets.

4. Repeat the process (1-3) for the rest of the predictions.

5. Suppress the Non-Maximum tracklets.

The key concept of forward and backward propagation of the candidate bounding boxes
can be explained with

) 8 = argmax
92%C� 1

1Õ

C=� 8

�$* ¹� C
8– �C� 1

9 º � ( ¹� C� 1
9 º

|                                {z                                }
Propagate Backwards

¸
TÕ

C=� 8

�$* ¹� C
8– � Ç 1

9 º � ( ¹� Ç 1
9 º

|                                {z                                }
Propagate Forwards

– (3.21)

where the tracklets ) 8 represents the refined tracklets, ( ¹� �
8ºdenotes the prediction confidence

score for Bbox � �
8.

������ �*�N�Q�M�F�N�F�O�U�B�U�J�P�O �%�F�U�B�J�M�T

�'�F�B�U�V�S�F �#�M�F�O�E�J�O�H �J�O �4�M�J�E�J�O�H �8�J�O�E�P�X��We sparsely sample the input frames with a frequency
of $ for each training video. Given a video with a frame per second (FPS) of 24 from the
PanAfrica dataset, with $ = 3, approximately 120 frames can be sampled for training. We
build the short-term aggregation windowwith the 2Ç 1 consecutive frames, representing the
target frame that is located in the centre of the aggregationwindow, sliding from the beginning
to the end. Note that we may use a larger sliding window size of ) test in testing time than ) train

in training time. In this case, the unshared weights F ?
< in Equation 3.12 for each time step are

repeated to the closest ones in the training time. During the training or inference, we slide
the window so that all the sampled frames can be in the centre of the window. For the frames
located at the head or tail of the sequences, we explore two methods to construct the sliding
window: i) repetitive padding; ii) mirrored padding, as demonstrated in Figure 3.17.

Figure 3.17: �1�B�E�E�J�O�H �J�O �4�M�J�E�J�O�H �8�J�O�E�P�X��Two padding methods are demonstrated with a window size of 7.
The target frame is �G�S�B�N�F��, we explored the repetitive padding and the mirrored padding methods.
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The ground truth of the target frame in the sliding window is used to supervise the learn-
ing. The pre-constructed sliding windows are shuffled during training. Each mini-batch con-
tains 8 sliding windows, that is, one per deployed on NVIDIA Tesla P100 GPU.
�.�P�E�F�M �*�O�J�U�J�B�M�J�T�B�U�J�P�O��Backbones are initialised with the weights of the models pre-trained
on ImageNet, removing the classification heads of the original pre-trained models. The other
learnable parameters �F���H��in the FPN or the detection heads are randomly initialised. We use
the distributed batch normalisation layers but freeze the learnable parameters during training,
as it can cause instability of flow gradient in the initial training process.
�0�Q�U�J�N�J�T�B�U�J�P�O��We train the network end-to-end in two separate stages (see Figure 3.18). First,
we pre-train our model on the ImageNet VID dataset for 14 epochs, and then the model is fine-
tuned on PanAfrica data with training data augmentation (sequence-based random colour
jittering, horizontal flip, Bbox-aware random crop) for another 14 epochs. The network uses
SGDwith amomentum of 0.9 as the optimiser. The learning rate is warmed up for the first 500
iterations of each training phase from 0.002 to 0.01 and remains the same in the pre-training
stage, but decreases 10 times at epoch 6 and 11 of the fine-tuning stage, respectively.

Figure 3.18: �&�Y�B�N�Q�M�F �5�S�B�J�O�J�O�H �B�O�E �7�B�M�J�E�B�U�J�P�O �1�F�S�G�P�S�N�B�O�D�F��mAP (with evaluation IOU of 50%) plots for both
training (blue) and validation (green) of the ResNet50 RetinaNet SCM+TCM setup along the 28 epochs of optimi-
sation split into two distinct phases, �J���F��pre-training on ImageNet VID, and fine-tuning on the Pan Africa dataset.
Note that this plot is generated using the original PanAfrica dataset.

������ �&�Y�Q�F�S�J�N�F�O�U�B�M �3�F�T�V�M�U�T

This section gives a proof of concept on the effectiveness of contextual information in guid-
ing the learning of animal detectors. First, the motion-guided model and the spatiotempo-
ral context-guided model are quantitatively evaluated. Then the qualitative results are visu-
alised; the visualisation of the failure cases for the motion-guided model is given along with a
detailed analysis of its limitations. After that, the improved method: spatiotemporal context-
guidedmodel is evaluated qualitatively; we also include the attention visualisation for TCM to
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demonstrate why it works well on challenging scenarios. Lastly, we perform detailed ablation
studies on both methods.

���������� �2�V�B�O�U�J�U�B�U�J�W�F �&�W�B�M�V�B�U�J�P�O

�&�W�B�M�V�B�U�J�P�O �.�F�U�S�J�D�T. The detection performance is evaluated on the �i�2�b�isplit of the PanAfrica
Dataset. We take the frame-by-frame object detection method, �J���F��single frame object detector
with the sequential post-processing method described in Sec. 3.4, as the baseline. For evalu-
ation metrics, we use the average precision (AP) as the area under the precision-recall curve
and then report the mean of AP for all classes in the dataset. Following the standard COCO
detection evaluation protocol [114], evenly divided IOU thresholds � , ranging from 50% to
95% with a step size of 5%, are used to calculate mAP,

mAP =
9Õ

8=0

mAP50¸ 58 • (3.22)

Considering the detection quality under different IOU standards, the mAP50 and mAP75 are
included in the evaluation metrics.
�2�V�B�O�U�J�U�B�U�J�W�F �$�P�N�Q�B�S�J�T�P�O��The single-stage RetinaNet detector [113] with ResNet backbones
is used as the baseline to verify the effectiveness of the proposed methods. As shown in Table
3.2, RetinaNet achieves 44.86% and 47.81% on mAP with ResNet50 backbone and ResNet101
backbone, respectively. A strong baseline for Cascade-RCNN with ResNext101 backbone is
also evaluated on the PanAfrica Dataset, achieving 63.72% mAP.

Whilst adding a SCM component to ResNet50 slightly improves performance to 86.08%
(1•67 " ), 52.30% (1•22 " ) and 45.69% (0•83 " ) for mAP50, mAP75 and mAP, respectively, adding
a TCM outperforms this setup, achieving 90.31% for mAP50, 52.93% for mAP75, 48.72% for
mAP, suggesting the importance of the temporal context for animal detection from camera
trap.

Furthermore, we found that the modelling of the spatial context is orthogonal to the mod-
elling of the temporal context for our proposed method. Significant performance improve-
ments can be observed when appending both SCM and TCM components, this setup yielding
the best results with 6•81% " , 3•02% " , 5•40% " for ResNet50 backbone, 3•84% " , 4•81% " ,
5•26% " for ResNet101 backbone, and still 1•50% " , 2•25% " and 2•92% " for Cascade-RCNN,
comparing with the baseline for mAP50, mAP75 and mAP, respectively.

For a fair comparison, we also evaluated the motion-guided feature blending networks
under the same setting. We find that the ResNet50 motion-guided model achieves 1•96% #,
1•21%# and 3•59%# comparing to its counterpart, TCM-based method, where both methods
incorporate the temporal context.We credit this performance gap to the limitation of the hand-
craftedmotion feature (illustrated in Sec. 3.2.3). Because the TCM leverages the learnt attention
to guide the blending of the important temporal information, but the motion-guided network
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�%�F�U�F�D�U�J�P�O �N�P�E�F�M�T�5train �N�"�150�	���
 �N�"�175�	���
 �N�"�1�	���


Res50
RetinaNet

baseline[113]
+Spatial Context (SCM)
+Temporal Context (TCM)
+SCM+TCM
+Motion Guiding

-
-
7
7
7

84.41
86.08
90.31
����������
88.35

51.08
52.30
52.93
����������
50.94

44.86
45.69
48.72
����������
45.13

Res101
RetinaNet

baseline[113]
+SCM+TCM
+Motion Guiding

-
5
5

87.23
����������
89.20

52.40
����������
52.67

47.81
����������
48.04

ResX101
Cascade

baseline[24]
+SCM+TCM

-
3

91.71
����������

74.81
����������

63.72
����������

Table 3.2: �&�W�B�M�V�B�U�J�P�O �3�F�T�V�M�U�T �P�O �1�B�O�"�G�S�J�D�B��Three state-of-the-art detection models are evaluated. Adding the
proposed principle components gradually sees an increase in performance. mAP50 represents the mean aver-
age precision under the IOU threshold of 0.5. mAP75 represents the 0.75 threshold. mAP are the average value
frommAP50 to mAP95 . Considering the memory footprint consumed for running the large models �J���F��ResNet101,
ResNext101, we use smaller sliding window size Ttrain in our experiment but the same test time sliding window
size Ttest = 21. A significant increase of inference time can be observed. Note that this result is based on rectified
(with some correction of labelling errors) PanAfrica Dataset, for results on original dataset please refer to the 2019
published paper [204].

relies on the off-the-shelf motion estimation algorithm to guide the model focusing on the mo-
tion salient areas. This handcrafted motion can be easily distracted by the motion noise in the
background �F���H��the movement of thickets, leading to undesirable contextual information.

Interestingly,wefind that theRetinaNet + SCMsetting performsworse (2•27 #) thanmotion-
guided RetinaNet with ResNet50 backbone on mAP50, even though they perform similarly
on mAP. For mAP75, we can see a drastically different performance, with the SCM setting
1.36%better than themotion guiding setting. This findingmay suggest that themotion-guided
method performs not well in a high-quality detection task. We hypothesise that using the
weighted mean feature within the aggregation window accounts for the expanded predicted
bounding boxes, �J���F��the imprecise of localisation, especially, for fast-moving animals.

���������� �2�V�B�M�J�U�B�U�J�W�F �&�W�B�M�V�B�U�J�P�O

The PanAfrica dataset contains many scenes where illumination, occlusions, noise, or animal
camouflage effects, making it challenging to recognise the animals (as seen before in Figure
3.8). To understand the contribution of the proposed methods against the baseline, we choose
challenging video footage and qualitatively compare the two proposedmethodswith the base-
line. We also include the failure case for our methods.
�7�J�T�V�B�M�J�T�B�U�J�P�O �P�O �.�P�U�J�P�O���H�V�J�E�F�E �.�P�E�F�M��Figure 3.19 visualises the contribution of the mo-
tion guidance in helping the animal detection on PanAfrica dataset. The examples of motion-
guided detection compared with the baseline model are given in the figure. Visual improve-

72



3.6. EXPERIMENTAL RESULTS

Figure 3.19: �2�V�B�M�J�U�B�U�J�W�F �$�P�N�Q�B�S�J�T�P�O �G�P�S �.�P�U�J�P�O �(�V�J�E�F�E �%�F�U�F�D�U�J�P�O��The ground truth labels are in red and the
detections are shown in green. ResNet50 + RetinaNet detection pipeline is used for this evaluation. The big orange
boxes (rows 1, 3, and 5) show the results for the baseline. The big green boxes (rows 2, 4, and 6) demonstrate the
detections with the help of motion guidance. Remarkable detection improvements for partially occluded great
apes (top two examples) can be observed. The first two images at the bottom demonstrate the proposed motion
guidance can also benefit the detection in crowded scenes. The last image shows its limitation on fast-moving
scenes.

ment of detection performance can be observed, especially in challenging scenes, �F���H��occlu-
sions, crowding. These improvements explain the contribution to the quantitative result (up
to 3•94 " for mAP50) reported before, the results stand as a proof of concept on the impor-
tance of temporal-contextual information in this task. However, as depicted in the last image
at the bottom of Figure 3.19, the motion guided learning can misguide the model sometimes
causing the imprecise localisation of the target. This suggests the limitation of the proposed
motion voting schemewhich aggregates the representationswithin the slidingwindow, it fails
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when the input frames within the sliding window vary a lot (too much motion). The example
demonstrates the imprecise localisation ability under this circumstance.
�-�J�N�J�U�B�U�J�P�O�T �P�G �.�P�U�J�P�O �(�V�J�E�B�O�D�F��In this study, we take a further evaluation ofmotion-guided
learning comparing with the TCM-based method that both use the temporal context, aiming
to understand their performance gap as reported in Table 3.2. First, we find the TCM is more
robust to the non-static background detection scene whereas the motion-guidedmodel can be
easily interfered by noisy background, owing to its off-the-shelf motion estimation algorithm.
Figure 3.11 shows the cases in which the handcraftedMHI feature interferes with background
noise. We hypothesise that this noise can misguide the model focusing on the background
rather than the foreground animals, therefore, sabotaging the detection performance.

However, videos that contain the non-static background scene are rare in the PanAfrica
dataset. Most of the motion from the dataset is caused by the animals because the data cap-
tured by the camera traps are triggered by animals’ movement via passive infrared motion
sensors. Later, we find the majority of the performance decrease can be attributed to the input
frames containing large movement. The motion-guided models are sensitive to the variations
of the input supporting frames. When significantly large motion occurs within the input slid-
ing window, the model could vote the location in favour of the supporting frames rather than
the target frame as the final localisation, or predict the aggregation of the location among the
input frames. This case can be neglected if the intra-window frame variation is small, how-
ever, resulting in inaccurate localisation in a fast-moving scene². Thus, we believe that the
large input variation (motion) accounts directly for the decrease in performance, especially
for high-quality detection tasks. Figure 3.20 illustrates two cases in which the fast-moving an-
imals fail to be located precisely. The two cases show low detection qualities when the input
frames vary greatly. The first case shows the animal climbing up the tree rapidly; the motion-
guided model aggregates the location of all supporting frames (summing up locations of the
animal temporally), resulting in the vague bounding box prediction (IOU of 0.474, treated as
false positive under mAP50 evaluation metrics). Instead, the TCM use the attentions from the
supporting frames rather than directly adding the features so that a more robust performance
can be observed, with predicted bounding box’s IOU of 0.852 treated as true positive for both
mAP50 and mAP75 metrics. The second case shows two fast-running animals. With motion
guidance, the predicted Bboxes in the target frame are expanded covering the residual loca-
tion of Bbox in the supporting frames, resulting in imprecise bounding box prediction (IOU
of 0.569 and 0.456 respectively, treated as false positive for mAP75 metrics). On the contrary,
the TCM-based model can adapt to the large variation of input frames, with both predictions
passing the mAP75 detection standard.
�4�Q�B�U�J�P�U�F�N�Q�P�S�B�M �$�P�O�U�F�Y�U �(�V�J�E�B�O�D�F��We found that the SCM+TCMsetup consistently improves
detection robustness compared to baselines in such cases. These improvements make a sig-

²The ablation study presented in Table 3.3 provides quantitative evidence that frame sampling frequencies
below 5 are indicative of fast-moving scenes.
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Figure 3.20: �-�J�N�J�U�B�U�J�P�O�T �P�G �.�P�U�J�P�O �(�V�J�E�B�O�D�F �J�O �%�F�U�F�D�U�J�O�H �'�B�T�U �.�P�W�J�O�H �0�C�K�F�D�U�T��Two cases, demonstrating
the fast-moving animals, are evaluated via RetinaNet + motion guiding and RetinaNet +TCM. The IOUs with the
ground truth are reported. Text in red indicates the IOU fails the mAP50 metrics; text in orange indicates the IOU
passes the mAP50 but fails the mAP75 metrics; text in green indicates the IOU passes all the metrics.

nificant contribution to the overall quantitative results reported before. Figure 3.21 provides
examples of successful cases where per-frame accurate animal detection is achieved by the
SCM+TCM components in the presence of partial occlusion or challenging lighting. However,
as depicted the examples in Figure 3.23, a number of particular animal appearances remain
challenging to detect despite the availability of spatial and temporal context information.

�"�U�U�F�O�U�J�P�O �7�J�T�V�B�M�J�T�B�U�J�P�O��Demonstrating the effectiveness of the proposed temporal context
module and visualising how the TCMworks,we draw the salient gradient by backpropagation
of RetainNet+TCMmodel. Figure 3.22 shows that themodel refers to the temporal context and
seeks the information with respect to the location of the animal to detect the occluded animals
in the target frame.
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Figure 3.21: �2�V�B�M�J�U�B�U�J�W�F �$�P�N�Q�B�S�J�T�P�O �G�P�S �4�Q�B�U�J�P�U�F�N�Q�P�S�B�M �$�P�O�U�F�Y�U���(�V�J�E�F�E �.�P�E�F�M��Depicted are ground truth
labels (red) and detections (green). ResNet50 + RetinaNet is used for this evaluation. The big orange boxes (rows
1, 3, and 5) show the results for the baseline. The big blue boxes (rows 2, 4, and 6) are the results for appending
the SCM+TCM components. Note the clear detection improvements for partially occluded great apes (top two
examples) and under challenging lighting (bottom example).

���������� �"�C�M�B�U�J�P�O �4�U�V�E�Z �P�O �.�P�U�J�P�O���H�V�J�E�F�E �.�P�E�F�M

We conduct ablation studies for the proposed methods on the PanAfrica dataset in order to
quantify in detail the impact of the key system parameters. All results are reported based on
the ResNet50 backbone with RetinaNet setup.
�"�H�H�S�F�H�B�U�J�P�O �8�J�O�E�P�X �4�J�[�F��Different choices of aggregation window size ) are ablated in
Table 3.3 (a). We find that setting the optimal aggregation window for training and testing is a
challenge, as large ) train can result in a decrease in mAP75 and small values can harm mAP50.
We evaluated a different window size in training and a larger window ) test at the test time.
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Figure 3.22: �7�J�T�V�B�M�J�T�B�U�J�P�O �P�G �5�F�N�Q�P�S�B�M �"�U�U�F�O�U�J�P�O��Two caseswhere the animals in the target frames are occluded
are demonstrated. We show how the TCM guides the model to learn from the nearby frames to assist the detection.
The first and third rows depict attention maps when projected back into the image domain. The second and fourth
rows show the associated frames with green bounding boxes showing predictions by the network with ) test = 3.
Green lines indicate that shown attention maps contribute to detections in the central frame.

We find the marginal increase of mAP50 when the ) increase from 5 to 9, but mAP75 peaked
when ) = 7. The best mAP is achieved when ) train = 7 and ) test = 7. We argue that a large
aggregation window would cause a large variation in the input frames.
�'�S�B�N�F �4�B�N�Q�M�J�O�H �'�S�F�R�V�F�O�D�Z��Given the fixed size of the aggregation window ) , the tempo-
ral coverage field for each input is determined by the sampling frequency. We find that the
sampling frequency $ is also an important factor in the motion-guided model. In this study,
we fix the window size ) = 7 and sample the frames with different frequencies $ , yielding
the input temporal length from 0.3 seconds to 5 seconds. Table 3.3 (b) shows the result, both
low and high temporal lengths cause significant performance degradation, at both low and
large frame sampling frequency, �F���H��$ = 1 and $ = 17, respectively, with higher sampling
frequency being worse. Large frame sampling frequency suggests the fast change of the frame
within the window, resulting in the unstable performance of the motion-guided models. The
best choice of temporal length with respect to the window size of ) = 7 is to constrain the
input frames to cover around one second, which achieves 46.06% mAP.
�1�F�S���G�S�B�N�F �P�S �1�F�S���Q�J�Y�F�M� We explore two types of motion adaptive weights. i) Keeping the spa-
tial dimension of the motion features after linear interpolation and applying the pixel-wise
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Figure 3.23: �4�V�D�D�F�T�T �B�O�E �'�B�J�M�V�S�F �$�B�T�F�T��Depicted are ground truth labels (red) and detections (green) in frames
of various example clips using the best performing model ResX101 Cascade with SCM+TCM components.

Softmax (�J���F��per-pixel). ii) Aggregating along the spatial dimension for each motion feature
and applying the normal Softmax (�J���F��per-frame). The results are displayed in Table 3.3 (c).
A significant performance gain (13•03%) can be observed when applying the motion adap-
tive voting with the per-pixel weights. We believe that the per-pixel motion weights contain
the location information of the motion. The pixel whose motion weight is significantly larger
in value can make more contribution to the voting scheme, thus guiding the model to focus
more on the corresponding pixel in the image. The majority of the high motion weights are
from themovement of the animals in the camera trap dataset, thus per-pixel weights can guide
themodel focusing on themoving animals. However, the per-framemotionweights can guide
the model on the motion salient frames but missing the motion spatial information, resulting
in the degradation of detection performance.
�1�P�T�J�U�J�P�O�B�M �&�O�D�P�E�J�O�H��We study the effectiveness of positional encoding in our model. As
shown in Table 3.3 (d), positional encoding can help the motion-guided model to gain about
2•66%mAP performance. We believe that positional encoding can help alleviate the problem
of the large variation in the input frames by encoding the relative position in the window, so
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3.6. EXPERIMENTAL RESULTS

that the model can differentiate the target frame and the supporting frames after aggregation.
�.�P�U�J�P�O �&�T�U�J�N�B�U�J�P�O �.�F�U�I�P�E��Two offline methods for estimating the motion from the input
frames, �J���F��optical flow and MHI, are explored. We find that both methods can capture the
motion clue effectively to guide model learning. They achieve similar performance with MHI
marginally better (0•33% " ) than optical flow. However, generating the MHI is far less com-
putationally expensive than optical flow. It is approx. � 1•5 faster than the calculation of the
optical flow, thereby, we choose MHI as our default motion estimation method.

(a) Aggregation Window Size
�5�U�S�B�J�O�5�U�F�T�U�N�"�150 �N�"�175 �N�"�1
5 5 86.16 51.26 45.00
7 7 87.74 ���������� ����������
9 9 88.10 50.13 44.21
7 21 ���������� 50.97 45.13

(b) Frame Sampling Frequency
$ �-�F�O�H�U�I�N�"�150 �N�"�175 �N�"�1
1 0.3s 85.68 51.40 44.61
3 0.9s 87.74 ���������� ����������
5 1.5s ���������� 50.10 43.79
17 5.0s 70.22 33.33 34.36

(c) Motion Adaptive Weights
�8�F�J�H�I�U�T �'�P�S�N�B�U�N�"�1

Per-pixel ����������
Per-frame 33.03

(d) Positional Encoding
�1�P�T�� �&�O�D�P�E�J�O�H�N�"�1

3 ����������
7 43.40

(e) Motion Estimation
�.�F�U�I�P�E �N�"�1

Optical Flow 45.73
MHI ����������

Table 3.3: �"�C�M�B�U�J�P�O �4�U�V�E�J�F�T �P�O �.�P�U�J�P�O���(�V�J�E�F�E �.�P�E�F�M��Five studies of various factors thatmay affect the result of
the motion-guided model are ablated. All studies are conducted with ResNet50 Backbone with the default setting
of Ttrain = 7, Ttest = 7, $ = 3, using per-pixel motion adaptive weights, using positional encoding and applying
MHImotion estimationmethod. Only one factor is changed for each study to isolate the effect. Note that this study
is done based on the original version of Panafrica dataset.

