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ABSTRACT

With frequent exposure to novelty, it is imperative that the brain is capable of rapidly adjusting

the appropriate synaptic connections to adapt its behavioural responses to new situations.

Acetylcholine is a neuromodulator released during novelty and is important for synaptic plasticity

and learning via its heterogeneous modulatory effects on different cell types. Here, we introduce a

framework of cholinergic-mediated credit assignment (ChoCA) that models the cholinergic system

(CS) based on adaptive methods used in machine learning. The CS serves as an adaptive module,

integrating error signals to modulate synaptic updates derived from a backpropagation-like

credit assignment mechanism in cortical microcircuits. The cholinergic signals are modelled

at varying degrees of diffuseness to reflect the heterogeneity of the information transmitted.

On standard pattern recognition tasks, our results show that diffuse cholinergic modulation

is sufficient for effective adaptive learning. Moreover, the model postulates that cholinergic

modulation of somatostatin (SST) interneurons is critical for credit assignment; specifically, it

predicts that acetylcholine depresses the SST-to-pyramidal cell (PC) synapse. We also develop a

novel plausible backprop-like model called Bursting Cortico-Cortical Networks which provides a

mechanism for communicating error signals as bursting activity to the CS. Preliminary findings

from ex vivo slice electrophysiology experiments reveal that while the excitability of SST/OLM

interneurons increases with bath application of a cholinergic agonist, the inhibitory transmission

of these interneurons onto CA1 PCs is reduced in line with the model’s prediction. A dual

optogenetics approach using the Chrimson and ChRger opsins was also developed to examine the

effects of endogenous acetylcholine on this inhibitory transmission. Furthermore, optogenetic

stimulation of these interneurons during a long-term potentiation (LTP) induction protocol

prevents LTP indicating their importance in the regulation of synaptic plasticity. Overall, our work

demonstrates the efficacy of coupling neuromodulatory signals with efficient credit assignment

for adaptive learning in the brain.
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INTRODUCTION

1.1 Credit assignment

In neuroscience, credit assignment refers to the process of assigning credit to various neurons or

synapses for a given behavioural outcome, and is a crucial component of learning in hierarchical

neural networks. This process provides important information for synaptic plasticity mechanisms

to appropriately modify the system to reach its desired output. Understanding how credit assign-

ment occurs in the brain is critical for understanding how we learn from experience and adapt our

behaviour in response to changing environments. Plasticity rules have traditionally been based on

two-factor Hebbian updates which rely on the correlations between pre- and postsynaptic activity.

However, this approach is inadequate for credit assignment since it overlooks the downstream

effects of synapses on the network output (Richards and Lillicrap, 2019; Lillicrap et al., 2020).

Therefore, coincident pre- and postsynaptic activity could provide an eligibility trace to determine

which synapses are suitable for change but a third factor that represents downstream information

in the form of neuromodulation or feedback must be involved to determine whether these synaptic

changes occur (Gerstner et al., 2018). Credit assignment solely with a global neuromodulatory

error signal is not sufficient for learning difficult tasks in deep networks where the effect of each

synapse on the output is highly complex (Werfel et al., 2004; Hiratani et al., 2022). It is more

efficient if a feedback error signal is present to directly inform the neuron about the impact of

its synapses on the downstream network. The error backpropagation algorithm provides this

feedback error signal to each neuron indicating how altering their synapses will affect the overall

error of the network (Lillicrap et al., 2020; Rumelhart et al., 1986). This section will explore the

error backpropagation algorithm and how it could potentially be implemented in the brain to

address the credit assignment problem.
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CHAPTER 1. INTRODUCTION

1.1.1 Error backpropagation algorithm

The error backpropagation algorithm (backprop) is a widely used method for training artificial

neural networks (ANNs). An ANN is a computational model that is inspired by the structure and

function of the biological neural networks in the human brain. It consists of a large number of

interconnected processing elements, called neurons, typically organised into multiple layers with

all-to-all connectivity between neurons of one layer and the next. These connections are referred

to as weights and can be thought of as synaptic connections with varying synaptic strengths.

When an input is provided to the network, the activities of the neurons are propagated forward

through the weights to the final layer where the output of the network is produced. Backprop is

an efficient way to adjust the weights of the connections between neurons in a network, allowing

the network to learn and improve its performance over time. Backprop uses the chain rule from

calculus to compute the gradient of a loss function with respect to the weights (Lillicrap et al.,

2020; Rumelhart et al., 1986). The loss function, also known as the cost function or objective

function, is a mathematical function that measures the difference between the predicted output

of a model and the actual output or target value. Gradient descent is an optimisation approach

that uses this gradient to directly update the weights in a way that reduces the error of the

network’s predictions (Fig. 1.1).

Backprop was first introduced in the 1970s by several researchers independently, including

Paul Werbos, David Rumelhart, and Geoffrey Hinton (Rumelhart et al., 1986). However, it was

not widely adopted until the 1980s when the parallel development of faster computers and

larger datasets made it more practical for training larger and more complex neural networks.

Today, backprop is the standard method for training many types of neural networks, including

feedforward networks, recurrent networks, and convolutional networks (Goodfellow et al., 2016).

Backprop has several variations and extensions, depending on the type of neural network and

the specific optimisation method used. For example, it can be extended for training recurrent

neural networks on sequential data by using a method called "backpropagation through time"

(Werbos, 1988). Additionally, there are variations of the optimisation method, such as stochastic

gradient descent and adaptive learning rate methods, which control the learning rate of the

weight updates (Duchi et al., 2011; Tieleman et al., 2012; Zeiler, 2012; Kingma and Ba, 2014;

Shazeer and Stern, 2018; Anil et al., 2019; Yi et al., 2021; Hayashi et al., 2016). The learning rate

determines the magnitude of the weight updates so controlling this hyperparameter is important

for the convergence of the network to good local minima (i.e. good solutions). If the learning rate

is too high, it may overshoot and oscillate around these minima, failing to converge. On the other

hand, if the learning rate is too low, the optimisation may take a long time to converge or may get

stuck in bad local minima.

Overall, the backpropagation algorithm is a fundamental tool for training neural networks and

has been used to achieve state-of-the-art performance, comparable to humans, on a wide range of
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tasks, from image recognition to natural language processing.
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FIGURE 1.1: How the backpropagation algorithm works. (A