���������� �"�C�M�B�U�J�P�O �4�U�V�E�Z �P�O �4�Q�B�U�J�P�U�F�N�Q�P�S�B�M �$�P�O�U�F�Y�U �(�V�J�E�F�E �.�P�E�F�M

We inherited some optimal choices ablated in the motion-guided method, �J���F��frame sampling
frequency, positional encoding, in the designing of the improved spatiotemporal context-guided
model. We mainly study four key factors for SCM and TCM.
�4�$�.���5�$�. �1�M�B�D�F�N�F�O�U��Considering arguments in [25], we acknowledge that the placement of
our module along the original backbone network is important. To determine the best insertion
point, we test three possible positions for insertion into ResNet Backbone: i) after the 3� 3 �*�Q�M�p

operation of the last ResNet block; ii) after the last 1� 1 �*�Q�M�pbefore the residual addition; and
iii) after the residual addition. As shown in Table 3.4(a), we find that the last option is superior
and can gain 6•01%" mAPonPanAfrica improvementwhen comparedwith insertion after the
last 1 � 1 �*�Q�M�p. This indicates that the final residual addition in the base network �E�P�F�Tprovide
useful extra information.
�5�F�N�Q�P�S�B�M �$�P�O�U�F�Y�U �4�J�[�F��Different choices on temporal context size ) are ablated in Table 3.4(b).
The results confirm that wider windows for temporal integration do indeed benefit detection;
however, particularly during training, the memory footprint limits further exploration of ) .
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(a) Module Placement
�1�P�T�J�U�J�P�O �N�"�150

after 3 � 3 �*�Q�M�p 87.75
after 1 � 1 �*�Q�M�p 82.20

after res. addition ����������

(b) Temporal Context Size
�5�U�S�B�J�O�5�U�F�T�U�N�"�150

3 5 87.76
7 5 88.85
7 21 ����������

(c) Sliding Window Padding
�1�B�E�E�J�O�H �N�"�150

Repetitive Padding 90.77
Mirrored Padding ����������

(c) More or Less Supervision
�4�V�Q�F�S�W�J�T�J�P�O�N�"�150

all frames 88.61
only target ����������

Table 3.4: �"�C�M�B�U�J�P�O �4�U�V�E�Z �P�O �4�Q�B�U�J�P�U�F�N�Q�P�S�B�M �$�P�O�U�F�Y�U �.�P�E�F�M��The hyperparameters in designing the SCM and
TCM are ablated. All studies are conducted with ResNet50 Backbone. Only one hyperparameter is changed for
each study to isolate the effect. Note that this study is done based on the original version of Panafrica dataset.

During testing, longer exposures are possible. Quantifying the effect of varying test exposures,
we find that, for Ttest = 21 frames compared to Ttest = 5, there is a 1•96% " improvement for
fixed Ttrain = 7 on the PanAfrica. Larger training snippets can also marginally improve results.
�1�B�E�E�J�O�H �J�O �4�M�J�E�J�O�H �8�J�O�E�P�X��We utilise the sliding window in our approach so that all the
sampled frames in the video can be in the centre of the window. For the frames located at
the head or tail of the sequences, we explored two padding methods to complete the sliding
window: i) repetitive padding; ii) mirrored padding as illustrated in Figure 3.17. The results
for two different padding strategies are presented in Table 3.4(c). Mirrored padding slightly
outperforms repetitive padding with only 0.04% on mAP50. We believe that the padding ap-
proach has aminor effect on the system as only 5%of the slidingwindows require the padding;
further research could explore their effect on shorter videos.
�.�P�S�F �4�V�Q�F�S�W�J�T�J�P�O �J�T �#�F�U�U�F�S� In this study, we slightly modified the residual connection in the
last step of TCM shown in Figure 3.15 so that it can output the features of supporting frames as
well; then the features are backpropagated by including the labels for the supporting frames to
optimise the model. In this case, there is more supervision from the ground truth. Compared
with only the supervision from the target frame, a marginal decrease in overall performance
can be observed (marked �B�M�M �G�S�B�N�F�Tin contrast to �P�O�M�Z �U�B�S�H�F�U) in Tables 3.4(d). We assume that
learning from the multiple supervision at the same time may diverge the temporal attention
in TCM thus resulting in inferior performance.

������ �$�P�O�D�M�V�T�J�P�O

This chapter first introduced the PanAfrica Dataset, a large-scale camera trap video dataset
with fully annotated fine-gained labels. Then, context-guided learningmethods for addressing
the challenges in detecting animal on this dataset was proposed.
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To study the species-typical appearance and locomotion across the video, a small portion
of it was annotated with the accurate per-frame label for each animal, including full-body lo-
cation, species types, and behaviours, named PanAfrica dataset. The PanAfrica dataset which
contains videos captured in the natural habitats of animals introduces new challenges for ani-
mal detection from camera trap video in the wide. It contains scenarios where lighting is diffi-
cult, backgrounds are non-static, and major occlusion as well as camouflage effects hinder the
visual recognition of the animals.

To address the challenges and improve detection benchmark on camera trap videos, the
proposed approaches consider extracting information from multiple input frames, building
upon the basic concept of linking the selective spatial and temporal context to improve the de-
tection.More specifically, two approacheswere introduced to address the challenges that arise
in animal detection from the camera trap: i) motion-guided learning approach; ii) attention-
based spatiotemporal context-guided learning approach.

The initial approach exploredmotion featuremap, generated byMHI or optical flow, as the
guidance for blending contextual information in a video. This method has achieved remark-
able performance boost compared to the baseline method on PanAfrica dataset. However, the
motion-guided method utilises an off-the-shelf motion estimation algorithm which produces
unreliable motion weights when applied in videos with salient background motions. It also
displays unstable performance when the input frames vary a lot or under fast-moving scenes.

To improve the motion-guided model, the spatiotemporal attention-driven mechanism is
used to replace the offline motion estimation algorithm. The proposed two feature blending
components driven by self-attention leverage spatial-temporal correlation to facilitate detec-
tion under heavy partial occlusions and challenging lighting variations. They demonstrated
robustness in the non-static background and fast movement scenarios. The improved system
is applicable to challenging camera trap footage taken in complex jungle environments.

The two novel and flexible extension modules, �J���F��SCM and TCM, perform robustly at
93•21%mAP50 on a real-world PanAfrica camera trap video dataset. Experiments showed that
the SCM+TCM setup improves themotion-guidedmodels effectively; it inherited themerits of
linking selective spatial and temporal contextual information from the motion-guided model
but also well addressed the limitations of the handcrafted motion estimation algorithm. The
improved system significantly outperforms state-of-the-art frame-based detectors. Nonethe-
less, the evaluation of the detection system was limited to a single state-of-the-art algorithm,
ResX101-Cascade [24]. Despite this, as demonstrated in Table 3.2, the proposed system outper-
formed the benchmark algorithm. Future studies could compare the proposed system against
a broader range of algorithms to further validate its performance. Furthermore, it is worth
noting that the test and validation splits, which are employed for evaluation purposes, ex-
hibit a bias when compared to the training split, as illustrated in Figure 3.6 (a). To address
this potential bias, future research can consider conducting evaluation studies using serveral
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randomised splits or implementing K-fold cross-validation to provide a more comprehensive
assessment of the model’s performance on PanAfrica Dataset.

We note that ecological camera trap studies are currently widely conducted by manual
inspection, although frame-by-frame object detection algorithms [137, 157] have been used for
ecological surveys before the iwildcam 2018 [13] and DrivenData [48] hosted a challenge to
classify camera trap clips by the presence of the species, without explicitly detecting animals
and their location in frames.

The presented system, in contrast, provides explicit animal locations and is independent of
visibility constraints. It adds a new capability of detection and localisation of animals partly
occluded by vegetation or obscured by the capture environments at adequate performance
levels. Whilst tests against other animal detection frameworks from the camera trap are out-
standing andwill formpart of our futurework,we conclude that the presented system is ready
to assist human camera trap inspection efforts.
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Computer vision has significantly advanced by the success of deep neural networks.
However, an indispensable component behind this success is human annotations on
millions of images, offering a large amount of labels that can guide the learning of

computer vision models. Unfortunately, this key component also turns out to be the biggest
bottleneck for the further advancement of the field: i) the number of labels is limited by the
high cost of human labour; ii) the labels for some computer vision tasks are obscured and chal-
lenging for humans to provide, �F���H��image synthesis, action anticipation �F�U�D��. Considering these
obstacles in computer vision, we ask the question: is there any information existing within the
data itself that can be exploited to guide learning?

To solve this problem, this chapter goes beyond the labelled static images or a sequence
of images which was introduced in the previous chapter, exploiting the structure in videos
across the temporal domain without any labels based on the simple concept that our visual
world is continuous and smoothly-varying over time. Specifically, the temporal coherence and
visual temporal correspondence that are naturally inherited by the videos are exploited to
guide the learning of deepmodels. This kind of learning is referred to as self-guided temporal
learning as the learning only considers the information within the video data itself without
any additional human annotations.

How do we utilise this coherence and temporal correspondence in video to self-guide the
model in learning visual representation? In this chapter, we offer an insight of the model self-
guided by the video data itself via the coherence of visual scenes and the correspondence of the
temporal cycle (going back and forth in time). Figure 4.1 �	�M�F�G�U�
demonstrates the coherence of
visual scene in a video, and Figure 4.1 �	�S�J�H�I�U�
illustrates the correspondence after the forward
and backward in time within the temporal cycle. We find that leveraging the visual scene
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CHAPTER 4. SELF-GUIDED VIDEO REPRESENTATION LEARNING

coherence and correspondence of time cycle as the self-guided learning signals can lead the
learning towards meaningful video representation, which can be further utilised for video
downstream tasks.

Figure 4.1: �$�P�I�F�S�F�O�D�F �P�G �7�J�T�V�B�M �4�D�F�O�F �B�O�E �$�P�S�S�F�T�Q�P�O�E�F�O�D�F �P�G �5�F�N�Q�P�S�B�M �$�Z�D�M�F���M�F�G�Ufigure shows the coherence
of visual scene within a video; it also displays the incoherent case as the contrast. �S�J�H�I�Ufigure demonstrates that
if walking forward in time followed by an equal number of steps of walking backward in time should cancel out
and be correspondent. Images are sourced from UCF101 dataset [165].

������ �$�Z�D�M�F �&�O�D�P�E�J�O�H �1�S�F�E�J�D�U�J�P�O

Videos constitute highly structured objects that offer rich and intrinsically correlated informa-
tion that is often suitable as a learning signal for unsupervised representation learning. How-
ever, defining which exact aspects of the video should be exploited for effective learning of
semantically relevant embeddings and how the resulting latent spaces should be constructed,
structured, and restricted is a topic of active research �F���H��[16, 31, 45, 54, 55, 57, 187].

In this section, we take a closer look at the two key concepts: the coherence of visual scene
and the correspondence of temporal cycle by exploiting the bi-directional temporal structure
of video to facilitate the learning of semantically relevant high-level spatiotemporal feature
spaces. In particular, we incorporate contrastive learning to realise the coherence of visual
scenewithin the samevideo,where the incoherent visual scenes and the coherent visual scenes
are distinguished by their feature distance in the latent space. Moreover, to model temporally
correspondent cycles in a video, bidirectional feature predictions, �J���F��forward and backward
predictions in time, are applied where walking along a path of forward predictions followed
by an equal number of backward predictions (forming a bidirectional temporal cycle) should
be consistent in the latent space, providing an exploitable self-guided learning signal. When
these forward-backward temporal cycles are enforced to be coherent (smoothly-varying) and
correspondent (circularly consistent), we call this strategy �$ycle �&ncoding �1rediction (CEP).
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���������� �.�P�U�J�W�B�U�J�P�O

Our visual world is continuous and smoothly-varying over time. Human beings are born with
the ability to recognise the temporally smooth movement of objects. As illustrated in Figure
4.2, when observing a segment of video, we can easily pick up one of the coherent choices as
the possible prediction for what happens next, rather than ones from the incoherent choices.
Humans can easily perform this task intuitively; however, computer vision algorithms do not
inherit this ability to distinguish incoherent visual scenes. Motivated by this, we exploit this
characteristic within every video by enforcing the temporal prediction of the model making
coherent choices. However, directly enforcing themodel’s prediction is not feasible since video
prediction is non-deterministic. As demonstrated in Figure 4.2, various possible future predic-
tions are feasible, �F���H��choice (a), (b) and (c) could all be the next scene. Inspired by the success
of contrastive learning in self-supervised learning, we leverage the contrastive approach that
pulls together the coherent choices with the temporal context but pushes away the incoherent
choices, addressing the non-deterministic prediction problem implicitly. By encouraging the
model to distinguish what is coherent, we build a self-guidedmodel that can learn from video
data itself without additional labels.

Figure 4.2: �5�F�N�Q�P�S�B�M �$�P�I�F�S�F�O�D�F �B�O�E �"�N�C�J�H�V�J�U�Z �J�O �5�F�N�Q�P�S�B�M �1�S�F�E�J�D�U�J�P�O��The task is to predict the next scene
in (4), observing a video sequence of (1), (2) and (3). Humans can easily eliminate the incoherent choices (d), (e)
and (f). However, prediction along the temporal axis is clearly non-deterministic, �F���H��many possible positions of
the basketball are feasible given temporally consecutively video context: (a) score, (b) miss, (c) bounce back.

While conceptually simple, implementing the contrast of coherent and incoherent scenes
can be challenging.Without additional constraints, learning can take shortcuts,making stochas-
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Figure 4.3: �" �$�Z�D�M�F �J�O �5�J�N�F��Given a video, the visual semantic meaning should be consistent, if walking along a
path of forward predictions followed by an equal number of backward predictions. The bounding-box indicates the
semantic attention area or represents the feature. The feature representation traverses in time forward or backward
should be consistent in the end. (this figure shows traversing forwards in time, back to the future.) The red arrow
indicates the discrepancy after traversing in time, generating exploitable learning signals, and then the gradient
back-propagates through time, along the cycles.

tic predictions in latent space coherent in their temporal context but wrong ¹. Inspired by
TimeCycle [189], to facilitate the spatiotemporal stability of representation learning and avoid
trapping to trivial solutions, we explored the correspondence of the temporal cycle in video, as
shown in Figure 4.3. Specifically, the visual semantics that encapsulates the representation of a
video segment is encouraged to be cycle-consistent, aiming at constructing a latent embedding
wherein sequences of temporal forward-backward and backward-forward predictions form
approximately closed cycles. Enforcing cycle closure makes sure the stochastic predictions are
consistent in both directions in time. It also encourages the symmetry between forward and
backward temporal predictions.

���������� �.�F�U�I�P�E

�.�F�U�I�P�E �0�W�F�S�W�J�F�X��CEP inherits two basic features from video to guide learning: visual co-
herence and the correspondence of the temporal cycle. In practice, we leverage these features
as self-guided learning signals in latent space. As illustrated in Fig. 4.4, a video segment is
divided into three snippets, representing the past - ?, the present - C, and the future - 5, res-
pectively. Then all the snippets are encoded in a latent space by the encoder 4¹�º (�F���H��SlowFast
[55] shown in the figure). In the latent space, the embeddings can traverse forward or back-
ward in time via two predictive functions, forming a series of prediction chains. The encoder
4¹�º learns the correspondence of the temporal cycle by enforcing the closure of these chains
to be closed temporal cycles, and the visual coherence by separating the incoherent nodes on
the chains.

Meanwhile, similar video states are, as per contrastive learning, stillmapped to nearby loca-
tions. Thus, to generate this space, CEP enforces loss functions that deliver both bi-directional
temporal cycle closure and contrastive feature separation. To cope with GPU memory restric-
tions, we use a memory queue to generate negative features for our contrastive learning. Fur-

¹Experiments show that the learning may be guided by using the low-level information to ‘cheat’ in learning,
�F���H��optical flow, colour histogram �F�U�D��
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4.1. CYCLE ENCODING PREDICTION

Figure 4.4: �0�W�F�S�W�J�F�X �P�G �$�Z�D�M�F �&�O�D�P�E�J�O�H �1�S�F�E�J�D�U�J�P�O��We represent videos in a feature space wherein bi-
directional temporal cycles are maximally predictable. �	�B�
An input video is sampled into snippets where each
snippet - Chas a past - ? and future - 5 neighbour. �	�C�
In pretext learning, the snippets are projected to a latent
space Z via an encoder 4 (such as 3DResNet or SlowFast). �	�D�
In this space, we encourage that learnt temporal for-
ward � and backward  predictions form closed cycles (example cycle from past / ? to some future  / 5 and back to
some past  / ? shown). �	�E�
Embedding 4and predictors � and  are co-trained in self-supervisedmode, minimising
a loss L � that favours cycle closure. �	�F�
Further, we apply a contrastive loss L - in concert to encourage feature
separation.

ther, to avoid trivial solutions that are non-semantic bearing,we introduce synchronised temporal-
group normalisation as well as exploit clues from optical flow.
�%�J���F�S�F�O�D�F�T �X�J�U�I �$�P�O�D�V�S�S�F�O�U �8�P�S�L�T��The proposed CEP contributes a new feature learn-
ing strategy and its formulation is fundamentally different from the discriminative methods
[35, 56, 78, 144] and the predictive methods such as DPC [70], TCC [50], and TimeCycle [189].
It merges the merits of discriminative methods in the temporal domain that can learn to differ-
entiate incoherent views and the merits of predictive methods that form a correspondence of

Figure 4.5: �%�J���F�S�F�O�D�F �C�F�U�X�F�F�O �%�J�T�D�S�J�N�J�O�B�U�J�W�F �"�Q�Q�S�P�B�D�I �B�O�E �$�&�1��Figure (a) shows the instance discriminative
approach applied in video. Figure (b) demonstrates CEP, where both present views and past views are leveraged
in learning.
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CHAPTER 4. SELF-GUIDED VIDEO REPRESENTATION LEARNING

temporal cycles. Specifically, our CEP framework is driven by clip-wise cycle embedding pre-
dictions, through joint learning of cycle closure and contrastive feature separation, as shown
in Figure 4.5(b). By contrast, the discriminativemethods target the correspondence of the same
view after different augmentation via contrasting the negative views sampled from different
videos, as shown in Figure 4.5(a). However, this kind of method is just an extension of the
image-based discriminative methods [28, 29, 35, 78] that do not exploit the temporal coher-
ence in video.

Like predictive methods [50, 70, 189], our approach involves the prediction of temporal
characteristics in latent space. But there are several differences. i) DPC [70] is a �V�O�J���E�J�S�F�D�U�J�P�O�B�M

predictive model that aggregates temporal embeddings recurrently to make predictions; ii)
TCC [50] learns to align per-frame features from different sequences by matching nearest-
neighbours in the embedding space to achieve cycle consistency, whereas our forward and
backward cycles are through learnable predictors and are operated within the same sequence,
and finally, (iii) in TimeCycle [189], patch features from a sequence of frames are generated by
tracking forward and backward to learn the affinity matrix between nearby frames, whereas
CEP jointly learns the temporal cycle structure via a closure loss and the prediction feature
space itself via a contrastive loss.
�'�S�B�N�F�X�P�S�L��CEP operates on video snippet - � 2 R) � � � , � � harvested from the video stream
(as illustrated in Fig. 4.4), where ) � � � , � � are, time, height, width, and channel respectively.
Given a particular snippet - � at time step � , it is projected to the latent space Z via a non-
linear network 4¹�º, a function which we would like to learn to preserve temporal coherence
and correspondence of temporal cycle from unlabelled videos. Formally, 4¹�º encodes - � as
locations / � in latent space Z 2 R� , �J���F��

/ � = 4¹- � º– (4.1)

where the / � is a feature representation in latent space Z of the form R� .
At the most fundamental level, if the neighbour states / � � 1 = 4¹- � � 1º and / � ¸ 1 = 4¹- � ¸ 1º

can be predicted by / � , then the latent space representation must have preserved elementary
aspects of the temporal structure of the input video. To implement this concept, we introduce
two directional prediction functions � ¹� º¹�º and  ¹� º¹�º to predict forward and backward, respec-
tively. The white noise � are introduced in both predictive functions to preserve the stochastic-
ity. As exemplified in Fig. 4.6, the forward and the backward predictive function are formed
by Multi-layer Perceptions (MLPs) that have the same architectures but different parameters
(optimised individually). In the forward pass, the added noise � is concatenated with / � as
input. The embedding / � traverse forward in time for one time step via � ¹� º¹�º:

 / � ¸ 1 = � ¹/ � –� � º = � ¹4¹- � º–� � º • (4.2)

Similarly, traversing backwards in time through  ¹� º¹�º,

 / � � 1 =  ¹/ � –� � º =  ¹4¹- � º–� � º • (4.3)
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4.1. CYCLE ENCODING PREDICTION

Figure 4.6: �1�S�F�E�J�D�U�J�P�O �'�V�O�D�U�J�P�O �J�N�Q�M�F�N�F�O�U�F�E �W�J�B �.�-�1 �J�O �$�&�1. An embedding / � concatenates with white
noise � � as the input. The two predictors are implemented with 4-layers MLP with Relu activation after each layer
(except for the last layer). Note that the future prediction function and past prediction function share this same
architecture, but they do not share parameters in training.

Note that we clearly differentiate between latent space locations / � ¸ 1 or / � � 1 arising directly
from the embedding function and  / � ¸ 1 or  / � � 1 arising from predictions solely within latent
space.
�$�P�O�T�J�T�U�F�O�D�Z �P�G �1�S�F�E�J�D�U�F�E �$�Z�D�M�F�T��The predictive functions can be applied to embeddings re-
cursively. If the embedding / � traverses forward in time for 8times from time step � to predict
state in time step � ¸ 8:

� ¹8º¹/ � –� º = � ¹� ¹• • •� ¹/ � –� � º– • • • –� � ¸ 8� 1º–� � ¸ 8º • (4.4)

Or it can travel backward in time for 8times:

 ¹8º¹/ � –� º =  ¹ ¹• • • ¹/ � –� � º– • • • –� � � 8̧ 1º–� � � 8º • (4.5)

Such application allows for the generation of entire cycles of predictions knowing that the
future operator � ¹�º is the reverse of the past operator  ¹�º, �J���F��� ¹�º ,  � 1¹�º, or in full detail,

/ � �  ¹8º �� ¹8º¹/ � –� � º–� � ¸ 8
�
or

/ � � � ¹8º � ¹8º¹/ � –� � º–� � � 8
�

•
(4.6)

In contrast to building a loss function directly by measuring the success of predictions
(whichwould require comparisonwith at least another transfer 4¹�º into the embedding space),
we will instead construct a loss solely �X�J�U�I�J�Othe embedding space that encourages the closure
of cycles. Conceptually, this allows for far greater representational flexibility and generalisa-
tion in the latent space whilst still enforcing high-level temporal consistency.

For simplicity, CEP considers the transition in only three states, past / ?, present / Cand
future / 5, thus the maximum recursion depth 8 = 2. Fig. 4.7 depicts the six basic possible
predictive cycles amongst past, present, and future embeddings. Our target is to find a space
wherein cycle predictions can be made, so as to minimise the distance between the start and
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Figure 4.7: �&�M�F�N�F�O�U�B�S�Z �$�Z�D�M�F�T �J�O �&�N�C�F�E�E�J�O�H �4�Q�B�D�F��The present, future, and past states are represented in
pink, green, and purple respectively. All 6 cycles are considered for cycle consistency. Note that apart from these
elementary cycles, the concept could be extended and longer loops are possible, but they require increasing com-
putational resource and a related analysis would be beyond the scope of this paper.

end of all closed cycles. Thus, we arrive at the CEP minimisation objective:

L � =;3¹/ C–  ¹1º¹� ¹1º¹/ C–� º–� ºº

¸ ;3¹/ C– � ¹1º¹ ¹1º¹/ C–� º–� ºº

¸
2Õ

8=1

;3¹/ ?–  ¹8º¹� ¹8º¹/ ?–� º–� ºº

¸
2Õ

8=1

;3¹/ 5– � ¹8º¹ ¹8º¹/ 5–� º–� ºº –

(4.7)

where ;3 measures the distance between two input embeddings. Essentially, this loss sums
over the distance errors occurring across the six different basic cycles.

To search the parameters in Equation 4.7 in practice, the encoder and the predictors are co-
optimised and evolve together. This process essentially computes an embedding function 4¹�º

that produces a space in which the prediction of the closed cycle is maximally achieved. To
facilitate the co-optimisation and avoidmodel collapse, we use proxy encoder 40¹�º to calculate
the embeddings in the first term of ;3 in Equation 4.7 in practice.
�$�P�O�U�S�B�T�U�J�W�F �4�F�Q�B�S�B�U�J�P�O��In addition to encouraging the consistency of the predicted cycles, we
would like the predicted embeddings to be coherent in the temporal context. While directly
regularising the coherence of predicted embeddings would introduce training instability and
model collapse, violating the stochasticity in prediction. Inspired by the effectiveness of con-
trastive learning [35, 70, 78], we thereby incorporate the contrastive approach which separates
incoherent features, while coherent ones are situated close by. By implicitly separating the
incoherent embeddings, it encourages the stochasticity of prediction as well. In practice, this
constraint is applied after performing a forward-backward or backward-forward cycle predic-
tion.
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4.1. CYCLE ENCODING PREDICTION

Figure 4.8: �&�Y�B�N�Q�M�F �P�G �1�P�T�J�U�J�W�F�T �B�O�E �/�F�H�B�U�J�W�F�T �G�P�S �$�P�O�U�S�B�T�U�J�W�F �4�F�Q�B�S�B�U�J�P�O��This case demonstrates the postive
and negative samples at maximum recursion depth 8= 2. The three states in CEP, representing the past / ? (/ C� 1),
the present / C, the future / 5 (/ Ç 1), are considered. The figure shows the possible positive and negative samples
if f  / Cg is the anchor in contrastive separation. Orange lines denote traversing forwards in time; blue lines denote
traversing backwards in time.

More specifically, the predicted cycles can be generated with the embeddings traversing
forward-backward or backward-forward. Depending on the starting points of the cycles and
the maximum depth of traversal, a set of predicted embeddings for the time step � is denoted
as f  / � g. Consider an element  / ¹8º

¹=º–� in f  / � g is defined as:

 / ¹8º
¹=º–� =

(
 ¹8̧ =º¹� ¹8º¹/ � ¸ =–� º–� º if 87 0 and 8¸ = � 0

� ¹� 8� =º¹ ¹� 8º¹/ � ¸ =–� º–� º if 85 0 and 8¸ = � 0
– (4.8)

where 87 0 indicates the forward-backward cycles and 85 0 indicates the backward-forward
cycles; ¹=º suggests that this cycle starts at � ¸ =; thus,  / ¹8º

¹=º–� represents the predicted embedding
for the time step � by the cycle that starts from the state / � ¸ = after a traverse depth of 8ending
at the predicted state  / � . We define f  / � g as a set that consists of all predicted states for the
time step � :

f  / � g ,
�
f  / ¹8º

¹=º–� gN
==� 8

� I

8=1

Ê �
f  / ¹8º

¹=º–� g� 8
==�N

� � 1

8=�I
– (4.9)

where
É

concatenates of two sets generated by forward-backward cycles and backward-
forward cycles, N denotes the offset boundary, and I denotes the maximum traverse depth
for the cycle.

After the cycle prediction, if we consider a set of predicted embeddings f  / � gas the anchor
for contrastive separation, then / � is the positive case. A set of embeddings f  / : g is considered
as the negative samples only if : < � for : 2 ) where ) is the overall time step for a video (�F���H��

CEP considers the past, present and future states, in this case ) = f ?– C– 5g; Figure 4.8 shows
the negative and positive samples with respect to the anchor). To augment the amount of
negative samples in training, a set of embeddings from different videos, denoted as f / diffg, are
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also included as the negative samples. It can be taken from mini-batch videos or in a memory
queue, thus all the negative samples can be defined as

f / �
negg = f / diffg

Ê Õ

: 2)– : <�

f  / : g • (4.10)

A variant of the Noise Contrastive Estimation (NCE) approach [69] introduced in [176] and
defined as Information NCE (InfoNCE) has been adopted to construct the contrastive loss.
InfoNCE demands that the similarity between the anchor and the positives be higher than the
one between the anchor and the negatives. This similarity is measured by the cosine metric,
which is implemented as the normalised dot product in practice,

;3¹-– . º =
X � Y

kXkkY k
=

Í =
8=1 - 8. 8

q Í =
8=1 - 2

8

q Í =
8=1 . 2

8

– (4.11)

where / 8and - 9are components of the embedding Z and X .
We define the InfoNCE loss L Info¹/ � º that considers the embedding / � as positives at the

time step � ; it can be formulated as

L Info¹/ � º = �
1

kf  / � gk

Õ

 / � 2f  / � g

log
exp¹;3¹  / � – / � º• � º

exp¹;3¹  / � – / � º• � º ¸
Í

/ =2f / �
negg exp¹;3¹  / � – /=º• � º

– (4.12)

where � denotes the temperature hyperparameter[196]. The overall contrastive loss can be
formulated by aggregating in time:

L contrast =
Õ

� 2)

L Info¹/ � º • (4.13)

For similarity, the overall states ) are past, present, and future states in CEP; thus, the con-
trastive loss for CEP can be derived by Equation 4.13:

L - = L Info¹/ ?º ¸ L Info¹/ Cº ¸ L Info¹/ 5º (4.14)

When combining the cycle closure loss defined in Equation 4.7, we arrive at the overall loss
for CEP:

L all = L � ¸ � L - – (4.15)

where � is the balance weight. The learning objective is to find the optimal parameters � � of
the encoder 4¹�º and the predictive functions � � ¹�º and  � ¹�º such that the overall loss L all can
be minimum:

� � = argmin
�

L all • (4.16)

�1�S�P�Y�Z �&�O�D�P�E�F�S �B�O�E �.�F�N�P�S�Z �2�V�F�V�F��Contrastive learning benefits from largemini-batch sizes
[78], but given limited GPUmemory, it is hard to accommodate bothmodel size and batch size
within hardware constraints. Inspired by [78], we increase the cardinality of possible negative
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4.1. CYCLE ENCODING PREDICTION

Figure 4.9: �.�F�N�P�S�Z �2�V�F�V�F��During each training iteration, a set of snippets f - 0g are randomly picked from a
memory queue Q to stand-in as source material for negative generation. Following that, the negative features are
generated by proxy encoder 40¹�º.

samples f / diffg by giving up back-propagation of the gradient for negatives. Instead, we use
a proxy encoder 40¹�º to generate negative embeddings. The proxy encoder 40¹�º has exactly
the same architecture as the encoder 4¹�º, but the gradient is not updated. Instead, it is an
exponential moving average of the encoder 4¹�º with a momentum coefficient < ,

� 40  < � 40 ¸ ¹ 1 � < º� 4 – (4.17)

where < 2 »0–1º is a hyperparameter, � 40 and � 4 represents the parameters for proxy encoder
40¹�º and encoder 4¹�º, respectively. Only parameters � 4 are optimised by the gradient with
� 4  � 4 ¸ rL all. For training stability, we also apply the proxy encoder to generate the ‘GT’
�J���F��the embeddings used in the first term of ;3 in Equation 4.7 and the positive sample for / �

in Equation 4.12.

As depicted in Figure 4.9, a set of snippets f - 0gare picked from memory queue Q to form
the negative samples with

f / diffg =

�
40¹- 0

8º

�

- 0
82f - 0g

• (4.18)

For each iteration, the input snippets from the last iteration are stored in the queue,meanwhile,
the same number of snippets are removed from thememory queue Q. If the size of thememory
queue Q is set properly, this method can ensure that the sampled snippets from the memory
queue are from the different videos as the input snippets. Compared to the memory bank
method from MOCO [78], both methods can stop the gradient for negative samples, but our
memory queue approach can generate negative embeddings online instead of using the offline
negative embeddings in [78].
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(a) �4�Z�O�D���#�/ (b) �4�Z�O�D���5�(�/

Figure 4.10: �4�Z�O�D���#�/ �B�O�E �4�Z�O�D���5�(�/ �%�J���F�S�F�O�D�F��Sync-TGN organises the temporal dimension into several
chunks (purple, pink and green in (b)) representing past, present, future snippets in CEP and computes mean and
standard-deviation along the (�#atch,�) eight,�8 idth) axes.

���������� �5�S�J�W�J�B�M �4�P�M�V�U�J�P�O�T

Network optimisation is prone to learning shortcut solutions that circumnavigate the incorpo-
ration of semantic-bearing features. Therefore, it is essential to formulate the learning task in
a way that prevents information leakage.

�#�B�U�D�I �/�P�S�N�B�M�J�T�B�U�J�P�O �-�F�B�L�T��BatchNormalisation (BN) is a common practice for training deep
neural networks as it is believed to mitigate the problem of internal covariate shift [86]. The
encoder 4¹�º that is implemented with 3D-CNN, �F���H��SlowFast[55], 3D-ResNet [74], contains
BN layers. In practice, the Synchronized Batch Normalization (Sync-BN) layers are used as
the model is distributed in several GPUs in training. However, intra-temporal communica-
tion (�F���H��Sync-BN) among the snippets may leak information, such that predictors can learn
this shortcut. As illustrated in Figure 4.10(a), Sync-BN operates in the red region. If the model
predicts the embedding  / � by referring to / � because of the intra-temporal communication
within Sync-BN �J���F��/ � and / � � 1 information exchanged in Sync-BN, the model may take the
shortcut in learning. To resolve this, we introduce Synchronised Temporal Group Normalisa-
tion (Sync-TGN) to dilute any leaking signal. As shown in Figure 4.10(b), the features that
originated from the same video are split into groups with respect to temporal location, �F���H��

blue, red, and green regions representing past snippets - ?, present snippets - Cand future
snippets / 5, respectively. Formally, if the input feature for the : th GPU is denoted as G¹: º, the
feature is split into groups by

f G¹: º
1 –� � � G¹: º

� –� � � G¹: º
) g = G¹: º – (4.19)

where ) is the number of input snippets for each video. Then they are normalised in each
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group by

H¹: º
� = �

G¹: º
� � E=�N »G¹=º

� ¼
q

V=�N »G¹=º
� ¼ ¸&

¸ � – (4.20)

where E and V keep track of the mean and the variance in each group, respectively; � and
� are learnable parameters that are shared for all groups; & is a small value added to the de-
nominator for numerical stability; N is the number of GPUs used. After performing the batch
normalisation in groups, the outputs are concatenated together with

H¹: º = f H¹: º
� g)

� =1 • (4.21)

In the training time, the Sync-TGN layer keeps running estimates of its computed mean and
variance, which are then averaged in groups and used for normalisation during testing time.
�0�Q�U�J�D�B�M �'�M�P�X �0�C�G�V�T�D�B�U�J�P�O. Another possible trivial solution of CEP is the generation of tem-
poral predictions purely from low-level optical flow rather than semantic information. As a
counter-measure, the immediately available optical flow signal should be obfuscated. It can
be achieved by applying different augmentation strategies to the video snippets, but same
augmentation strategy within snippet for each frame. �F���H��random horizontal flipping, colour
jittering, and random cropping. Such snippet-wise augmentation preserves the semantic tem-
poral coherencewithin the video snippet signal, whilst the low-level optical flow clue between
video snippets is destroyed.
�*�E�F�O�U�J�U�Z �4�P�M�V�U�J�P�O. We note that, theoretically, the identity for both � and  leads to a valid
solution for L � (see Equation 4.7). Yet, practicallywefind that both the use ofwhite noise � (see
Figure 4.6 �	�M�F�G�U�
) and co-optimisation by L - (as defined in Equation 4.12, this constraint push
away the distance between / � and  / � � 1, forcing the model away from the identity solution)
disperse mappings in latent space and avoid collapse to an identity cycle. The latter was never
observed in any of our experiments.

������ �*�N�Q�M�F�N�F�O�U�B�U�J�P�O �%�F�U�B�J�M�T

This section first introduces the datasets that are used for pre-training and downstream eval-
uation, followed by the implementation details of CEP pre-training, including details for data
pre-processing, architecture choices, training details and computational requirements.

���������� �%�B�U�B�T�F�U

�,�J�O�F�U�J�D�T[31]. The data in its unlabelled form is selected for the pretext pre-training. It contains
a large body of video comprising 400 action classes, with at least 400 clips for each action.
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Videos originating from YouTube are clipped to around 10 seconds. Each video focuses on
one action. The actions are human-focused and range from human-object interactions, such as
playing instruments, to human-human interactions, such as shaking hands.
�6�$�'������ [165]. This dataset is selected as the primary downstream action recognition task and
the video retrieval task for evaluating CEP. It contains realistic videos collected from Youtube,
including 101 action categories. UCF101 covers 13K videos with a large variety of different
camera motions, object appearances, object poses and scales, as well as background clutter.
�)�.�%�#���� [100]. This dataset is the secondary evaluation dataset and contains 51 action cate-
gories in total, covering a wide range of activities from facial actions to body movements. As a
popular dataset for action recognition, HMDB51 is sometimes considered more difficult than
UCF101, as many classes within the 51 action categories are quite similar.
�1�B�O�"�G�S�J�D�B.[204] This dataset is used for evaluation of animal behaviour understanding. It con-
tains 400 videos for training set and 100 videos for testing. There are around 200K animals
accurately annotated with their body locations and behaviours. See Sec. 3.1 in Chapter 3 for
more details.

���������� �*�N�Q�M�F�N�F�O�U�B�U�J�P�O �%�F�U�B�J�M�T

�%�B�U�B �1�S�F���Q�S�P�D�F�T�T�J�O�H��Video snippets - � of 16 frames each are formed by sampling the orig-
inal 30fps video at a rate of 6 frames per second on Kinetics-400 training set. Frames are se-
lected with a consistent stride to preserve the regularity of temporal dynamics. Three snippets
in the same video, representing the past - ?, the present - Cand the future - 5, are sampled
without overlap to form associated triples in CEP. Then these input snippets are augmented
with snippet-wise random horizontal flip and random colour jittering. Finally, the snippets
are rescaled and centre-cropped to 224� 224resolution for self-guided learning.
�"�S�D�I�J�U�F�D�U�V�S�F �%�F�U�B�J�M�T��The non-linear encoding function 4¹�º is implemented using a prevalent
spatiotemporal encoder as the backbones (with the last fully connected layer modified pro-
ducing an output feature size of R2048, �F���H��SlowFast [55], (2+1)D-ResNet [174], 3D-ResNet [74],
and S3D-G [198], allowing us to both carry out direct comparisons with other methods and to
compare these architectures. The two predictors  and � are implemented with 4-layers MLP,
as shown in Fig. 4.6.
�5�S�B�J�O�J�O�H �%�F�U�B�J�M�T��The CEP framework is implemented in Pytorch version 1.5 using distributed
training on 8GPUs,where eachGPUhas amini-batch size of 3 that is 3 videos eachwith 3 snip-
pets, thus the input size is R3� 3� 16� 224� 224� 3, representing Batch � Snippet� Frames � Height
� Width � Channel, respectively. To produce predictor extensions, the noise � 2 R1024 is sam-
pled from Gaussian distribution. For cycle consistency, we run all 6 possible cycles as shown
in Figure 4.7 and use the overall loss L C for back-propagation. For contrastive separation, the
negative features are sampled from the memory bank with the proxy encoder 40¹�º using the
momentum coefficient < = 0•9 and InfoNCE temperature � = 1. For each training iteration,
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the negative set f / �
neggis formed in away such that the learning difficulty can be balanced. The

easy negatives are from different videos whilst the hard negatives are from the same video. By
controlling the number of snippets f - 0gselected from thememory queue Q, the ratio between
easy and hard samples is fixed at 4 : 1 in experiments �J���F��kf / diffgk : k

Í
: 2)–: <� f  / : gk = 4 : 1,

so that the learning task is neither too hard to learn nor too easy to overfit. All the models are
trained end-to-end using SGD as optimiserwith an initial learning rate of 10� 2, momentum 0•9

andweight decay 10� 4. The system requires tominimise the combined objective L = � L � ¸L - ,
where � is set to 0.1 intuitively. During inference, video snippets from the validation set are
sampled using the same strategy mentioned above except one snippet is sampled and all the
augmentations are removed maintaining a scaled centre-crop.
�$�P�N�Q�V�U�B�U�J�P�O�B�M �3�F�R�V�J�S�F�N�F�O�U�T��QuantifyingCEP’s computational footprintwith different back-
bone architectures shows that the approach has a very light parameter impact yet significant
FLOPS cost. For the S3D-G backbone, the CEP concept increases parameters from 11•04" to
13•16" and FLOPS from 34•3� to 85•6� . For the R(2+1)D backbone, CEP increases parameters
from 15•02" to 17•15" and FLOPS from 171•8� to 429•5� . For 3D-ResNet-34, CEP increases
the parameters from 64•17" to 66•29" and FLOPS from 100•58� to 261•06� . For example,
using 3D-ResNet18 for CEP training takes approx. 1 week for 50 epochs with 8 NVIDIA P100
GPUs running on Lenovo nx360 nodes with 2.4 GHz Intel E5-2680 v4 (Broadwell) CPUs and
128 GB of RAM using the Kinetics-400 dataset as data source with batch size 24.

������ �$�Z�D�M�F �&�O�D�P�E�J�O�H �1�S�F�E�J�D�U�J�P�O �B�T �B�O �"�E�E���P�O

This section explores that CEP as an add-on to the leading frameworks [70, 142, 205] while
keeping their main concepts unchanged. Specifically, to use CEP as an add-on, we introduce
forward and backward prediction modules on top of feature embeddings of other architec-
tures. We find that the CEP concept is orthogonal to these methods as it introduces a novel
viewpoint that exploits the visual coherence and the correspondence of temporal cycle from
video data. Adding CEP can consistently improve the performance of existing works on the
downstream task. Toprove the efficacy ofCEP as an add-on, the state-of-the-art self-supervised
models: PRP[205], DPC[70] and RSPNet[142] are explored by injecting the CEP concept.
�1�3�1���$�&�1��Playback Rate Perception (PRP) [205] explores the temporal resolution and long-
short-term characteristics of video data, based on the concept that video clips with different
playback rates (temporal resolution) can be semantically different. To implement this concept,
PRP introduces twoperceptions, �J���F��discriminative perception and generative perception, to fa-
cilitate self-supervised learning from video data. For discriminative perception, PRP is trained
to classify the playback rate for the input video clip that is sampled with different playback
rates. This can motivate learning of the embeddings to be able to perceive the low temporal
resolution of the long-term representation. For generative perception, PRP is encouraged to re-
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construct low playback rate videos fromhigh playback rate ones. It leverages a feature decoder
network to encourage embeddings to comprehend and infer the high-temporal-resolution
structure from low-temporal-resolution input.

Figure 4.11: �$�&�1 �"�E�E���P�O �G�P�S �1�3�1��The input video is sampled with a playback rate of B(B= 2 in this example).
Then it is split into three snippets, representing past, preset and future. After being projected to the latent space
by the encoder 4¹�º, the embeddings preforms both PRP tasks and CEP tasks for self-guided temporal learning in
video.

To implement CEP as an add-on for PRP, we keep their main concept of discriminative
perception and generative perception unchanged but introduce the forward and backward
prediction modules on top of the PRP embeddings. Cycle closure and contrastive separation
in CEP can then be easily injected to the original PRP framework by traversing the past / ?,
present / Cand future embeddings / 5 forward-backward or backward-forward. Figure 4.11
illustrates the framework that adds the CEP concept to PRP. Given an input video + ¹1º, it is
uniformly sampled for video + ¹Bº with the same temporal interval, where Bdenotes that B�

fast-forward playback rate for video+ ¹Bº (B= 2: – : = 0–1–2–� � � ). Then the sampled video+ ¹Bº

is split into three snippets, representing past snippet - ?, present snippet - Cand future snippet
- 5. After projecting these snippets into the latent space by the encoder 4¹�º, the embeddings
are required to perform the PRP tasks �J���F��discriminative perception and generative perception,
as well as the CEP tasks �J���F��cycle closure and contrastive separation.

For the discriminative perception task, given an embedding / � (� 2 f ?– C– 5g), the projected
feature � � = ) ¹/ � º is generated through the FC layers ) ¹�º, where � � 2 R ¸ 1 and 2 is the
maximum playback rate. The task requires to classify the playback rate Bfrom  ¸ 1 categories
where 20 � B� 2 . The cross entropy loss is used in [205] for discriminative perception, it can
be described as

L � = �
 ¸ 1Õ

: =0

B: log
exp� :

�
Í  ¸ 1

: =0 exp� :
�

– (4.22)
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where � :
� represents the : th channel of � � and B: represents the ground truth of the cross

entropy loss �J���F��B: = 1, if B= : else B: = 0.
For generative perception task, a decoder 3¹�º is introduced to reconstruct video clips.

Given the embedding / � (� 2 f ?– C– 5g ) generated by video snippet - B1
� , this task requires

/ � to be able to reconstruct the video snippet - B2
� where, B1 and B2 are the playback rate and

B1 7 B2 via 3¹�º �J���F�� - B2
� = 3¹/ � º. MSE loss is used in [205] for generative perception and can be

described as

L � =
1

)�,

)Õ

C=0

�Õ

8=0

,Õ

9=0

" ¹Cº
¹89º¹-

B2 –¹Cº
� –¹8–9º �  - B2 –¹Cº

� –¹8–9ºº – (4.23)

where ) , � and , represent the frames, height, width of the target video snippet. ¹Cº denotes
the temporal location and ¹89º denotes the spatial location on video frames. " represents the
motion attention maps that model the weights for each spatiotemporal location (see details in
[205]).

The PRP+CEP considers the both PRP and CEP tasks. When combining the CEP losses:
cycle closure loss defined in Equation 4.7 and contrastive separation loss defined in Equation
4.14, the overall training loss for PRP+CEP is given at

L PRP+CEP = L � ¸ � 0L � ¸ � ¹L � ¸ � L - º – (4.24)

where � 0 is the weight to balance PRP losses and � is a weight to balance PRP and CEP losses.
The goal is to find the optimal parameters � � of encoder 4¹�º, decoder 3¹�º, FC projector ) ¹�º

and predictive functions � � ¹�º and  � ¹�º such that the overall loss L PRP+CEP can be minimum:

� � = argmin
�

L PRP+CEP • (4.25)

�%�1�$���$�&�1��Dense Predictive Coding (DPC) [70] learns a dense encoding of spatiotemporal
blocks by recurrently predicting future embeddings based on the recent embeddings. Unlike
CEP, it is operated on dense embeddings which preserve the spatial dimension �J���F��R�, � in-
stead of R� used in CEP. To address this difference, let us denotes . � 2 R�, � , � 2 f 2– C– 5g is
the output of encoder  4¹�º that is formulated with a prevalent video encoder but the pooling
layer is removed, and / � 2 R� is same as defined in CEP, but after the spatial pooling and
projection layers # ¹�ºi with the input of . � , �J���F��/ � = # ¹. � º.

As illustrated in Figure 4.12, DPCpredicts the future dense embedding  . � ¸ 1, via a recurrent
prediction function ) ¹�º:

 . � ¸ 1 = ) ¹. � – � � º – (4.26)

where � Crepresents the hidden state generated by recurrently aggregating the previous dense
embeddings f . : g� � 1

: =1 using a one-layer Convolutional Gated Recurrent Unit (ConvGRU) [70].
After predicting the dense embeddings, DPC leverages the contrastive learning on the these
embeddings. Given an anchor vector  . ¹8–9º

� , the positive is defined that both temporal and spa-
tial location are same with the anchor vector, �F���H��. ¹8–9º

� , where ¹8– 9º is spatial location in the
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Figure 4.12: �$�&�1 �"�E�E���P�O �G�P�S �%�1�$��The input video snippets are projected to dense embeddings . � (� = C– 5in
this example) with encoder  4¹�º. In this latent space, the embeddings are separated using the contrastive approach.
To adopt the latent space Z in CEP, # ¹�º that consists of a spatial pooling layer and FC layers is introduced. Two
CEP tasks, �J���F��cycle closure constraint and contrastive separation, are performed in the latent space Z .

dense embedding; whereas the negatives . ¹<–=º
: satisfy � < : or 8 < < or 9 < =. Noise Con-

trastive Estimation (NCE) encourages the positive embeddings to be close to the anchor em-
beddings but away from the negative embeddings, thus theNCE loss forDPC can be described
as

L NCE = �
Õ

� –8–9

2
6
6
6
6
6
4

log
exp

�
 . ¹8–9º
� � . ¹8–9º

�

�

Í
:–<–=exp

�
 . ¹8–9º
� � . ¹<–=º

:

�

3
7
7
7
7
7
5

• (4.27)

DPC is a uni-directional predictivemodel; however, CEP requires the bi-directional predic-
tive model. To retain the DPC concept but also adapt the CEP, we make the DPC prediction
bi-directional by adding a backward predictor  ¹�º. Note that the forward predictor ) ¹�º is
adopted from DPC, the backward predictor  ¹�º is from CEP. As ) ¹�º operated on dense em-
beddings but  ¹�º operated on different latent space � , only the forward-backward loops of
CEP can be implemented in this case. To link two different latent spaces from DPC and CEP,
a simple spatial pooling layer and FC projection, denoted # ¹�º, are introduced. It can project
the dense embeddings to the latent space Z where CEP can be operated.

DPC+CEP considers both DPC and CEP tasks. When combining cycle closure loss and
contrastive separation loss defined in Equation 4.7 and Equation 4.14, respectively, the overall
training loss for DPC+CEP is given at

L DPC+CEP = L NCE ¸ � ¹L � ¸ � L - º – (4.28)

where � is a weight to balance the DPC and CEP losses. The goal is to find the optimal parame-
ters � � of encoder  4¹�º, projector# ¹�º, forwardprediction function ) ¹�º andbackwardprediction
function  ¹�º such that the overall loss L DPC+CEP can be minimum:

� � = argmin
�

L DPC+CEP • (4.29)
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Figure 4.13: �$�&�1 �"�E�E���P�O �G�P�S �3�4�1�/�F�U��The input video are split to three snippets - ?, - Cand - 5; then they
are sub-sampled with different playback speeds (B1 and B2 in this example); after that they are encoded followed
by three different projection heads ) 2¹�º, ) < ¹�º and ) 0¹�º to perform the CEP tasks, RSP task and A-VID task,
respectively.

�3�4�1�/�F�U���$�&�1��Relative Speed Perception (RSPNet) [142] seeks to learn both motion and ap-
pearance characteristics at the same time from unlabelled video data. More specifically, RSP-
Net propose to perceive the relative speed through the comparison of playback speeds of two
clips from the same video. In addition tomotion perception, it also introduces a video instance
discrimination task that aims to distinguish the appearance feature from two different input
video clips, as motion content does not explicitly encourage models to explore the appearance
feature.

Relative Speed Perception task (RSP task) encourages model to separate the clips with dif-
ferent playback speed. Given a video snippet - � , � 2 T = f ?– C– 5g, : snippets with differ-
ent playback speeds are sample, denoting - B1

� – - B1
� –� � � – - B:

� respectively. As shown in Figure
4.13, after the encoder 4¹�º and followed by a projection head ) < ¹�º, the corresponding em-
beddings / B1

� – / B1
� –� � � – / B:

� are generated. RSP task expects the embeddings with the same
playback speed to be closer than the ones with different playback speeds. It is achieved using
a triplet loss in [142]:

L " =
:Õ

8=1

Õ

� 2T

Õ

9<8

Õ

< 2T

Õ

=<�

max

�
0–
 � ¹ ;3¹/ B8

� – / B8
= º � ;3¹/ B8

� – /
B9
< ºº

�
– (4.30)

where, ;3 measures distance between two embeddings, 
 denotes the margin that requires the
positive pair at least 
 margin larger than a negative pair.

The appearance video instance discrimination task (A-VID task) learns the appearance fea-
tures explicitly. Based on the concept that different clips from the same video are similar with
respect to the spatial semantics, A-VID extends the contrastive learning to the video domain.
To differentiate with RSP task, it introduces a different projection head ) 0¹�º operated on top
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of the embeddings from the encoder. Let us suppose that the embeddings for A-VID task are
denoted as / B8

� , the embeddings from different videos as / B8
diff. A-VID task pulls the embed-

dings coming from same video (regardless of playback speed) together, push the embeddings
from different video apart with InfoNCE loss:

L � = �
:Õ

8=1

Õ

� 2T

Õ

9<8–=<�

2
6
6
6
6
6
4

log
exp

�
;3
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• �

�
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�
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�
/ B8
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• �
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¸

Í
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– (4.31)

where � is a temperature hyperparameter that affects the concentration level of the distribution.
Note that the A-VID task is fundamentally different from contrastive separation in CEP, where
A-VID pulls together all embeddings from the same video, but contrastive separation pushes
away embeddings at different time steps even from the same video.

To add CEP at the same time keep the key concept of RSPNet unchanged, we introduced
an additional projection head ) 2¹�º that project the embeddings to the latent space Z that
the CEP can be operated (shown in Figure 4.13). RSPNet+CEP considers the both RSP, A-VID
and CEP tasks. When combining cycle closure loss and contrastive separation loss defined in
Equation 4.7 and Equation 4.14, respectively, the overall training loss for DPC+CEP is given at

L RSP+CEP = L " ¸ � 0L � ¸ � ¹L � ¸ � L - º – (4.32)

where � 0 is the balance weight for RSPNet and � is a balance weight to balance the losses from
RSPNet and CEP. The goal is to find the optimal parameters � � of encoder 4¹�º, projectors ) < ¹�º,
) 0¹�º and ) 2¹�º and prediction functions � ¹�º and  ¹�º, such that the overall loss L RSP+CEP can
be minimum:

� � = argmin
�

L RSP+CEP • (4.33)

������ �&�Y�Q�F�S�J�N�F�O�U�B�M �3�F�T�V�M�U�T �G�P�S �7�J�E�F�P �%�P�X�O�T�U�S�F�B�N �&�W�B�M�V�B�U�J�P�O

Computer vision pipelines that employ unsupervised learning involve performing two tasks:
a pretext task and a downstream task in general. Downstream tasks are application-specific
tasks that leverage the knowledge learned from the pretext task and adapt the model to some
specific tasks by fine-tuning on a limited amount of labelled data. They could be image-based
tasks such as classification, detection, segmentation or video-based tasks �F���H��action recogni-
tion, video retrieval, �F�U�D��. They are the common practices for evaluating the efficacy of self-
supervised/unsupervised learning. Depending on whether to fine-tune the whole model or
only the linear task-specific head, the evaluation protocols for downstream tasks can be cat-
egorised to i) end-to-end fine-tuning and ii) linear probing. For end-to-end fine-tuning, the
whole model is fine-tuned on a specific downstream task based on the pre-trained weights
from the pretext task. For linear probing, the frozen features which are extracted from the pre-
trained model are directly used for testing or encoded through a trainable linear classifier for
specific tasks.
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In this section, both protocols are employed to evaluate CEP on various tasks. The end-
to-end fine-tuning protocol is applied to the action recognition task and the linear probing
protocol is tested on the video retrieval task. In addition, the CEPpre-trainedmodels are tested
on the specific domain for animal behaviour understanding on PanAfrica Dataset.

���������� �"�D�U�J�P�O �3�F�D�P�H�O�J�U�J�P�O

Two standard datasets for action recognition, �J���F��UCF101 andHMDB51, are employed for eval-
uating the efficacy of video representation. The evaluation results of CEP are compared with
other video representation learningmethods. To be fair in comparison, we follow the standard
process [70, 142, 144] on action recognition (UCF101 and HMDB51) downstream tasks using
the end-to-end fine-tuning protocol. It is described as:

i) initialise the model with the weights pre-trained on Kinetics-400 dataset using pretext
task.

ii) fine-tune the model on UCF101 or HMDB51 training set with the labels.

iii) evaluate the model on the test set of UCF101 or HMDB51.

iv) report the top-1 classification accuracy rate as the result.

The performance of CEP is at different state-of-the-art self-supervised methods, fine-tuning
on the action classification tasks of UCF101 and HMDB51.
�$�P�N�Q�B�S�J�T�P�O �X�J�U�I �4�0�5�" �.�F�U�I�P�E�T��Table 4.1 shows the results (reported based on �b�T�H�B�i�@�R

test accuracy) for CEP compared with other state-of-the-art methods. At the lower input reso-
lution of 128� 128 (rows 01–02 in Table 4.1), the positive effect of CEP pre-training against a
random initialisation can be observed with a significant boost of 12•3%on UCF101 and 11•6%

onHMDB51.Next, training only on theUCF101 dataset at 224� 224resolution and on a (2+1)D-
ResNet (�J���F��rows 03–05), CEP approach outperforms other comparablemethods, such asVCOP
[199] and PRP [205], reaching 75•5% and 36•3% accuracy for UCF101 and HMDB51, respec-
tively. Methods 07–10 show a direct comparison with DPC [70]. Given the same 3D-ResNet34
encoder, CEP exceeds DPC [70] at 76•4% and 36•5% on UCF101 and HMDB51, respectively.
When the CEP concept is integrated into DPC (denoted as DPC+CEP, details see Section 4.3),
a further improvement leading to 78•1% and 38•4% can be observed on those two datasets,
respectively. UCF101 MemDPC [71] results are on-par with DPC+CEP which uses fewer para-
meters and 10%fewer FLOPS. On rows 11–20 in Table 4.1, depending on the encoder network,
CEP exhibits amixed performance compared to other recent networks. In particular, with a 3D-
ResNet18 encoder, CEP outperforms 3D-Puzzle [95] by a significant margin on both datasets,
while also outperforming RSPNet [142] on UCF101. On the (2+1)D-ResNet encoder, CEP on
its own achieves competitive performance in comparison to TCGL [119]. RSPNet on the other
hand outperforms both CEP and TCGL in this category. When fuelled by a S3D-G encoder,
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�.�F�U�I�P�E �:�F�B�S
�4�F�M�G���4�V�Q�F�S�W�J�T�J�P�O �5�S�B�J�O�J�O�H�&�W�B�M�V�B�U�J�P�O �	���


�%�B�U�B�T�F�U �3�F�T�P�M�V�U�J�P�O �&�O�D�P�E�F�S4¹�º �6�$�'������ �)�.�%�#����

01 | Random Init. – 128� 128 SlowFast 56.2 23.1
02 | CEP Kinetics-400 128� 128 SlowFast �������� ��������

03 | VCOP [199] 2019 UCF101 224� 224 (2+1)D-ResNet 72.4 30.9
04 | PRPy [205] 2020 UCF101 224� 224 (2+1)D-ResNet 72.7 35.9
05 | CEP UCF101 224� 224 (2+1)D-ResNet �������� 36.3
06 | PRP + CEP UCF101 224� 224 (2+1)D-ResNet 73.8 ��������

07 | DPC [70] 2019 Kinetics-400 224� 224 3D-ResNet34 75.7 35.7
08 | Mem-DPC [71] 2020 Kinetics-400 224� 224 3D-ResNet34 �������� ��������
09 | CEP Kinetics-400 224� 224 3D-ResNet34 76.4 36.5
10 | DPC+CEP Kinetics-400 224� 224 3D-ResNet34 �������� 38.4

11 | 3D-Puzzle [95] 2019 Kinetics-400 224� 224 3D-ResNet18 65.8 33.7
12 | RSPNet [142] 2021 Kinetics-400 224� 224 3D-ResNet18 74.3 ��������
13 | CEP Kinetics-400 224� 224 3D-ResNet18 �������� 36.6

14 | RSPNet [142] 2021 Kinetics-400 224� 224 (2+1)D-ResNet �������� ��������
15 | TCGL [119] 2021 Kinetics-400 224� 224 (2+1)D-ResNet 77.6 39.7
16 | CEP Kinetics-400 224� 224 (2+1)D-ResNet 76.7 37.6

17 | CoCLR(RGB) [72] 2020 Kinetics-400 128� 128 S3D-G 87.9 54.6
18 | SpeedNet [15] 2020 Kinetics-400 224� 224 S3D-G 81.1 48.8
19 | RSPNety [142] 2021 Kinetics-400 224� 224 S3D-G 88.3 59.0
20 | CEP Kinetics-400 224� 224 S3D-G 84.1 46.3
21 | RSPNet + CEP Kinetics-400 224� 224 S3D-G �������� ��������

22 | CVRL [144] 2020 Kinetics-400 224� 224 R3D-50(� 4) 92.2 67.9
23 | � BYOL [56] 2021 Kinetics-400 224� 224 R3D-50(� 4) �������� ��������

Table 4.1: �1�F�S�G�P�S�N�B�O�D�F �$�P�N�Q�B�S�J�T�P�O �X�J�U�I �4�U�B�U�F���P�G���U�I�F���"�S�U��The top-1 accuracy rate is reported on downstream
action recognition tasks for UCF101 and HMDB51 in RGB data in split-1 val split. All methods are end-to-end,
fine-tuned on the target evaluation set after self-supervised pre-training. y represents our re-implementation ex-
periments under our directly comparable hardware settings.

RSPNet dominates CEP, yet CEP exceeds Google’s SpeedNet [15] on UCF101, while being
competitive on HMDB51.

It has been observed that the performance of the CEP model is comparatively lower than
that of some SOTA concurrent works, as demonstrated by rows 11-13 and 14-16 under certain
settings. One possible explanation for this is that the CEP concept is limited to certain aspects
of video dynamics, such as visual prediction coherence and correspondence of temporal cy-
cles, whereas there exist other features that could be leveraged for learning from videos, such
as video playback speed learning [142, 205], video clip order verification [95, 199], RGB-flow
correspondence [72]. Additionally, another reason for this could be that CEP hevaily relies on
temporal prediction, which necessitates the model to engage in temporal reasoning based on
the input video. However, the popular downstream tasks for evaluation, such as UCF101 and
HMDB51, have strong static biases that allow static representations to perform remarkably
well, where the model can refer to salient frames rather than reasoning from the temporal
relation. For example, actions such as swimming and biking in UCF101 can be easily recog-
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nised by a single key frame [111]. Future research can assess the performance of CEP and other
state-of-the-art models on datasets that require robust temporal reasoning, such as something-
something [65] and Epic-Kitchens [41].
�"�E�E���P�O �&���D�B�D�Z �P�G �$�&�1��However, we find that adding CEP to leading architectures (rows 06,
10, 21) while keeping their main concepts unchanged consistently outperforms their original
benchmarks supporting general efficacy of our concept. Specifically, to use CEP as an add-
on we introduce forward and backward prediction modules on top of feature embeddings
of other architectures. We then contrastively learn the predictive embeddings and enforce cy-
cle consistency by introducing our L - and L � losses, respectively, to the overall loss. More
specifically, three leading frameworks, PRP [205], DPC [70] and RSPNet [142], are tested (see
Section 4.3 for implementation details). For PRP with a (2+1)D-ResNet encoder, integrating
the CEP concept can introduce a 1.1% and 1.2% performance boost for UCF101 and HMDB51,
respectively (�J���F��rows 04 vs. 06). For DPC with a 3D-ResNet34 encoder, DPC+CEP increases
the baseline by 2.4% and 2.7%, respectively (�J���F��rows 07 vs. 10). The state-of-the-art RSPNet can
also benefit fromCEPwith an improved benchmark for RSPNet+CEP of 90.1% onUCF101 and
59.5% onHMDB51 (�J���F��rows 19 vs. 21). For the framework tested so far this produces a leading
performance (rows 1–21). We conclude that CEP is consistently and demonstrably effective as
an add-on technique across the architectures tested.
�.�B�T�T�J�W�F�M�Z �-�B�S�H�F �4�F�U�V�Q�T��CVRL [144] on row 22 and � BYOL [56] on row 23 show impressive
performance onUCF101 andHMDB51. Yet, theseworks are not directly apple-to-apple compa-
rable since setups run at massively larger scales. Particularly, huge batch sizes (CVRL: 1024 �W�T��

CEP: 24), large encoder networks (CVRL: 31.7M �W�T��rhoBYOL: 31.8M �W�T��CEP: 13.06M parame-
ters) and more than an order of magnitude further pre-train epochs (CVRL: 800 �W�T��rhoBYOL:
800 �W�T��CEP: 50 epochs) are used.We are unable to offer direct comparisons to thesemassive ex-
periments as we are limited by computational resources. Similarly, experimentation with even
deeper temporal cycles than the six fundamental ones is so far unexplored and increasingly
computationally prohibitive. Nevertheless, the efficacy of CEP for action recognition shows
that the core CEP concept effectively promotes semantic learning, is valuable and widely ap-
plicable as an add-on, where it enhanced the performance of all X+CEP architectures tested.

���������� �"�C�M�B�U�J�P�O �4�U�V�E�Z �P�O �"�D�U�J�P�O �3�F�D�P�H�O�J�U�J�P�O

This section presents a detailed ablation study on action recognition tasks in order to validate
the effectiveness of the components in the basic setup and quantify the impact of hyperparam-
eters in CEP.
�&���D�B�D�Z �P�G �$�P�O�U�S�B�T�U�J�W�F �4�F�Q�B�S�B�U�J�P�O �B�O�E �$�Z�D�M�F �$�M�P�T�V�S�F �5�B�T�L�T��For experiments that quantify
the importance of contrastive separation loss L - and cycle closure loss L � during training, we
use a fixed SlowFast setupwith a ResNet50 as the encoder. The input for pretext pre-training is
rescaled and randomly cropped to a resolution of 128� 128. The models are pre-trained on the
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�	�B�


�$�&�1 �.�B�J�O �$�P�N�Q�P�O�F�O�U�T�&�W�B�M�� �	�6�$�'�

�5�P�Q�� �B�D�D���5�B�T�L�T � – �T�I�B�S�F

random init. - 56.2
L � 7 61.1
L - 3 63.7
L - 7 64.6

L - +L � 7 ��������

�	�C�


�.�F�N�P�S�Z �2�V�F�V�F �4�U�S�B�U�F�H�J�F�T�&�W�B�M�� �	�6�$�'�

�5�P�Q�� �B�D�D���.���2�V�F�V�F �4�U�S�B�U�F�H�Zm

7 - - 71.2
3 offline - 72.8
3 online 0.1 73.3
3 online 0.9 ��������

�	�D�


�0�Q�U�J�D�B�M �'�M�P�X�&�W�B�M�� �	�6�$�'�

�5�P�Q�� �B�D�D���0�C�G�V�T�D�B�U�J�P�O

7 70.3
3 ��������

�	�E�


�/�P�S�N�B�M�J�T�B�U�J�P�O�&�W�B�M�� �	�6�$�'�

�5�P�Q�� �B�D�D���4�U�S�B�U�F�H�J�F�T

Sync-BN 71.8
Sync-TGN ��������

�	�F�


�5�F�N�Q�P�S�B�M
�3�F�D�F�Q�U�J�W�F �'�J�F�M�E

�&�W�B�M�� �	�6�$�'�

�5�P�Q�� �B�D�D��

1.5s 73.7
3s ��������

�	�G�

�'�F�B�U�V�S�F �%�J�N�F�O�T�J�P�O�B�M�J�U�Z�&�W�B�M�� �	�6�$�'�


�5�P�Q�� �"�D�D�U�F�N�Q�� �Q�S�F�T���P�V�U�Q�V�U �T�J�[�F
3 2 � 2048 73.3
7 2048 71.2
7 4096 ��������

Table 4.2: �%�F�U�B�J�M�F�E �"�C�M�B�U�J�P�O �4�U�V�E�J�F�T��Verification of key component effectiveness via ablation. All studies pre-
train on Kinetics-400 with a SlowFast ResNet50 encoder and evaluate performance on UCF101. All experiments
apart from �	�B�
use a resolution of 224 � 224 for experiments. Note that all design choices demonstrably impact
positively on performance. In particular, as shown in �	�B�
, the use of independent forward and backward predic-
tors � 0=3 has value and improves performance, as does the addition of each of the proposed core losses L -
and L � . For instance, adding cycle consistency L � to an otherwise fixed setup is effective adding 3•9% to accu-
racy.

Kinetics-400 dataset as before, and results are reported after fine-tuning onUCF101 dataset for
30 epochs. As shown in Table 4.2 �	�B�
, both L - and L � contribute significantly to CEP’s perfor-
mance, which drops considerably when removing any one of the losses. The addition of cycle
consistency to an otherwise fixed system improves accuracy significantly by 3•9%. Forward
prediction � is considered as the inverse of backward prediction  in our assumption. The
forward prediction and the backward prediction are not distinguished explicitly, �J���F��� and  

are shared instead of two separate functions, the temporal cycles can not be properly formed
in CEP. However, we explored the model that only contains the contrastive separation task to
ablate the importance of two separate predictive functions for forward traverse and backward
traverse. The result shows 0•9%performance gain on action recognition task when � and  are
explicitly distinguished by optimising separately.
�$�P�O�T�J�T�U�F�O�D�Z �P�GL � �&���D�B�D�Z��To showcoherent efficacy of the cycle consistency concept through-
out the training process, we compare the full CEP setup against one that does not use L � at dif-
ferent points of the pre-training process – the same comparison as shown after full pre-training
in the last two lines of Table 4.2 �	�B�
. Table 4.3 shows the results confirming that throughout pre-
training the use of L � is beneficial and able to enhance action recognition.
�.�F�N�P�S�Z �2�V�F�V�F��We will now ablate further components of the basic setup beyond the core
concepts. As shown in Table 4.2 �	�C�
, when tested again at 224� 224 resolution learning ben-
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�1�S�F���5�S�B�J�O�J�O�H �-�P�T�T �'�V�O�D�U�J�P�O�T179K-step 358K-step 537k-step
No Cycle Consistency used: L - only 61.0 64.2 64.6
Cycle Consistency used: ......L - +L � �������� �������� ��������

Table 4.3: �$�P�O�T�J�T�U�F�O�D�Z �P�GL � �&���D�B�D�Z �U�I�S�P�V�H�I�P�V�U �1�S�F���5�S�B�J�O�J�O�H��UCF101 Top 1 accuracy performance when pre-
training for different numbers of steps with and without cycle consistency L � , fixing all other settings. The results
confirm that the use of cycle consistency consistently benefits performance.

efits from a large batch size as demonstrated recently for other contrastive learning in He �F�U

�B�M. [78]. Feature memory banks can provide this property at controllable cost. We compare
three memory queue strategies: i) No additional negatives from memory queue, only from
mini-batch samples �J���F��f / �

negg =
Í

: 2)– : <� f  / : g; ii) offline negative features are sampled from
the memory bank same as introduced in MOCO [78]; and (iii) online negatives are generated
by a proxy encoder 40¹�º from snippets sampled frommemory queue. In addition, we also com-
pared different momentum coefficient < as introduced in Equation 4.17 for online memory
queue strategy. The result illustrated in 4.2 �	�C�
suggest that i) additional negatives can benefit
for contrastive learning with 4•2% performance gain; ii) online memory queue strategy out-
performs offline memory bank strategy in CEP; iii) a large momentum < can clearly provide
benefits to CEP learning.

�0�C�G�V�T�D�B�U�J�P�O �P�G �*�O�U�F�S���D�M�J�Q �0�Q�U�J�D�B�M �'�M�P�X��As discussed earlier and quantified in Table 4.2 �	�D�
,
the augmentation-based obfuscation of inter-clip optical flow does indeed improve learning
and boosts accuracy significantly by 5•1% comparing with non-augmented inputs for CEP.

�4�Z�O�D�I�S�P�O�J�[�F�E �5�F�N�Q�P�S�B�M���(�S�P�V�Q �/�P�S�N�B�M�J�[�B�U�J�P�O��Next, we explore the effect of our Sync-TGN
in preventing the CEP spiralling into a trivial solution. For the BN experiment, we use the same
batch size (3 per GPU) for both sync-BN and sync-TGN, andwe have 8 GPUs in both scenarios.
Table 4.2 �	�E�
depicts the effectiveness of Sync-TGN over Sync-BN showing an increase of 3.6%
in self-supervised learning accuracy, supporting our hypothesis that information leak can be
mitigated to some extent.

�5�F�N�Q�P�S�B�M �3�F�D�F�Q�U�J�W�F �'�J�F�M�E��To investigate the temporal receptive field forCEPwith ) 2 f ?– C– 5g,
The sparsely sampled 16 frames for each snippet cover either 1.5s or 3s of the input video. As
Table 4.2 �	�F�
shows, the input clipwith the larger temporal receptive field increases the learning
performance by 1•7%, which suggests that the model benefits from longer exposure to scene
dynamics for learning of semantics.

�'�F�B�U�V�S�F �4�Q�B�D�F �%�J�N�F�O�T�J�P�O�B�M�J�U�Z��Finally, Table 4.2 �	�G�
summarises our evaluations on the influ-
ence of changing the dimensionality of the embedding space. Unsurprisingly, a larger repre-
sentational space benefits performance. Note that for noise � , we use half of the embedding’s
feature size, �F���H��if / C 2 R2048 then � 2 R1024. Splitting the feature space artificially into sub-
spaces to preserve temporal separation was found to be ineffective.
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���������� �7�J�E�F�P �3�F�U�S�J�F�W�B�M

To further evaluate the performance of CEP, the linear probing protocol is used in testing the
representations produced by CEP. To be fair in comparison, the standard process [199] for
video retrieval on UCF101 is conducted. This process can be described as:

i) train the model on Kinetics-400 dataset with pretext task.

ii) extract the frozen features on the test set of UCF101 using the trained model.

iii) calculate the distance for each feature from the rest of the features in the test set of UCF101.

iv) evaluate the top-1, top-5 and top-10 accuracy rate for each test query as the result.

The video retrieval results are shown in Table 4.4. For (2+1)D-ResNet backbone, CEP out-
performs VCOP [199] with significantly 7.6%, 6.5% and 13.2% for top-1, top-5 and top-10 ac-
curacy, respectively; and 1.4%, 2.8% and 11.7% accuracy improvement, comparing with PRP
[205] for top-1, top-5 and top-10, respectively. To illustrate typical outputs of the video retrieval
task, Figure 4.15 demonstrates some qualitative results produced by CEP.

Methods Encoder top-1 top-5 top-10

VCOP[199] (2+1)D-ResNet 14.1 30.3 40.4
PRP[205] (2+1)D-ResNet 20.3 34.0 41.9
�$�&�1 (2+1)D-ResNet �������� 36.8 ��������
Mem-DPC[71] 3D-ResNet34 20.2 �������� 52.4

Table 4.4: �7�J�E�F�P �3�F�U�S�J�F�W�B�M �3�F�T�V�M�U �P�O �6�$�'������ �%�B�U�B�T�F�U��The table reports recalls at top-1, top-5 and top-10 for
video retrieval. CEP is pre-trained on the Kinetics-400 only with only RGB inputs and the frozen features are
utilised to evaluate the performance; there is no further fine-tuning on UCF101.

To visualise the frozen features extracted by our CEP, the feature dimension is reduced
to 2D using T-SNE [177]. The CEP model is pre-trained on Kinetics-400 dataset, it does not
see any UCF101 videos or labels; however, it is somehow capable of clustering the features
representing the same class (shown in same colour) close to each other, separating different
classes as illustrated in Figure 4.14. This suggests that the video representation learnt by CEP
is meaningful and can be used to downstream tasks.
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(a) Random (b) CEP Pre-trained

Figure 4.14: �5���4�/�& �7�J�T�V�B�M�J�T�B�U�J�P�O �P�G �'�S�P�[�F�O �'�F�B�U�V�S�F�T��Video features in test split �7�Q�H�/�yof UCF101 are extracted
by (2+1)D-ResNetwith random initialisation (a) andwith CEP initialisation (b). The feature dimension are reduced
by T-SNE dimension and demonstrated in (a) and (b), respectively. Different colours represent different categories.

.
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Figure 4.15: �7�J�T�V�B�M�J�T�B�U�J�P�O �P�G �7�J�E�F�P �3�F�U�S�J�F�W�B�M �3�F�T�V�M�U�T �P�O �6�$�'��������The left column is the test query clip and the
remaining columns are the retrieved top 3 nearest-neighbour from the testing set using our pre-trained CEPmodel
with cosine similarity metrics. We manually select 2 representative frames from the clip to represent a video. Note
the action class results are stated in colours, where blue, green and red represent the queries, true positives and
false positives, respectively.
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Figure 4.16: �0�W�F�S�W�J�F�X �P�G �"�O�J�N�B�M �#�F�I�B�W�J�P�V�S �6�O�E�F�S�T�U�B�O�E�J�O�H �1�J�Q�F�M�J�O�F��Illustration of our method for spatiotem-
poral animal behaviour localisation. Given a video sequence, it is encoded by a video encoder for 3D feature rep-
resentation and a ResNet-50+TCM+SCM encoder for 2D feature representation of key frame, separately. The off-
the-shelf region proposal network produces the region-of-interest (ROI) based on the 2D feature representation.
Then we extend the 2D ROI at key frame into 3D ROI by replicating it along the temporal axis. Lastly, the feature
for each ROI is extracted by ROIAlign [79] spatially, and followed by global average pooling temporally. The ROI
features are then fed to a classification head and Box refinement head, followed by post-processing to get the final
result.

���������� �"�O�J�N�B�M �#�F�I�B�W�J�P�V�S �6�O�E�F�S�T�U�B�O�E�J�O�H

Popular action recognition dataset such as UCF101 and HMDB51 has gained significant atten-
tion in computer vision research for videos. Recent years see a considerabe increase of perfor-
mance for CVmethods on these dataset, �F���H��SOTA action recognitionmethod [49] has reached
to approx. 98% accuracy on UCF101. However, most of the video clips from these dataset in-
volve only a single person performing actions and these actions can lead to the shortcut in
learning by referring to the salient frames rather than reasoning from the temporal relation,
for example, actions such as swimming, biking (in UCF101 dataset). Real difficulties come in
when recognising multiple actions co-occurring in a scene.
�#�F�I�B�W�J�P�V�S �6�O�E�F�S�T�U�B�O�E�J�O�H �P�O �1�B�O�"�G�S�J�D�B��To evaluate CEP onmore challenging scenarios, We
conduct downstream task of animal behaviour understanding on PanAfrica Dataset. This task
is more challenging than action recognition in standard dataset such as UCF101, HMDB51,
as the animals in PanAfrica are filmed in the wild where they are often moving, eating or
playing in groups, sometimes partially occluded behind trees or thickets. This task requires
the spatiotemporal localisation of animals as well as the classification of their behaviours. The
spatiotemporal labels are provided for each frame in each video, with every animal annotated
with a bounding box and a behaviour. The difficulty in PanAfrica lies in behaviour under-
standing, while animal localisation is less challenging as the method introduced in Chapter 3
has achieved over 90% localisation accuracy.
�%�F�U�F�D�U�J�P�O �1�J�Q�F�M�J�O�F��We follow the two-stage object detection pipeline [149] for end-to-end lo-
calisation and classification of animal behaviours but extend it to spatiotemporal dimension
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�$�B�U�F�H�P�S�Z(AP %)
�4���%���( �	�������
�%���3�F�T�/�F�U �$���%

Baseline CEP Baseline CEP Baseline CEP

Camera interaction 16.97 22.78 38.04 53.67 26.59 61.12
Climbing down 1.54 18.97 82.04 86.96 91.56 86.40
Climbing up 23.15 55.75 65.72 65.15 78.96 72.86
Hanging 2.76 8.91 11.25 41.05 10.16 39.80
Running 22.16 52.84 21.42 26.47 22.01 45.97
Sitting 53.20 61.13 85.54 88.02 91.74 89.16
Sitting on back 0.37 0.34 72.31 87.90 67.87 78.09
Standing 34.85 44.95 74.58 73.66 75.35 72.14
Walking 54.59 59.41 89.93 91.22 87.58 90.95

mAP50 23.29 36.12 60.09 68.23 61.31 70.72

Table 4.5: �&�Y�Q�F�S�J�N�F�O�U �3�F�T�V�M�U�T �P�O �1�B�O�"�G�S�J�D�B �%�B�U�B�T�F�U �G�P�S �"�O�J�N�B�M �#�F�I�B�W�J�P�V�S �6�O�E�F�S�T�U�B�O�E�J�O�H��The per-category
APs and mAP50 are reported. Three State-of-the-art backbones with or without CEP pre-training are tested to
evaluate the effectiveness of CEP.

with encoder modifications adapted for video. As shown in Figure 4.16, the video encoder
and a pre-trained ResNet-50+TCM+SCM [204] are applied in this pipeline for extracting spa-
tiotemporal feature representation of the sequence and context-augmented 2D feature repre-
sentation of the key frame, respectively. The region-of-interests (ROIs) in key frame are gen-
erated via a pre-trained region proposal network (RPN) with the 2D feature. These ROIs are
applied on top of the 3D feature representation via 3D ROIAlign to guide the generation of
ROI features. After temporal average pooling, classification and localisation are performed on
top of the ROI feature via two sub-networks. Lastly, same as the two-stage object detection
pipeline, post-processing methods such as threshold and Non-Maximum Suppression (NMS)
are conducted for the final results.

The performance of the behaviour understanding task is heavily dependent on the quality
of region proposals. To alleviate the bottleneck effect from the low-quality region proposals,
the RPN is enhanced by the context-guided modules �J���F��TCM and SCM which are introduced
in Chapter 3. We follow previous works on action detection that use the offline RPN [55, 68]
in evaluation and the region proposals are pre-computed by an off-the-shelf animal detector
which is not jointly trainedwith the behaviour understandingmodel in training.We adopt the
ResNet-50+TCM+SCMRetinaNet, removing the classification head, pre-trained on PanAfrica,
as the region proposal network. This detector can produce 91.22%mAP50 on animal detection
on PanAfrica.

�*�N�Q�M�F�N�F�O�U�B�U�J�P�O �%�F�U�B�J�M�T��For the video encoder, we initialise it with the weights pre-trained
using CEP on Kinetics-400. For the region proposal network, we follow the same procedures
for training a context-guided detector as described in Chapter 3. The input for video encoder is
a sequence of 32 sub-sampled frames resized to the resolution of 320� 320. The region proposal
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network takes the same input with the 16th frame as the key frame. The model is trained for
15 epochs with Adam optimiser of a learning rate of 1e-4.
�3�F�T�V�M�U�T��The performance metric is mean Average Precision (mAP) over nine categories of
pre-defined animal behaviours in PanAfrica dataset, using a frame-level IOU threshold of 0.5
(mAP50). Table 4.5 shows the per-category Average Precision (AP) and mAP50 results for a
variety of backbone: S3D-G[198], (2+1)D-ResNet[174] and C3D[74]. We compared the model
fine-tuned from scratch (baseline) with the one fine-tuned from CEP pre-training (CEP). CEP
pre-training offers significant increases in overall performance, with 12.83%, 8.14% and 9.41%
improvements over baselines for S3D-G, (2+1)D-ResNet and C3D, respectively. As for per-
category AP, we find that some ambiguous categories such as ’hanging‘ and ’camera inter-
action’ benefit a lot from CEP pre-training; moreover, CEP can also improve performance on
some minority classes such as ’running’, ’climbing down’ and ’climbing up’. Interestingly, the
performance of S3D-G model is far less than the performance of (2+1)D-ResNet and C3D in
our experiment. This finding is different from the UCF101 and HMDB51 results illustrated
in Table 4.1. We hypothesise that S3D-G model is inferior in modelling the temporal relation,
whereas PanAfrica heavily relies on the temporal context for animal behaviour understanding
�F���H��differentiating ’Climbing up’ from ’Climbing down’, but UCF101 and HMDB51 can often
be easily and accurately predicted by salient frames without reasoning the temporal relation.

������ �$�P�O�D�M�V�T�J�P�O

In this chapter, a data-driven self-guided temporal learning method has been introduced. It
is demonstrated to be capable of learning meaningful representation that can be deployed to
various video downstream tasks. Significant improvement of benchmarks on action recogni-
tion, video retrieval and animal behaviour understanding can be observed with the proposed
self-guided temporal learning method.

The proposed Cycle Encoding Prediction (CEP) leverages the intrinsic features from video
as the self-guided learning signals. It encourages the coherence of visual scenes and correspon-
dence of temporal cycles in videos by introducing the restrictions of contrastive separation and
cycle closure in the latent space. To alleviate learning collapse in practice, CEP cooperates with
Sync-TGN which is designed to avoid the intra-temporal information leaks and optical flow
obfuscation which obfuscates the low-level optical flow. Experiments demonstrate these tricks
are essential to avoid trivial solutions and facilitate stable training in CEP.

The proposed CEP concept is orthogonal to the state-of-the-art methods and can be imple-
mented as an add-on to the leading frameworkswhile keeping theirmain concepts unchanged.
We experimentally show that adding CEP to PRP [205], DPC [70] and RSPNet [142] can con-
sistently improve performance based on existing works.

CEP can guide the learning towardsmeaningful video representationwhich can be utilised
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for videodownstream tasks. Experiments ondownstream tasks for action recognition onUCF101
and HMDB51 dataset, video retrieval on UCF101 and animal behaviour understanding on
PanAfrica Dataset demonstrate CEP is effective in significantly advancing the self-supervised
video representation learning.

The proposed method employs white noise to simulate the non-deterministic nature of
future predictions. However, the extent to which various techniques can be employed to sim-
ulate stochastic prediction has not yet been fully explored. Future studies could investigate the
potential of alternative methods for simulating stochastic prediction, in addition to the effect
of utilising white noise, to further improve upon the proposed approach.

In summary, the claims of this chapter are summarised as: (i) a novel temporal cycle-
exploiting minimisation objective for self-guided pretext that provides superior generalisa-
tion and representational ability in latent space has been proposed, (ii) the proposed Cycle
Encoding Prediction (CEP) approach implements this minimisation objective in combination
with contrastive learning and by adding key components, such as amemory bank andways to
avoid trivial solutions, (iii) the potential of usingCEP concept as an add-on to existingmethods
has been experimentally demonstrated, it can consistently improve the leading frameworks,
achieving STOA performance on action recognition downstream tasks. (iv) CEP achieves com-
petitive or better than the state-of-the-art results performance for action recognition onUCF101
andHMDB51, video retrieval on UCF101 and animal behaviour understanding on PanAfrica.
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Training computer visionmodels such as object detectors rely on the availability of anno-
tated datasets which can be costly to generate. This motivates the development of self-
supervised and semi-supervisedmethods. The last chapter introduced guided learning

for self-supervised video representation learning. This chapterwill explore guided deep learn-
ing for object detection in a semi-supervised manner.

Semi-supervised learning method has attracted a lot of attention because of its effective-
ness in exploiting the potential of unlabelled data to facilitate model learning with a limited
amount of annotated data. However, semi-supervised learning often suffers from training col-
lapse or training instability due to the lack of guidance from ground truth labels in training,
�F���H��misguidance of learning by utilising unreliable pseudo-labels.

To avoid this learning collapse and increase learning efficiency, the appropriate guidance
that can lead the model to the desired learning directions is needed. In this chapter, a series of
controls and policies have been explored as the guide in semi-supervised learning, aiming to
lead the model towards robustness and performance boost. We find that the pseudo-labelling
approach with suitable dynamic curriculum learning policies can guide learning in the self-
reinforced learning cycles. This is a proof-of-concept that large unlabelled data can indeed be
exploited to enrich and empower the current detectors without further labelling efforts. More
specifically, we propose an end-to-end student-teacher detection pipeline that integrates mix-
training and dynamic training policies into one cyclical curriculum learning design. With the
guidance of the carefully fine-tuned learning policies, the proposed semi-supervised detection
pipeline can effectively leverage the mixture of the labelled and unlabelled samples in a way
that leads to virtuous training cycles (as opposed to vicious training cycles) which increasingly
and consistently improve model performance. Extensive experiments on the Animal datasets
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(including PanAfrica, Bees, and Snapshot Serengeti), MS-COCO dataset and PASCAL-VOC
dataset have been conducted to show the effectiveness of the policy guidance in the semi-
supervised detection task.

������ �.�P�U�J�W�B�U�J�P�O

As explained earlier in Chapter 3, developing computer vision tools for animal ecology is chal-
lenging, even if taking the advantage of the transfer learning of current deep models that are
trained on large-scale datasets, such as ImageNet [43], MS-COCO [114], and Kinetics [31], is
often insufficient on their own. There is still a distinct lack of large-scale, annotated training
datasets for particular species despite evolving general frameworks [4].Whilst crowd-sourcing
annotations can help, low labelling rates relative to archive sizes remain the norm in the field.
For great apes in particular, several related works have attempted to address some of the afore-
mentioned challenges [9, 154, 159, 204]. However, these works still either only pretrain on
datasets from other domains or heavily rely on relatively small datasets for supervised train-
ing due to the complexities associated with obtaining annotations.

On the other hand, camera traps deployed in natural habitats can capture a large amount
of video footage. These data have immense potential to assist learning; however, this potential
often goes untapped or neglected. The urge for utilising the vast archives of unlabelled camera
trap footage is needed in the field of animal ecology such that the potential of million-scale
wildlife data can be unleashed, being beneficial to the advance of automatic computer vision
tools. Thus, one of the most efficient ways to automate the visual perception of wildlife is
developing a computer vision algorithm which leverages the limited amount of labelled data
and a huge amount of unlabelled data.

������ �4�F�N�J���T�V�Q�F�S�W�J�T�F�E �-�F�B�S�O�J�O�H �X�J�U�I �1�T�F�V�E�P���M�B�C�F�M�T��

Semi-supervised learning exploits the potential of unlabelled data aiding downstream tasks.
In terms of how the methods utilise the unlabelled data, they can be roughly categorised into
two groups: i) consistency regularisation based approach [17, 89, 212] and ii) pseudo-label
based approach [120, 163, 164, 171, 200, 213]. In the light of the great success of pseudo-label
based approach, this chapterwill focus on the pseudo-labelmethod for semi-supervised learn-
ing on animal and generic object detection.

The prevalent pseudo-label method for semi-supervised learning leverages the student-
teacher paradigmwhere twomodels are applied on the different views of the same image,with
one learning the task by the gradient descent and the other in charge of generating pseudo-
labels for unlabelled input. As shown in Figure 5.1, the one actually learning from the data is
referred to as the student and the other one producing the pseudo-labels is the teacher, which
is an exponential moving average (EMA) of the student model. The student-teacher paradigm
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Figure 5.1: �4�U�V�E�F�O�U���U�F�B�D�I�F�S �1�B�S�B�E�J�H�N �G�P�S �4�F�N�J���T�V�Q�F�S�W�J�T�F�E �-�F�B�S�O�J�O�H��Two inputs (from MS-COCO [114]),
stochastically augmented from the same image, are passed to the student and teacher, respectively. The teacher
model, which has the same architecture as the student model, is an EMA of the student. The teacher model pro-
duces the pseudo-labels for unlabelled input to supervise the student. The student model is also supervised by the
ground truth if the input image is labelled. The gradients do not flow through the teacher branch.

can simultaneously perform pseudo-labelling for unlabelled inputs and train the model using
these pseudo-labels along with a few labelled ones. This end-to-end approach avoids the com-
plicated multi-stage training scheme, becoming the �E�F �G�B�D�U�Pfor the semi-supervised learning
approach.
�-�F�B�S�O�J�O�H �P�G �U�I�F �1�T�F�V�E�P���M�B�C�F�M �C�B�T�F�E �%�F�U�F�D�U�J�P�O �.�P�E�F�M��Let us consider a labelled sample set
� - with " labelled samples - 8and their corresponding class labels and bounding box coordi-
nates »� 8– �8¼and an unlabelled sample set � * with # unlabelled samples * 9used for learning
the detection method. Also, let S¹� º be the student model parameterised by � , and T¹� 0º be
the teacher model parameterised by � 0. The teacher is trained to generate the pseudo-labels
for unlabelled images only, while the student is trained to fit the pseudo-labels with the unla-
belled input images, as well as the ground-truth labels with the labelled input images. Thus,
the overall loss for the student is defined as theweighted sum of supervised and unsupervised
losses:

L 0;; = L ¸ 
 L 0– (5.1)

where L and L 0 denote the supervised loss produced by the labelled samples � - and un-
supervised loss produced by the unlabelled samples � * respectively, and 
 represents the
balancing weight. Equation (5.1) can then be expanded to:

L 0;;¹� º =L ¸ 
 L 0

=
1
"

Õ

- 82� -

! � ¹- 8º ¸ 

1
#

Õ

* 92� *

! 0
�

�
* 9

�
– (5.2)

where ! � ¹- 8º is the loss for labelled sample - 8,

! � ¹- 8º = Loss
�
S ¹- 8–� º –»� 8– �8¼

�

=! A4 6
�
S ¹- 8–� º – �8

�
¸ ! 24

�
S ¹- 8–� º – � 8

�
–

(5.3)
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Figure 5.2: �&�Y�B�N�Q�M�F �P�G �#�J�Q�P�M�B�S �#�F�I�B�W�J�P�V�S�B�M �%�Z�O�B�N�J�D�T. Two representative cases illustrate the bipolar dynamics
of training success when using the proposed architecture: �W�J�D�J�P�V�Tcollapse in �	�B�
and �W�J�S�U�V�P�V�Teffective learning in
�	�C�
. The scenarios differ only in policy parameterisation¹. In both plots, the right ordinate indicates the �% 50 on
the validation set whilst the left ordinate represents the average number of samples with confident score � 7 0•9
or � 7 0•5.

and ! 0
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where ! A4 6represents the bounding box regression loss and ! 24 represents the classification
loss.

We follow common practice in self-supervised learning methods that ensemble the model
itself, such as [29, 67], so that the teacher is updated by the EMA of the student,

� 0
C < � 0

C� 1 ¸ ¹ 1 � < º� C• (5.5)

The objective of the pseudo-label based detection model is to find a set of optimal student
parameters � � that minimises the expected overall loss L 0;;¹� º, such that

� � = arg min
�

L 0;;¹� º • (5.6)

�#�J�Q�P�M�B�S �#�F�I�B�W�J�P�V�S �J�O �-�F�B�S�O�J�O�H��The evolution of the student and teacher network is concep-
tually a cyclic relationship, where the performance of the student detector depends on the
quality of the pseudo-labels, which in turn relies on the teacher, and on the other hand, the
teacher is updated according to student status. Thus, there is an intricate interdependence be-
tween the student, the teacher, and the pseudo-labels forming a self-training loop which is
sensitive to the system hyperparameter settings and policies.

¹For reproducibility of behaviour in Fig. 5.2, the exact parameters used were: (a) � : constant policy, constant
� = 0•1 and constant 
 = 0•1; (b) � : linear increase policy, linear increase � 0•3 ! 0•5, constant 
 = 0•5. Both were
trained for 1000 epochs with the first 250 epochs for warmup, ;Adecreases at 800C� epoch.
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5.2. SEMI-SUPERVISED LEARNING WITH PSEUDO-LABELS.

In practice, we observe a bipolarisation phenomenon for the training of models with differ-
ent settings where they gradually become more confident of their predictions, but show two
drastically different performance trajectories. As illustrated on sample training runs shown
in Fig. 5.2, whilst a gradual increase of confidence indicators E»# �7 0•9¼and E»# �7 0•5¼, which
represent the average number of predicted objects whose confidence scores � are over 0.9 or
0.5 respectively, can be observed; the validation performance can be erratic, either collapsing
or improving effectively. In the example illustrated in Fig. 5.2(a), a decrease of �% 50 on the val-
idation set was observed after a few hundred training epochs. Initially, one may assume the
model is simply overfitting at this stage in learning. However, as shown in the second example
in Fig. 5.2(b) for a different parameterisation, a long-term increase in �% 50 can be observed,
which suggests the model can learn from the training set well into training cycles. We hypoth-
esise that the bipolar collapse or success of learning with regard to generalisation is critically
linked to the self-reinforcement property of the training loop parameterisation and policies.

�4�F�M�G���S�F�J�O�G�P�S�D�J�O�H �-�F�B�S�O�J�O�H �-�P�P�Q��Based on the repercussion of bipolar phenomenon in semi-
supervised learning, we categorise bipolarisation as two different types of learning cycles,
effective �7�J�S�U�V�P�V�T �$�Z�D�M�F�Tand collapsing �7�J�D�J�P�V�T �$�Z�D�M�F�Tas illustrated in Fig. 5.3. In the virtuous
cycle state, the teacher model generates pseudo-labels of sufficient quality as to contribute
to the training of the student model, allowing both models to improve continually. In con-
trast, the vicious cycle sees the teacher generate insufficiently low-quality pseudo-labels that
degrade the training of the student model, thus both models degenerate continually.

Figure 5.3: �1�S�P�D�F�T�T�F�T �X�J�U�I�J�O �4�F�M�G���S�F�J�O�G�P�S�D�J�O�H �-�P�P�Q�T. Illustration of four key processes (arrows) involved in
training loops.Note that a destabilised �7�J�S�U�V�P�V�T �$�Z�D�M�Fwhere low-quality pseudo-labels or highly inaccurate student
or teacher networks are produced turns into a �7�J�D�J�P�V�T �$�Z�D�M�Fand vice versa. Thus, effective parameterisations and
policies for the key processes are required to promote stable learning.
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������ �1�P�M�J�D�Z���H�V�J�E�F�E �4�F�N�J���T�V�Q�F�S�W�J�T�F�E �%�F�U�F�D�U�J�P�O

Fig. 5.3 depicts four key processes in the learning loop (shown as arrows), which are crucially
influencing the trajectory of learning: (i) �*�O�J�U�J�B�M�J�T�B�U�J�P�O: initialising the student model before
the self-training phase; (ii) �5�F�B�D�I�F�S �6�Q�E�B�U�F: updating the teacher network according to student
status; (iii) �1�T�F�V�E�P���M�B�C�F�M �(�F�O�F�S�B�M�J�T�B�U�J�P�O: generating pseudo-labels by teacher; (iv) �4�U�V�E�F�O�U �5�S�B�J�O�J�O�H:
using pseudo-labels to update student.

To seek the suitable controls or policies that guide the above processes and can overall
maintain the development of a virtuous self-training loop and, for robustness, also transition
from a vicious to a virtuous setting, we introduce four controls:

• Controls in Student Training

• Controls in Pseudo-label Generalisation

• Controls in Teacher Update

• Controls in Initialisation

In this section, we will first overview the method and then elaborate on these controls along
with the implemented policies.

���������� �.�F�U�I�P�E �0�W�F�S�W�J�F�X

Inspiring by the self-supervised [29, 36, 67] and semi-supervised [163, 164, 200] methods on
feature representation learning and image classification, our end-to-end student-teacher de-
tection pipeline integrates self-training (via pseudo-labels) and dynamic training policies into
one cyclical curriculum learning design. It introduces the novel curriculum learning controls
that intertwines traditional supervised object detector trainingwith unlabelled data utilisation.
The model can learn from unlabelled data in a curriculum fashion by generating high-quality
pseudo-labels on the fly. In turn, these virtual annotations of otherwise unlabelled samples are
exploited by the student whose update influences the teacher and the next round of pseudo-
label generation.

This cyclical self-training idea can be illustrated conceptually as a learning loop shown in
Fig. 5.4. For each cyclical iteration, a student model is trained by a mix of labelled and un-
labelled inputs where the unlabelled input are sampled by the curriculum sampling policy.
The teacher performs pseudo-label generation with unlabelled input. Pseudo-labels are then
refined by the dynamic threshold and transformed by augmentation policy. Together, both
the pseudo-labels and manually-annotated labels are fed into the student network for learn-
ing. The student network is then updated by the gradient from the overall loss which is bal-
anced by unsupervised loss weight. Finally, the teacher network is updated by the exponential
moving average (EMA) of the student parameters via a dynamic momentum coefficient. This
completes one iteration of the learning loop leading to an updated teacher and student model.
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Figure 5.4: �$�P�O�D�F�Q�U�V�B�M �0�W�F�S�W�J�F�X �P�G �1�P�M�J�D�Z���H�V�J�E�F�E �4�F�M�G���U�S�B�J�O�J�O�H �-�P�P�Q��We utilise a student-teacher paradigm
for learning where the teacher produces pseudo-labels for the student to learn from while being updated by an
exponential moving average (EMA) of the student model. We apply five dynamic policies to this learning loop
that we show can lead to effective (i.e. virtuous) self-training cycles: �V�O�M�B�C�F�M�M�F�E �E�B�U�B �T�B�N�Q�M�J�O�H �Q�P�M�J�D�Zto control the
unlabelled sample input, �D�P�O���E�F�O�D�F �U�I�S�F�T�I�P�M�E �Q�P�M�J�D�Zto filter unreliable pseudo-labels, �E�B�U�B �B�V�H�N�F�O�U�B�U�J�P�O �Q�P�M�J�D�Zto
diversify the unlabelled training data, �V�O�T�V�Q�F�S�W�J�T�F�E �M�P�T�T �X�F�J�H�I�U�J�O�H �Q�P�M�J�D�Zto balance unsupervised and supervised
losses, and �U�F�B�D�I�F�S �N�P�N�F�O�U�V�N �Q�P�M�J�D�Zto adjust the update speed of the teacher model.

Our target will be to design the mentioned policies and an appropriate loss in a fashion that
virtuous, that is effective, learning can be practically achieved.

With the carefully fine-tuned curriculum learning controls and policies in this loop, our
detection pipeline can blend labelled and unlabelled sample input in a way that leads to virtu-
ous training cycles (as opposed to vicious training cycles) which increasingly and consistently
improve model performance. For semi-supervised animal detection, this approach expands
model coverage of the vast space of animal appearance slowly from the labelled sample base
guided and channelled by the policies, and demonstrates that this policy-guided approach can
greatly stabilise the learning, avoid themodel collapse and improve the detection benchmarks.

���������� �$�P�O�U�S�P�M�T �J�O �4�U�V�E�F�O�U �5�S�B�J�O�J�O�H

Student training controls define the policies applied on the process from the pseudo-label to
the student as shown in Figure 5.4. This process is guided by twopolicies that allow the student
model to exploit the unlabelled sample data and their pseudo-labels effectively.

�6�O�M�B�C�F�M�M�F�E �%�B�U�B �4�B�N�Q�M�J�O�H �1�P�M�J�D�Z��This policy controls the number of unlabelled samples to
use in the self-training loop at different time steps. It can be expressed with an additional
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Bayesian prior on Equation (5.2), �J���F��
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where � ¹* 9º is the probability for using the unsupervised loss of * 9 in the self-training stage.
For simplicity, we substitute 
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Based on the definition of L 0;;¹� º in Eq. (5.2), Eq. (5.8) can be simplified to:

L � ¹� º =L 0;;¹� º ¸ #  Cov»! 0
� – ?¼ (5.9)

The goal is to search for the best unlabelled data sampling policy � � that can yield the lowest
possible loss for Eq. (5.9), such that:

� � =arg min
�

L � ¹� º

=arg min
�

L 0;;¹� º ¸ #  Cov»! 0
� – ?¼

=arg min
�

 Cov»! 0
� – ?¼

(5.10)

Equation (5.10) suggests that if ! 0
� and ? are negatively correlated then we can arrive at an

effective policy � � . Given that ? is positively correlated with � , since 

# E»� ¼is positive, an ef-

fective unlabelled data sampling policy � � should be negatively correlated to ! 0
� . The model

gets updated for each iteration, thus one may assume naïvely that ! 0
� ¹* 9̧ 1º 5 ! 0

� ¹* 9º, because
! 0

� ¹* 9̧ 1º is generated after backpropagation of ! 0
� ¹* 9º. In practice, during training, we also

observed such a decrease of E»! 0
� ¼as shown in Fig. 5.5(f).
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Figure 5.5: �6�O�M�B�C�F�M�M�F�E �%�B�U�B �4�B�N�Q�M�J�O�H �1�P�M�J�D�J�F�T �� �6�O�T�V�Q�F�S�W�J�T�F�E �-�P�T�T �%�Z�O�B�N�J�D�T�� �	�B�
models a linear increase
of the unlabelled data ratio from 0 to 1 over epochs, �	�C�
combines warm-up and cool-down phases with a linear
increase, �	�D�
linear decrease of the unlabelled data ratio, �	�E�
combines linear decreasewithwarm-up and cool-down
phases, �	�F�
keeps a constant ratio, and �	�G�
shows the unsupervised loss ! 0

� observed in training.

In summary, considering � � and ! 0
� are negatively correlated, and ! 0

� is indeed decreasing
over time, we can conclude that � can consequently be obtained via cyclical curriculum learn-
ing. Practically, this may be carried out via a gradual increase of unlabelled sample input in
the ways shown in Fig. 5.5(a) or Fig. 5.5(b), where the latter includes warm-up and cool-down
periods. Conceptually, these policies expand learning slowly but steadily towards the unex-
plored data domain in order to allow for a gradual expansion of high-quality model expertise
and prevent erratic learning collapse. For comparison and to emphasise the importance of this
policy choice, we later also experimentally examine other policies depicted in Figs. 5.5 (c), (d),
and (e).

�6�O�T�V�Q�F�S�W�J�T�F�E �-�P�T�T �8�F�J�H�I�U�J�O�H �1�P�M�J�D�Z��This policy is tasked with balancing the weighting be-
tween the supervised and unsupervised losses. The performance of the student detector de-
pends on the quality of the pseudo-labels. Figs. 5.6(a) and (b) depict pseudo-label distribu-
tions captured at an early stage and a late stage of the training, respectively, plotted against
the confidence score � . Label confidence and IOU quality clearly increase over training at these
snapshot points. The associated @IOU50 and @IOU75 precision curves in Fig. 5.6(c) illustrate
that the average quality of the pseudo-labels increases over time. We note that recent works
[164, 171, 200] on this topic only applied a fixed weighting to all pseudo-labels throughout the
training. Yet, given this observed gradual change in pseudo-label quality, there is an oppor-
tunity to design an adaptive weighting policy that applies smaller unsupervised loss weights
for less reliable pseudo-labels in the early training stages and larger weights for more reliable
pseudo-labels generated in the later training stages.

To implement this,weuse a curriculum learning approach for the unsupervised lossweight-
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Figure 5.6: �1�T�F�V�E�P���M�B�C�F�M �"�O�B�M�Z�T�J�T.We use 70k pseudo-labels generated from the teacher network to conduct this
analysis. Note that unlabelled samples do not use ground truth in training, but we use it for this analysis. �	�B�
and
�	�C�
show the distributions of each pseudo-label’s ground truth IOU against the confidence score � visualised at the
early stage (100C� epoch snapshot) and later stage (800C� epoch snapshot) of training, respectively. �	�D�
the pseudo-
label mean precision at IOU50 and IOU75 without applying a threshold over the training epochs. �	�E�
pseudo-label
quality against the threshold � represented by IOU50 and IOU75 precision averaged across epochs, and IOU of real
ground truth labels averaged on all epochs. �	�F�
mean recall at IOU50 and IOU75 for different � values, �	�G�
heatmap
indicating the normalised � � score for � Cat different epochs - light to dark colours for low to high scores, orange
shows the best � � score at each epoch, and the dark green plot represents our confidence threshold policy as the
arctan function that approximates the best � � scores.

ing parameter 
 , which is made subject to an adaptive weighting policy. Theoretically, more
optimal policies would keep track of the bounding box pseudo-label qualities. However, in
practice, this is hard to do on the fly due to the unavailability of the ground truth and extensive
computational needs. We thus opt for a simple linear increase of 
 as a first approximation.

���������� �$�P�O�U�S�P�M�T �J�O �1�T�F�V�E�P���M�B�C�F�M �(�F�O�F�S�B�U�J�P�O

Pseudo-label generation controls define the policies applied on the process from the teacher
to the pseudo-label in Figure 5.4. The controls are implemented with two policies to generate
reliable pseudo-labels from the teacher’s output to promote a virtuous cycle for training.

�$�P�O���E�F�O�D�F �5�I�S�F�T�I�P�M�E �1�P�M�J�D�Z��This policy allows us to examine the reliability of pseudo-labels
at different threshold values of � , ranging from 0.1 to 0.9, and averaged across epochs. Our aim
is to select an optimised value in order to discard unreliable pseudo-labels most effectively.

Threemetrics are applied to assess the quality of the pseudo-labels: IOU, Precision @IOU50

and Precision @IOU75. The plots in Fig. 5.6(d) for all measures show that they increase as �

does. Trivially, the higher the value of the confidence threshold � , the higher the probability of
obtaining more reliable pseudo-labels. To obtain the highest quality, one could select � = 0•9.
However, as a consequence, the recall rate is significantly suppressed, with bothmean@IOU50
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and @IOU75 recalls of course negatively correlated to � (see Fig. 5.6(e)). For example, when
� = 0•9, mean precision reaches approx. 95%, while the mean recall drops to approx. 15%. In
this case, some real box candidates will be mistakenly regarded as negatives (False Negatives),
which may hinder the training and harm the performance.

To address this issue, our dynamic confidence threshold policy increases the quality of
pseudo-labels by controlling false negatives explicitly and thereby balancing precision and re-
call. We apply the � � score which is the weighted harmonic mean of precision and recall, with
� = 0•5 to allow the � � score favours precision metrics than recall metrics on the basis that
the false positives have a more negative impact than the false negatives in our pipeline, con-
sidering i) different from the anchor-based detectors �F���H��[79, 113, 149], we use the anchor-free
DETR-based detection pipeline (see Sec. 5.4) that ignores the false negative pseudo-labels in
training, rather than assigning them as negatives (non-object class) in anchor-based detectors.
The bipartite matching in the DETR-based detection pipeline only matches the predictions
with the ground truth, thus any missed bounding boxes are ignored and there are no penal-
ties for this in training. Further, ii) bounding box-aware crops are applied in the augmentation
stage, thus false negative areas could be wiped out in the image. For example, see the animal
marked with a yellow bounding box in Fig. 5.7, which if undetected by the teacher, it could
disappear after a label consistent augmentation (without false negatives).

Figure 5.7: �&�Y�B�N�Q�M�F �P�G �&�M�J�N�J�O�B�U�J�O�H �'�B�M�T�F �/�F�H�B�U�J�W�F�T �W�J�B �"�V�H�N�F�O�U�B�U�J�P�O��This image demonstrates that the false
negatives produced by the teacher model could be wiped out by applying the label consistent augmentation. The
image sources from MS-COCO [114].

After fixing � , which may be changed for different application scenarios, the goal of our
confidence threshold policy is to search for the threshold � at time step Cthat can maximise
� � , �J���F��

� �
C= arg max

� C

� � ¹PC–RCj� Cº– (5.11)

where PCand RCrepresent the precision and recall rates at time step C, determined by threshold
� C. The heatmap in Fig. 5.6(f) shows the normalised � � score for each time step (darker colour
means higher value), with the best � � at threshold � Cshown in the orange plot. We use the
approximate fit of the arctan function (dark green plot) to represent our confidence threshold
policy.
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Figure 5.8: �"�V�H�N�F�O�U�B�U�J�P�O �4�U�S�B�U�F�H�Z �J�O �$�&�1. Visualisation of colour augmentation and geometric augmentation
examples used in the experiments. Augmentations are selected such that the results reflect the variance found
across different camera and acquisition settings commonly seen in the dataset. (best viewed under zoom)

�%�B�U�B �"�V�H�N�F�O�U�B�U�J�P�O �1�P�M�J�D�Z��This policy ensures consistent augmentation of unlabelled data
under the pseudo-labels produced by the teacher. This is an indispensable element in semi-
supervised and self-supervised methods. Self-supervised methods, such as DINO [29] and
BYOL [67] minimise different views of data generated by data augmentation. Recently, semi-
supervised methods such as FixMatch [163] and STAC [164], use augmentation-driven consis-
tency regularisation for classification and detection.

Following STAC, we explore different variants of transformations for our augmentation
policy A . The transformation is operated in sequence as follows: first, we randomly apply
a bounding-box-aware crop and resize to an input image, and then we apply a randomly-
selected geometric transformation, followed by a random transformation on the colour statis-
tics of the image. Finally, for strong augmentation A B, we apply random erase [222] or cutout
[44] at multiple random locations of the whole image. For a weak augmentation A F , we just
decrease the intensity for each transformation. Some examples from the PanAfrica dataset are
shown in Fig. 5.8 to illustrate the augmentation process.
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���������� �$�P�O�U�S�P�M�T �J�O �5�F�B�D�I�F�S �6�Q�E�B�U�F

�5�F�B�D�I�F�S �.�P�N�F�O�U�V�N �1�P�M�J�D�Z��This policy controls the update speed of the teacher model and is
encapsulated in the momentum coefficient < . In Fig. 5.6(c), we can see the pseudo-label pre-
cision rate increases steeply in the early training stages, but slowly in the later training stages.
Given that learning happens faster in the early stage, it motivates us to design a dynamic mo-
mentum policy which takes this fact onboard and stabilises teacher updates. Equation. (5.5)
suggests that a lower momentum coefficient allows faster updates of the teacher model. To
match the learning speed of the model at different time steps, we use a lower momentum
coefficient < at the early stages and gradually increase it with time. In practice, we use a co-
sine increase of < in our pipeline which has also been explored in DINO [29]. In experiments,
we find that this dynamic momentum policy leads to consistently better performance than a
constant one (see Table 5.2).

���������� �$�P�O�U�S�P�M�T �J�O �*�O�J�U�J�B�M�J�T�B�U�J�P�O

Controls in initialisation define how to initialise the model before entering the self-training
phase. For initialisation, the teacher model could be initialised by the student model as de-
fault. However, in practice, we found that training could get trapped in a vicious cycle if the
backbone architecture is randomly seeded. To seed training with a defined base that avoids
such behaviour, we use the self-supervised ImageNet pre-trained ResNet from SWAV [28] as
the initialisation for our detection backbone. Alternatively, we also consider a supervised, Im-
ageNet pre-trained ResNet [81] to initialise our backbone for comparative evaluation in our
experiments.We confirmed experimentally that the proposed system operates in a stableman-
ner with fixed, standard backbone initialisations across all tested datasets. Note that any such
fixed initialisation is essential as random initialisation triggers vicious training cycles, however,
the fix is not sensitive to target dataset properties as transfer between scenarios still produces
stable learning.

���������� �$�P�N�C�J�O�F�E �1�P�M�J�D�Z �"�Q�Q�M�J�D�B�U�J�P�O

All the controls and policies are implemented in unison as a dynamic curriculum learning
strategy � for our semi-supervised detection pipeline, comprising the unlabelled data sam-
pling policy � C = � � ¹Cº, the unsupervised loss weighting policy 
 C = � 
 ¹Cº, the confidence
threshold policy � C = � � ¹Cº, the data augmentation policy A = � A ¹Cº and the teacher mo-
mentum policy < C = � < ¹Cº. Algorithm 1 illustrates this curriculum learning strategy � ,
f � C–
 C–� C–A – <Cg in its complete form.
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�"�M�H�P�S�J�U�I�N ��Semi-supervised Training of Great Ape Detector using all Policies
1: �3�F�R�V�J�S�F��� - – � * 3 labelled and unlabelled data
2: �3�F�R�V�J�S�F��S � –T � 0 3 student and teacher models
3: �3�F�R�V�J�S�F��� 3 curriculum learning strategy
4: S �  initialisation T � 0  initialisation 3 initialise student and teacher models
5: �E�P
6: � C–� C–
 C– <C–A  � (t) 3 instantiate five policies at each time step – Sec. 5.3.6
7: - 8, »� 8– �8¼  �N�J�O�J���C�B�U�D�I(� - ) 3 sample labelled mini-batch data
8: * 9  �N�J�O�J���C�B�U�D�I(� * ) 3 sample unlabelled mini-batch data
9: * 9  � C¹* 9º 3 apply unlabelled data sampling policy – Sec. 5.3.2

10: A B–A F  A 3 sample strong and weak augmentations – Sec. 5.3.3
11: »� 9– �9¼–� 9  D � 0¹A F ¹* 9ºº 3 generate pseudo-labels by teacher

12:
=
* 9–»

=
� 9–

=
� 9¼  1¹* 9–»� 9– �9¼ j� 9 7 � Cº 3 apply confidence threshold policy – Sec. 5.3.3

13: L  �-�P�T�T
�
D � ¹A F ¹- 8ºº–A F ¹»� 8– �8¼º

�
3 get supervised loss – Eq. 5.3

14: L 0  �-�P�T�T
�
D � ¹A B¹

=
* 9ºº–A B¹»

=
� 9–

=
� 9¼º

�
3 get unsupervised loss – Eq. 5.4

15: L 0;;  L ¸ 
 CL 0 3 apply unsupervised loss weighting policy – Eq. 5.1
16: � �  �r L 0;;� 3 backpropagate the overall loss
17: �  � ¸ � � 3 update student networks by gradient – Eq. 5.6
18: � 0  < C� 0 ¸ ¹ 1 � < Cº� 3 update teacher with teacher momentum policy – Eq. 5.5
19: C C¸ 1 3 next time step and repeat
20: �V�O�U�J�ML 0;; converge
21: �F�O�E

������ �%�F�U�F�D�U�J�P�O �1�J�Q�F�M�J�O�F

DEtection with Transformers (DETR) [26] built the first end-to-end detection pipeline by view-
ing object detection as a direct set-prediction problem. DETR family eliminated the need for
anchor-based target assignment pre-processing and non-maximum suppression (NMS) post-
processing, prevalent in commonly used object detection pipelines. In this work, we select
the DETR variant as the model for the various detection components of our proposed policy-
guided framework.

�%�&�5�3 �1�J�Q�F�M�J�O�F��DETR leverages transformer encoder and decoder with multi-head attention,
integrating with the Hungarian maximummatching algorithm that forces unique predictions
for each ground-truth bounding box via bipartite matching. Let us suppose the input feature
map 6 2 R� � , � � are extracted by a backbone (�F���H��, ResNet), it leverages the transformer-
based encoder and decoder to project the input feature map 6 (after the positional encoding)
to the features of a set of object queries 6@ 2 R# � � , where # is the number of pre-defined
object queries and � is vector dimension for object queries (Note that the object queries are
pre-defined learnable vectors). Then tree cascaded feed-forward neural network (FFN) and a
�G�B�M�2���`layer are applied on the object query feature 6@to generate the detection prediction.
The FFNacts as the regression branchwhich predicts the normalised bounding box  � , whereas
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the �G�B�M�2���`layer acts as the classification branch to predict the category  � for each object. Let
 Hdenotes the predictions by DETR, �J���F�� H , » �–  � ¼and  H8 is the iC� prediction out of # pre-
dictions, �J���F�� H = f  H8g#

8=1. As no assumption on the order of the labels or the predictions in
the transformer is made, the Hungarian bipartite matching algorithm [84] is utilised to match
the object labels H to the ones in  Hby finding the permutation � that minimises the overall
matching cost:

� � = arg min
� 2� #

#Õ

8=1

� match¹H9– H� ¹8ºº – (5.12)

where � # represents all the permutation of # predictions and � match is the matching cost that
takes into account the classification and localisation performance of the permuted predictions
and labels. �J���F��

� match¹H9– H8º = � cls¹� 9–  � 8º ¸ � � loc¹� 9– � 8º – (5.13)

where � is the balancing factor and � cls can be implemented with cross entropy and � loc can
be L1 distance. Thus the overall loss for DETR with the optimal � � is given

L 0;;¹H– Hº =
#Õ

8=1

� 2L cls

�
� 8–  � � �

¹8º

�

¸ 1 f � 8<0g

�
� ;L loc

�
� 8– � � �

¹8º

� �
–

(5.14)

where L cls is the classification loss, that can be implemented via cross entropy loss or focal
loss described in Eq. 3.17; the L loc is the localisation loss that is implemented by GIOU loss
[150] and smooth-L1 loss in Eq. 3.18. The notation 1 represents the conditional indicator that
suggests only applying the localisation loss if the label � 8 is the foreground class in this case.
�5�I�F �7�B�S�J�B�O�U�� �%�F�G�P�S�N�B�C�M�F���%�&�5�3��The DETR simplifies the complicated detection pipeline;
however, it also has its own issues. These issues can bemainly attributed to the deficits of trans-
former attention in handling image feature maps as key elements: i) DETR performs worse on
small object detection, compared with anchor-based detectors. The anchor-based detectors
produce the high-resolution feature maps to obtain more details of small object details. How-
ever, high-resolution feature maps are associated withmore computational complexity for the
self-attention module in DETR, which has a quadratic complexity with respect to the spatial
size of the input feature maps. ii) More training time is required for DETR to converge. This is
because the bipartite matching algorithm only matches a few of the object queries in each iter-
ation. Thus only the matched object queries and their associated branches can be optimised in
the iteration, the unmatched ones would not be optimised, leading to an increase in training
iterations.

Considering the training efficiency and the computation overhead,we select theDeformable-
DETR [231] as themodel for the demonstration of our proposed policy-guided framework. The
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Figure 5.9: �1�S�P�Q�P�T�F�E �1�P�M�J�D�Z���H�V�J�E�F�E �%�F�U�F�D�U�J�P�O �1�J�Q�F�M�J�O�F��We utilise the Deformable-DETR [231] frameworkwith
a ResNet backbone as detector architecture. The student network (light green) uses this architecture as well as the
teacher network (dark green). All labelled data along with dynamically sampled and policy-controlled unlabelled
data are mixed during training. The teacher performs pseudo-label generation with purely unlabelled input on
the fly. The pseudo-labels are filtered with an adaptive threshold and then augmented via a bounding box-aware
transformation. The teacher network is updated by the student model via a dynamic momentum coefficient. The
final loss is the sum of supervised and unsupervised detection losses balanced by a policy-controlled dynamic
weight. We carefully designed the policies of the system to achieve an effective (a.k.a. virtuous) self-reinforcing
training cycle.

overview of the detection pipeline with Deformable-DETR is shown in Figure 5.9 (In theory,
our method can be extended to other mainstream detectors easily). The Deformable-DETR
improves the DETR model from the following three main aspects: i) replacing the original
multi-head self-attention or cross-attention with a multi-scale deformable self-attention and
multi-scale deformable cross-attention scheme; ii) replacing the independent layer-wise pre-
diction scheme in DETR with an iterative refinement prediction scheme; iii) replacing the ir-
relevant query in the original image content with a dynamic query generated by the output
from the transformer encoder. Within these improvements, the deformable-DETR can achieve
better performance with less training efforts and lower memory footprints.

������ �&�Y�Q�F�S�J�N�F�O�U�T �P�O �1�B�O�"�G�S�J�D�B �%�B�U�B�T�F�U

���������� �%�B�U�B�T�F�U

The proposed self-training detection pipeline is tested on the Extended PanAfrica Dataset²
from the PanAf programme [5] which contains camera-trap footage captured in natural Great
Ape habitats in central Africa. This dataset is referred to as the Extended PanAfrica Dataset,

²The dataset comprises of 500 videos that have been fully labelled, and an additional approximately 5000
videos that are unlabelled.
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as it encompasses all the manually annotated videos (as discussed in Section 3.1) as well as
a substantial number of unlabelled raw videos that are suitable for semi-supervised learn-
ing. There are two major species of Great Apes in the dataset, gorillas and chimpanzees. The
archive footage contains around 20K videos adding up to around 600 hours.We use a subset of
5219 videos, with 500 videos (totalling over 180K frames) manually annotated with per-frame
great ape location bounding boxes, species and further categories [154, 204]. This labelled data
is split into �i�`���B�M�b�2�i, �p���H�b�2�i, �i�2�b�i�b�2�iat a ratio of 80%–5%–15%respectively. All labels and
metadata have been introduced in Chapter 3.

Following standard evaluation protocols as used in [120, 164, 200, 228], we utilise the Ex-
tendedPanAfricanDataset for system training andbenchmarkingunder twogeneral paradigms:

1. �1�B�S�U�J�B�M�M�Z �-�B�C�F�M�M�F�E �%�B�U�B �	�1�-�%�
. In this setting, either 10%, 20%, or 50%of the annotated
�i�`���B�M�b�2�idata are sampled as labelled training data, and the complete remainder of all
data is used as unlabelled data. For each quantity, we create 3 different data folds and
report the performance on �i�2�b�i�b�2�iwithmean average precision (mAP) as the evaluation
metric. This scenario reflects many camera trap and wildlife data environments where
only very small amounts are annotated.

2. �'�V�M�M�Z �-�B�C�F�M�M�F�E �%�B�U�B �	�'�-�%�
. In this setting, the whole annotated �i�`���B�M�b�2�iis utilised as
the labelled training data and only the remaining � 5Kunlabelled videos, totalling � 1.8M
frames, are used as additional unlabelled data.

���������� �*�N�Q�M�F�N�F�O�U�B�U�J�P�O �%�F�U�B�J�M�T��

We use a Deformable DETR architecture with a ResNet-50 backbone as our default detection
model (see Fig. 5.9) for evaluating the effectiveness of our method. The transformer decoder
and encoder are randomly initialised and the ImageNet pre-trained ResNet-50 weights from
SWAV [28] are used as initial parameters for our backbone. The student model is trained with
the AdamW optimiser [125] with a weight decay of 0.0004 and a batch size of 64, distributed
over 4 GPUs. We follow [29] using a linear scale rule of ;A= 0•0005� 10C2�B8I4•64and apply
a slightly lower learning rate of 0•1 � ;Afor the backbone. We use randomly sampled frames
for each video at each epoch with frequency $ = 10, and the frames are rescaled so that the
smaller axis of the frame is in the range »320–480¼. The PLD model is trained for 1000 epochs
with the first quarter as the warm-up phase and the last quarter as the cool-down phase (Fig.
5.5(b)), and ;Adecreases to 54� 5at the 800C� epoch. Themomentum < for updating the teacher
follows a cosine schedule from 0.998 to 0.9998. Since the amount the partially labelled data
setting and the fully labelled data setting is quite different, training parameters vary slightly
from that for FLD. We use total epochs=1100 with the first 500 epochs as a warmup, the last
100 epoch as cooldown and ;Adecreases at the 1000C� epoch for FLD. The unlabelled ratio is
bounded at 10 in mini-batch. Linear increase 
 is 0•3 ! 1 and arctan increase is � 0•3 ! 0•6.
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���������� �$�P�N�Q�B�S�B�U�J�W�F �&�W�B�M�V�B�U�J�P�O��

�.�F�U�I�P�E �-�B�C�F�M�M�F�E �3�B�U�J�P �4�F�U�U�J�O�H�N�"�1 mAP50 mAP75

Supervised baseline 10% PLD 32•17� 0•70 75•57� 1•24 21•40� 2•45
STAC [164] 10% PLD 38•04� 3•88 73•31� 7•01 35•34� 2•31
SoftTeacher� [200] 10% PLD 39•37� 7•97 63•03� 11•42 44•50� 9•72
Ubteacher� [120] 10% PLD 44•03� 0•26 76•69� 2•15 47•25� 1•21
Ours 10% PLD ����������� 2•97 ����������� 6•14 ����������� 3•12

Supervised baseline 20% PLD 46•93� 1•30 86•47� 0•74 46•00� 2•42
STAC 20% PLD 51•35� 2•39 83•71� 2•24 56•58� 4•12
SoftTeacher� 20% PLD 50•87� 2•99 79•57� 6•29 58•67� 2•89
UbTeacher� 20% PLD 55•78� 0•45 88•07� 1•88 63•02� 0•67
Ours 20% PLD ����������� 1•57 ����������� 0•98 ����������� 2•45

Supervised baseline 50% PLD 59•50� 1•40 92•37� 0•92 65•47� 2•04
STAC 50% PLD 59•93� 1•21 92•35� 0•65 67•40� 2•10
SoftTeacher� 50% PLD 60•47� 3•58 86•93� 4•23 69•63� 3•35
UbTeacher� 50% PLD 61•66� 1•73 91•79� 1•45 ����������� 1•42
Ours 50% PLD ����������� 1•34 ����������� 0•68 70•00� 3•45

Supervised baseline 100% FLD 65.53 95.28 74.52
STAC 100% FLD 46.98 80.76 50.61
SoftTeacher� 100% FLD ���������� 94.90 ����������
UbTeacher� 100% FLD 66.45 94.13 79.35
Ours 100% FLD 67.64 ���������� 76.81

Table 5.1: �3�F�T�V�M�U�T �B�O�E �%�F�U�B�J�M�F�E �$�P�N�Q�B�S�B�U�J�W�F �&�W�B�M�V�B�U�J�P�O �P�O �U�I�F �&�Y�U�F�O�E�F�E �1�B�O�"�G�S�J�D�B�O �%�B�U�B�T�F�U��Mean and
standard deviation on the test set portion evaluated over 3 data folds for 10%, 20% and 50% Labelled Ratio are
reported. Supervised baseline refers to the same model trained on the labelled data only. Other state-of-the-art
methods are re-evaluated on the dataset based on their publicly available codebase. We evaluate the methods
with PLD and FLD settings which represent the Partially Labelled Data and Fully Labelled Data paradigms. PLD
evaluation in particular was performed at scale using the Labelled Ratio portion of 500 labelled videos (i.e. � 180k
annotated frames) as labelled input and adding remaining videos plus � 5000 additional unlabelled videos (i.e.
� 1.8M frames) of the same domain for unlabelled input. Note that * indicates the data loader was tailored for this
dataset based the public codebase.

We first evaluate our method for the PLD and FLD settings against a supervised baseline
and state-of-the-art works STAC [164], SoftTeacher [200] and UbTeacher [120] at various ratios
of labelled data. Table 5.1 summarises the results.

Our proposed method shows significant performance improvements under almost all test
settings. For example, in the mAP column, we outperform the supervised baseline by 13•79%,
12•08%,3•89%, STACby7•92%, 7•66%, 3•46%, SoftTeacher by6•59%, 8•14%,2•92%andUbTeacher
by 1•93%, 3•23%, 1•73%when 10%, 20%, 50%of labelled data are provided, respectively, achiev-
ing the state-of-the-art performance on all three settings

We find that our method works better than others particularly when the provided labelled
data is small as illustrated. The method can gain amazing 43•08%performance on the super-
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Figure 5.10: �3�F�M�B�U�J�W�F �*�N�Q�S�P�W�F�N�F�O�U �$�P�N�Q�B�S�J�T�P�O�T��Relative improvement of mAP for our method over the su-
pervised baseline, STAC, SoftTeacher, and UbTeacher across various PLD settings. We find our method shows
particularly strong performance in lower annotation ratio regimes typical for many wildlife data settings.

vised baseline for 10%split setting, and about 25•73%for 20%split setting and about 6•55%for
50%split setting as shown in Fig. 5.10.We note again that such a setting is particularly common
in wildlife applications where camera trap archives are large and accurate annotation ratios
are very small. We can see that competitor methods also show sizeable improvements over
the supervised baseline for smaller splits, indicating unsurprisingly that extra unlabelled data
has particularly high value when very little labelling is available in the first place. However,
note that the performance gap between the proposed method and other approaches is also
particularly large in exactly this setting, confirming the specific applicability of our enhanced
dynamics for curriculum learning in low labelling ratio settings. Qualitative results across all
methods are exemplified and discussed in Fig. 5.11. This is complemented by visualisations
of some failure cases in Fig. 5.12.

Further experiments on evaluating on Fully Labelled Data (FLD) settings. Our method
achieves competing results, reaching mAP of 67•64%, 95•87%and 76•81 for mAP, mAP50 and
mAP75, respectively, against other state-of-the-art semi-supervised detection models.

���������� �"�C�M�B�U�J�P�O �4�U�V�E�J�F�T

In this section, we evaluate the proposed key policies using �7�Q�H�/�Rsplit of the 50%PLD setting
on PanAfrica Dataset as the base for the conducted ablations.
�6�O�M�B�C�F�M�M�F�E �%�B�U�B �4�B�N�Q�M�F �1�P�M�J�D�Z��The motivation of our unlabelled data sample policy (Eq.
5.10) is to make sure that if the unlabelled loss ! 0

� and unlabelled data sampling policy �

are negatively correlated, the minimum possible loss can be achieved. Based on this hypo-
thesis, we designed five experiments for five different possible characteristics for policy � : (i)
linear increase of the number of unlabelled samples (Curriculum learning) used in training
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Figure 5.11: �2�V�B�M�J�U�B�U�J�W�F �%�F�U�F�D�U�J�P�O �&�Y�B�N�Q�M�F�T��We compare our method with other state-of-the-art approaches
tested and the supervised baseline under the PLD setting with Labelled Ratios of 10%, 20%, 50%. Note examples
where our proposed method reliably detects partly occluded apes and ignores tree structures which distract some
of the other models. (best viewed under zoom)

over the training process (depicted in Fig. 5.5(a)), (ii) linear increase but with warm-up and
cool-down phases at the beginning and at the end respectively (Fig. 5.5(b)), (iii) start with all
unlabelled samples but linearly decrease the number of unlabelled samples throughout train-
ing (Fig. 5.5(c)), (iv) The opposite of (ii) (Fig. 5.5(d)), (v) using all unlabelled samples constantly
throughout training (Fig. 5.5(e)).

The results in Table 5.2(a) show that a gradual increase of the number of unlabelled sam-
ples during the self-training phase can gain around 1•16%mAP compared with constantly
using all the unlabelled samples. The best performance however is achieved by introducing a
warm-up and a cool-down phase at 64•3%mAP. This ablation experiment demonstrates that
both the choice of ’phasing in’ unlabelled data underpinned by our theoretical discussion in
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Figure 5.12: �&�Y�B�N�Q�M�F�T �P�G �'�B�J�M�V�S�F �$�B�T�F�T. Visualised are failure cases under the 10%PLD setting. Ground-truth
labels are annotated in red, and our detection results are shown in green. Note that partial occlusions form one
hard-to-learn aspect given sparse label availability for training (best viewed under zoom).

Section 5.3.2 have a positive measurable effect on learning performance.
�6�O�T�V�Q�F�S�W�J�T�F�E �-�P�T�T �8�F�J�H�I�U �1�P�M�J�D�Z��The results in Table 5.2(b) demonstrate the effects of the
unsupervised loss weight policy. We find that setting the unsupervised loss weight 
 is a
challenge since both a large loss weight and a small loss weight can harm the performance.
A 9•30% mAP drop occurs when 
 = 2•0 compared to 
 = 0•5. We argue that constantly
applying a large 
 would harm the training at the beginning because 
 would assign a large
weight for the loss produced by the unreliable pseudo-labels in the early stages which would
mislead the model, causing it to get caught up in vicious training cycles. In contrast, applying
our dynamicweighting approach, the performance reaches 64•73%, which is 0•75%better than
a constant 
 = 0•5, 2•55%better than 
 = 0•1 and about 10%better than 
 = 2. As discussed in
Sec. 5.3.2, while our linear increase performs best, it is a naïve approach since the best global
policy is difficult and computationally costly to find across the space ofmonotonously growing
functions. Further exploration of this policy is subject to future work.
�$�P�O���E�F�O�D�F �5�I�S�F�T�I�P�M�E �1�P�M�J�D�Z��Table 5.2(c) displays the effects of different approaches for
the confidence threshold policy. Through extensive experiments, we find that the best per-
formance is achieved when threshold � is increasing from 0.1 to 0.6 with an arctan function.
However, both low and high thresholds cause significant performance degradation, at both
low and high thresholds, e.g. � = 0•05 and � = 0•9, respectively, with lower thresholds be-
ing worse. This suggests that false positive pseudo-labels (appearing at low thresholds) have
a more negative impact than false negative pseudo-labels (that appear at higher thresholds).
As noted in Section 5.3.3, this motivated us to use a new weighted metric � � to assess the best
choice of threshold for this policy. Applying the arctan increasing � approach, we see a signif-
icant increase in performance. For comparison, we conducted a linear increase approach from
0.1 to 0.6, which takes similar strides, although arctan increases more aggressively in the early
stages and achieves a slightly better outcome.
�*�O�J�U�J�B�M�J�T�B�U�J�P�O �1�P�M�J�D�Z��The initial status of the studentmodel is crucial since it can affect training
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�	�B�


�4�B�N�Q�M�F �1�P�M�J�D�Z� �N�"�1

Linear Increase 61.62
Linear Increasey� ����������
Linear Decrease 53.47
Linear Decreasey 59.99

Constant 60.46

�	�C�


�-�P�T�T �8�F�J�H�I�U �1�P�M�J�D�Z
 �N�"�1

Constant 0•1 62.18
Constant 0•5 63.98
Constant 1•0 63.21
Constant 2•0 54.68

Linear 0•1 ! 1� ����������
Linear 0•1 ! 2 61.17

�	�D�


�$�P�O�G�� �5�I�S�F�T�I�P�M�E �1�P�M�J�D�Z� �N�"�1

Constant 0•05 51.73
Constant 0•6 62.62
Constant 0•9 58.61

Linear 0•3 ! 0•5 62.38
Linear 0•1 ! 0•6 64.10
arctan 0•1 ! 0•6� ����������

�	�E�

�*�O�J�U�J�B�M�J�T�B�U�J�P�O�N�"�1

Random Init. 0.17
SWAV Init.� ����������

supervised Init. 61.55

�	�F�


�"�V�H�N�F�O�U�B�U�J�P�O �1�P�M�J�D�ZA �N�"�1

No Augmentation 55.41
Augmentation with A F , A �

B ����������

�	�G�


�.�P�N�F�O�U�V�N �1�P�M�J�D�Z< �N�"�1

Constant 0•999 60.07
Constant 0•998 59.19
Constant 0•9998 57.60

cos 0•998! 0•9998� ����������

Table 5.2: �"�C�M�B�U�J�P�O �4�U�V�E�J�F�T �P�G �B�M�M �-�F�B�S�O�J�O�H �1�P�M�J�D�J�F�T��The effectiveness of the introduced policies is verified via
ablation. All studies are conducted for the �7�Q�H�/�Rsplit at 50% Labelled Ratio in the PLD setting. The symbol �

represents the default settings which we use in the system and the y symbol denotes the presence of warm-up
and cool-down phases. Only one policy is varied for each study to isolate the effect. ‘Constant’ represents ‘no
curriculum’ learning where the related variable or unlabelled sample pool stays constant.

direction from the start towards an effective virtuous or catastrophic vicious cycle of learn-
ing. We see in Table 5.2(d) that a random initialisation of the model can lead to such catas-
trophic failure in training, while a SWAV-based self-supervised initialisation outperforms a
supervised one.

�"�V�H�N�F�O�U�B�U�J�P�O �1�P�M�J�D�Z��A simple ablation is performed on the proposed augmentation policy,
�J���F��A F and A B augmentations versus no augmentation. Results show a significant improve-
ment by 9•32%as seen in Table 5.2(e).

�5�F�B�D�I�F�S �.�P�N�F�O�U�V�N �1�P�M�J�D�Z��We compare a static momentum coefficient approach with a dy-
namic momentum approach for < which is used to update the teacher network. As shown in
Table 5.2(f), both settings have a similar expected value but the dynamic momentum policy
improves the performance significantly by 4•66%.
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Figure 5.13: �&�Y�B�N�Q�M�F�T �P�G �'�B�M�T�F �1�P�T�J�U�J�W�F �1�T�F�V�E�P���M�B�C�F�M�T��We visualise the false positive pseudo-labels from
teacher model, specifically those with an intersection-over-union (IoU) value of 0, in Figure 5.6 (b). The ground
truth boxes are highlighted in red, while the green boxes represent the selected wrong pseudo bounding boxes.

���������� �.�P�E�F�M �-�J�N�J�U�B�U�J�P�O �P�O �1�B�O�"�G�S�J�D�B �%�B�U�B�T�F�U��

As outlined in Chapter 3, the PanAfrica dataset presents several complex scenarios. Figure 5.13
illustrates some instances of failure where the teacher model produces false positive pseudo-
labels in challenging cases.

Upon examining these failure cases shown in Figure 5.6 (IoU=0 cases), we observe a recur-
ring pattern in some of them, where the model erroneously identifies dark background areas
as great apes. We attribute this failure to the model’s incapability to leverage temporal infor-
mation, owing to its frame-by-frame operation. Future works could investigate methods that
integrate semi-supervised learning with animal detection in video to alleviate this problem.

������ �.�P�S�F �&�Y�Q�F�S�J�N�F�O�U�T �P�O �"�O�J�N�B�M �%�B�U�B�T�F�U�T

The proposed policy-guided semi-supervised detection pipeline can leverage large numbers
of unlabelled data to facilitate detection performance. However, It is clearly not limited to
great ape detection. To demonstrate its applicability in a wider animal domain, we conduct
experiments on Bees Dataset and Snapshot Serengeti.

���������� �&�Y�Q�F�S�J�N�F�O�U�T �P�O �U�I�F �#�F�F�T �%�B�U�B�T�F�U

Figure 5.14: �#�F�F�T �%�B�U�B�T�F�U��Sample images from Bees Dataset. It contains crowded scenes where bees are densely
located in the hive.
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Bees dataset³ contains approximately 5K images of bees captured in the hive. The bees and
pollen that appear in each image are annotatedwith Bboxes.Most of the data include crowded
scenes where bees are densely located, as shown in Figure 5.14.

In this experiment, we consider only PLD settings as we do not have extra bee data. We
randomly spilt 80% of the whole data as a training set and use the rest as a testing set. For
the training set, we construct three different PLD labelled ratios sampled with five different
random seeds, where the labels are randomlymasked so that the proportion of labelled data is
5%, 10%, and 20%, respectively. We evaluate the supervised baseline and our proposedmodel
over five data folds for 5%, 10%, and 20% labelled ratios and report the mean and standard
deviation of mAP. In Table 5.3, we demonstrate a substantial performance boost applying our
policy-guided semi-supervised learning, especially under lower data regimes,with 6•66%gain
over the baseline in the 5% PLD setting.

�.�F�U�I�P�E �-�B�C�F�M�M�F�E �3�B�U�J�P�N�"�1 mAP50 mAP75

Supervised baseline 5% 26.15� 1.47 65.24� 2.55 14.96� 1.83
Ours 5% ����������� 1.40 (+6.66) ����������� 2.93 (+7.95) ����������� 0.89 (+7.16)

Supervised baseline 10% 35.40� 1.15 75.82� 1.31 27.16� 1.91
Ours 10% ����������� 0.25 (+5.07) ����������� 0.60 (+3.33) ����������� 1.05 (+8.67)

Supervised baseline 20% 42.24� 1.33 82.34� 1.65 37.99� 2•12
Ours 20% ����������� 1.02 (+2.93) ����������� 0.89 (+1.45) ����������� 0.85 (+6.10)

Table 5.3: �&�Y�Q�F�S�J�N�F�O�U�B�M �3�F�T�V�M�U�T �P�O �#�F�F�T �%�B�U�B�T�F�U��Mean and standard deviation on the test set portion evaluated
over 5 data folds for 5%, 10%, and 20% labelled ratios are reported. Supervised baseline refers to the same model
trained on the labelled data only. Note that we adopt the policy hyperparameters optimised for the PanAfrica
dataset on these experiments. The blue text represents the relative improvements compared with the baselines.

���������� �&�Y�Q�F�S�J�N�F�O�U�T �P�O �U�I�F �4�O�B�Q�T�I�P�U �4�F�S�F�O�H�F�U�J

We conducted experiments on sparsely labelled versions of the Snapshot Serengeti dataset⁴
([168]) in which overall around 78K images (out of 7.1M) are labelled with instance-level
bounding boxes that allow us to test our proposed method. Figure 5.15 shows some examples
from this dataset. We conducted our experiments under PLD settings where the model was
trainedwith 5% and 10% of the labelled data out of 78K labelled images. As shown in Table 5.4,
substantial boosts of mAP, mAP50, mAP75 can be observed under limited label regimes when
comparing the supervised baseline (composed as before for the MS-COCO and Bees datasets)
to our full system. Moreover, our method can reach similar or better performance than the
supervised baseline while using only half of the labelled data.

To provide some further context to the wider literature on this dataset, we note that us-
ing only 20%of the labels our method’s performance at mAP50 of 82.7 comes close to pub-

³dataset available at �?�i�i�T�b�,�f�f�H�B�H���X�b�+�B�2�M�+�2�f�/���i���b�2�i�b�f�#�Q�t�2�b�@�Q�M�@�#�2�2�b�@���M�/�@�T�Q�H�H�2�M
⁴Available at �?�i�i�T�b�,�f�f�H�B�H���X�b�+�B�2�M�+�2�f�/���i���b�2�i�b�f�b�M���T�b�?�Q�i�@�b�2�`�2�M�;�2�i�B
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Figure 5.15: �4�O�B�Q�T�I�P�U �4�F�S�F�O�H�F�U�J �%�B�U�B�T�F�U��Sample images from Snapshot Serengeti Dataset.

lished results for fully supervised training with 100%of the Snapshot Serengeti labels using
Mask-RCNN [85] atmAP50 of 85.7 and significantly outperforms full label trainingwith Faster-
RCNN [85] at mAP50 of 73.2 or Context-RCNN [14] at mAP50 of 55.9.

Finally, we note that themulti-dataset learning approach of theMegaDetectorV5a* [4] lead-
ing tomAP50 of 90.65 on this dataset prevents fair apple-to-apple comparisonwith ourmethod.
However, themulti-dataset training regime is clearly highly effective in utilising label informa-
tion across animal species boundaries. Future work into benchmarking our presented work in
such multi-dataset training settings seems a promising avenue to improve results for species-
specific and species-agnostic detectors further.

�-�B�C�F�M�M�F�E �G�P�M�E
�4�V�Q�F�S�W�J�T�F�E �#�B�T�F�M�J�O�F�0�V�S�T

�N�"�1 �N�"�150 �N�"�175 �N�"�1 �N�"�150 �N�"�175

5%

0 52.13 74.94 56.45 55.40 78.48 59.20
1 53.31 75.75 57.34 56.11 78.16 60.18
2 52.05 74.98 56.12 55.38 78.17 59.61

�B�W�H��52.50 75.22 56.64 55.63 78.27 59.66

10%

0 56.24 78.00 60.83 59.56 80.92 63.86
1 55.96 78.46 60.95 59.14 80.75 63.47
2 55.89 78.87 60.81 58.95 80.61 63.60

�B�W�H��56.03 78.44 60.86 59.22 80.76 64.33

20%

0 58.98 81.19 64.26 60.97 82.53 66.04
1 59.21 80.96 64.17 61.39 82.78 66.32
2 59.74 81.51 64.81 62.12 82.90 67.26

�B�W�H��59.31 81.22 64.41 61.49 82.74 66.54

Table 5.4: �&�Y�Q�F�S�J�N�F�O�U�B�M �3�F�T�V�M�U�T �P�O �4�O�B�Q�T�I�P�U �4�F�S�F�O�H�F�U�J �%�B�U�B�T�F�U��Three folds and their average results on test set
evaluated are reported for 5%, 10%, 20% labelled ratio. Supervised baseline refers to our model without any aspect
of the unlabelled branch. Note that we adopt the policy hyperparameters optimised for the PanAfrica dataset on
these experiments.
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������ �&�Y�Q�F�S�J�N�F�O�U�T �P�O �(�F�O�F�S�J�D �%�F�U�F�D�U�J�P�O �%�B�U�B�T�F�U�T

The policy-guided method primarily addresses the problem of the sparsity of labelled data
in animal ecology. Yet, it is nevertheless both conceptually and practically applicable to main-
stream object detection. The concept of slowly expanding detection capabilities of a model in
a policy-controlled way to learn highly complex and variable object appearance is indeed not
limited to animal detection. In order to experimentally support any claim of wider applicabil-
ity, we evaluated our proposed method on the popular MS-COCO dataset and PASCAL-VOC.
We conduct PLD setting experiments on theMS-COCOdataset, inwhich ourmethod is trained
under a lowdata regime. Ourmethod is also evaluated under FLD settings for bothMS-COCO
and PASCAL-VOC datasets, where an extra unlabelled set is utilised.

���������� �&�Y�Q�F�S�J�N�F�O�U�T �P�O �U�I�F �.�4���$�0�$�0 �%�B�U�B�T�F�U

For a fair comparison, we followed the same evaluation approach in STAC [164] using their
splits between labelled and unlabelled data. We trained our model with PLD settings and
Labelled Ratios of 1%, 5%, 10% evaluated on the standard COCO �p���H�k�y�R�dwith the mAP50:95

metrics. Additionally, the proposed method is also evaluated with FLD settings with the MS-
COCO �m�M�H���#�2�H�2�/�k�y�R�dset as the additional unlabelled dataset.

�.�F�U�I�P�E �7�F�O�V�F ���� �1�-�% ���� �1�-�% ������ �1�-�%

STAC [164] Arxiv’20 13.97� 0.35 24.38� 0.12 28.64� 0.21
Instant-Teaching [228] CVPR’21 18.05� 0.15 26.75� 0.05 30.40� 0.05
Humble Teacher [171] CVPR’21 16.96� 0.38 27.70� 0.15 31.61� 0.28
UbTeacher [120] ICLR’21 20.75� 0.12 28.27� 0.11 31.50� 0.10
SoftTeacher [200] ICCV’21 20.46� 0.39 ����������� 0.08 34.04� 0.14
DETReg [11] CVPR’22 14.58� 0.30 24.80� 0.20 29.12� 0.20
MUM [96] CVPR’22 ����������� 0.12 28.52� 0.09 31.87� 0.30

Our Sup. Baseline - 11.31� 0.30 21.33� 0.20 26.34� 0.10
Ours - 17.36� 0.22 (+6.05) 29.84� 0.21 (+8.51) ����������� 0.34 (+8.74)

Table 5.5: �$�P�N�Q�B�S�J�T�P�O �P�O �.�4���$�0�$�0 �X�J�U�I �1�-�% �4�F�U�U�J�O�H��The mAP50:95 standard COCO evaluation metrics on
the COCOvalidation set are reported bymodels trained on 1, 5, 10%Labelled Ratio under PLD settings. The results
are the average of 5 experiments with different random seeds. Our supervised baseline refers to ourmodel without
the unlabelled branch, leaving a Deformable DETR setup with ResNet-50 backbone identically initialised to our
full method for fair comparison. Note that our full method demonstrates competitive or superior performance in
comparison, indicating that concepts introduced here for wildlife detection are still applicable to general object
detection. The blue text represents the relative improvements compared with the baselines.

As shown in Table 5.5 and Table 5.6, we achieve leading state-of-the-art results for a 10%
PLD Labelled Ratio and the FLD setting. At other ratios, our benchmarks remain competi-
tive: for 5% PLD our method trails only 0•90%below the best result by SoftTeacher, and for
1% PLD it scores 4•52%below the SOTA MUM model. This demonstrates that the introduced
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�.�F�U�I�P�E �7�F�O�V�F �&�Y�U�S�B �%�B�U�B�T�F�U�N�"�1

Supervised - - 40.90

Self-training [233] NIPS’20 ImageNet+OpenImage 41.90 (+1.00)

STAC [164] Arxiv’20

unlabeled2017

39.21 (-1.69)
ISMT [203] CVPR’21 39.64 (-1.26)
Unbiased-teacher [120] ICLR’21 41.30 (+0.40)
Humble-Teacher [171] CVPR’21 42.37 (+1.47)
Instant-Teaching [228] CVPR’21 40.20 (+4.82)
Soft-Teacher [200] ICCV’21 44.50 (+3.60)
MUM [96] CVPR’22 42.11 (+1.21)
Ours - ����������(+4.40)

Table 5.6: �$�P�N�Q�B�S�J�T�P�O �P�O �.�4���$�0�$�0 �X�J�U�I �'�-�% �4�F�U�U�J�O�H��The mAP50:95 standard COCO evaluation metrics on
theCOCOvalidation set are reported bymodels trained on all the labelled �i�`���B�M�k�y�R�dset plus additional unlabelled
�m�M�H���#�2�H�2�/�k�y�R�d, except Self-training which utilise a larger ImageNet+OpenImage as extra dataset. Our method
dominates SOTA methods. The blue text represents the relative improvements compared with the baselines. The
standard deviations are not report in this setting as the full dataset was used.

concepts of dynamic control in curriculum learning are certainly applicable to awider domain
of general object detection. We find that our curriculum learning method is less sensitive to
hyperparameters. In practice, the hyperparameter configurations for COCO dataset⁵ are inher-
ited from the hyperparameters that are fine-tuned on the PanAfrica dataset. They can indeed
outperform the state-of-the-art under certain configurations after searching. Further research
will be required to stipulate in how far truly dataset-optimal hyperparameterisation of dy-
namic training regimes such as the one presented is computationally feasible. For practical
purposes, it is important to note that hyperparameter transfer does not lead to learning col-
lapse or vastly degraded performance as will be shown again in our experiments outlined in
the next section.

���������� �&�Y�Q�F�S�J�N�F�O�U�T �P�O �U�I�F �1�"�4�$�"�- �7�0�$ �%�B�U�B�T�F�U

In order to understand applicability to mainstream object detection further, we utilise another
popular object detection benchmark to evaluate our model. We follow the standard FLD eval-
uation process on the PASCAL VOC dataset ([52]), as in [120, 164, 228], with the performance
of our model reported on �o�P�*�y�d�@�i�2�b�i, trained using �o�P�*�y�d�@�i�`���B�M�p���Has the labelled training
set, and �o�P�*�R�k�@�i�`���B�M�p���Hor �o�P�*�R�k�@�i�`���B�M�p���H+ �*�P�*�P�k�y�+�H�b⁶.

As shown in Table 5.7, we explore two different policy-parameter settings in the exper-

⁵To handle the large size of MS-COCO, the training epochs are adjusted to range from 50 to 100 depending on
the labelled ratio so that the total training iteration is fixed to 180k, while keeping the other hyperparameters of
the policy the same.

⁶This set is tailored from MS-COCO dataset, which keeps the same 20 categories as PASCAL VOC as the unla-
belled training set.
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No. �.�F�U�I�P�E �7�F�O�V�F
�7�0�$���� �7�0�$����̧ �$�0�$�0�����D�M�T

mAP50 mAP mAP50 mAP

1. Supervised - 72•63 42•13 72•63 42•13

2. STAC [164] Arxiv’20 77•45 (+4.82) 44•64 (+2.51) 79•08 (+6.45) 46•01 (+3.88)
3. ISMT [203] CVPR’21 77•23 (+4.60) 46•23 (+4.10) 77•75 (+5.12) 49•59 (+7.46)
4. Instant-Teaching [228] CVPR’21 79•20 (+6.57) 50•00 (+7.87) 79•00 (+6.37) 50•80 (+8.67)
5. Humble-Teacher [171] CVPR’21 80•94 (+8.31) 53•04 (+10.91) 81•29 (+8.66) 54•41 (+12.28)
6. Unbiased-Teacher [120] CVPR’21 77•37 (+4.74) 48•69 (+6.56) 78•82 (+8.19) 50•34 (+8.21)
7. Unbiased-Teacher-v2 [121] CVPR’22 81•29 (+8.66) 56•87 (+14.74) 82•04 (+9.41) 58•08 (+15.95)
8. MUM [96] CVPR’22 78•94 (+6.31) 50•22 (+8.09) 80•45 (+7.82) 52•31 (+10.18)
9. LabelMatch [32] CVPR’22 85•48 (+12.85) 55•11 (+12.98) - -
10. DSL [33] CVPR’22 80•70 (+8.07) 56•80 (+14.67) 82•10 (+9.47) 59•80 (+17.67)
11. ACRST [214] AAAI’22 81•11 (+8.48) 54•30 (+12.17) - -
12. Dense-Teacher [227] ECCV’22 79•89 (+7.26) 55•87 (+13.74) 81•23 (+8.60) 57•52 (+15.39)

13. Oursy 81•89 (+9.26) 57•02 (+14.89) 81•82 (+9.19) 58•28 (+16.15)
14. Ours 82•09 (+9.46) 57•65 (+15.52) 82•34 (+9.71) 58•85 (+16.72)

Table 5.7: �$�P�N�Q�B�S�J�T�P�O �P�O �1�"�4�$�"�- �7�0�$ �%�B�U�B�T�F�U��In experiment, �o�P�*�k�y�y�d�@�i�`���B�M�p���His used as the labelled
set and �o�P�*�k�y�R�k�@�i�`���B�M�p���Hused as the unlabelled set for all the models. The results are reported based on the
evaluation on �o�P�*�k�y�y�d�@�i�2�b�i. y represents the hyperparameters that are directly inherited from COCO without
further fine-tuning efforts. The blue text represents the relative improvements compared with the baselines.

iments, i) without policy-parameter searching⁷ (with y notation in the Table), and ii) with
pseudo-label analysis and policy-parameter searching. For VOC12, Row 13 shows the leading
57.02% mAP and the second best 81.89 % mAP50, and for VOC12 + COCO20cls, Row 13 offers
the second best 58.28% mAP and competitive 81.82% mAP50 among state-of-the-art methods.
It also achieves a 14.89% and 16.15% gain in mAP over the supervised baselines, respectively,
by simply adopting the configuration from the MS-COCO experiments. This further supports
the argument that policy and parameter transfer does not lead to learning collapse or vast
performance degradation.

When we systematically analyse the pseudo-labels and perform policy-hyperparameter
fine-tuning⁸, the performance of our method can be boosted, achieving state-of-the-art 57•65%

mAP for VOC12 and 82•34% mAP50 for VOC12 + COCO20cls (row 14 in Table 5.7). Given
the close results presented in Table 5.7, future research could conduct a T-test to determine
whether the proposed method exhibits a statistically significant improvement.

Our experimental results on PASCALVOC suggest i) the proposedmethod can have appli-
cations beyond animal detection, and ii) it does not need heuristic tuning for hyperparameters,
since merely adopting the COCO ones for PASCAL VOC can lead to virtuous training cycles
and achieve competitive or superior results.

⁷We heuristically adopt the policy-parameter fine-tuned for MS-COCO.
⁸For reproducibility of this experiment, the exact parameters used were: � Linear Increase with warm-up and

cool-down phases; linear increase 
 0•1 ! 1; arctan increase � 0•2 ! 0•5.
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������ �$�P�O�D�M�V�T�J�P�O

In this chapter, policy-guided learning for semi-supervised detection has been introduced. Ex-
periments show the problem of the bipolarity in the behaviour of the cyclical student-teacher
training regimes can lead to either effective virtuous or collapsing vicious training loops. We
discussed the importance of expandingmodel coverage of new data slowly and in a controlled
way to keep expanding detector and label quality without collapse. We also addressed the is-
sue by proposing the corresponding controls and policies applied on each key process of the
train loop to guide the dynamics of training and promote steady, simultaneous improvements
to the student detector, the teacher detector, and the quality of the pseudo-labels. We found
the proposed controls and policies applied to cyclical student-teacher-based semi-supervised
learning detection framework can keep the virtuous training loop or exit the vicious cycles
towards the virtuous learning cycles.

We showed that the described approach is effective in significantly advancing the state-of-
the-art in detection performancewhen evaluated under various settings on the large Extended
PanAfrica Dataset and other animal datasets. We further found that our approach is alsomore
widely applicable. The evaluations on MS-COCO and PASCAL VOC achieve competitive or
superior performance over existing state-of-the-art methods.

This chapter holds the promise for dynamic curriculum learning controlled by training
policies to be applied effectively to sparsely labelled wildlife data and thereby help unlock
the full wealth of information so far widely sealed in steadily growing unlabelled camera trap
archives.

Overall, the claims of this chapter can be concluded as, (i) a novel end-to-end policy-guided
training scheme for semi-supervised detection; (ii) a number of controls, implemented via
measured policies, that support or guide semi-supervised, self-reinforcing training loops; (iii)
extensive experiments and ablation studies on a large-scale great ape camera trap dataset and
other animal datasets, demonstrating the effectiveness on alleviating the lack of labelled data
in animal ecology. and (iv) benchmarking on generic object detection datasets, demonstrating
its broader applicability.

143





C
H
A
P
T
E
R

6
�$�ð�ï�ä�í�ö�ô�ê�ð�ï

This thesis explored �H�V�J�E�F�E �E�F�F�Q �M�F�B�S�O�J�O�Happlied to animal recognition in video. By ad-
dressing the real-world challenges from animal datasets, the proposed guided learning
techniques are demonstrated to be effective in assisting humans for animal inspection

efforts, especially in challenging animal video footage.
Most deepmodels that are designed and optimised for generic computer vision tasks, such

as image classification [46, 81, 162], object detection [26, 113, 149], and video understanding [31,
174], are trained with large-scale datasets. The public datasets [31, 43, 52, 114] that fueled the
advancement of deep learning algorithms are large in scale, effortless to acquire, and adequate
in labels, whereas domain-specific datasets such as animal recognition datasets are usually
small in quantity, low in quality, and sparse in labels. These problems prohibit the application
of deep visual models in this field.

The current deep learning models [26, 113, 149] have achieved remarkable performance
in object recognition tasks. However, applying them directly in the field of animal ecology
may result in inferior performance as they fail to address the dataset challenges in the animal
domain. Instead, this thesis delves into these challenges for animal recognition specifically
and provides solutions based on the current deep recognition models when facing animal
ecological data. More specifically, these challenges can be summarised as

• �%�B�U�B �%�J���D�V�M�U�Z��Video footage filmedwith camera traps is one of the primary sources for
wildlife conservation. However, due to the harsh capture environment, some scenarios
contain difficult illumination, blurry backgrounds, animal occlusion, video noise, and
motion blur, which can pose difficulties in applying deep recognition models.

• �4�I�P�S�U�B�H�F �P�G �M�B�C�F�M�M�F�E �%�B�U�B��Deep learning algorithms are notoriously data-hungry; how-
ever, animal ecology lacks human-annotated large-scale training data. This poses chal-
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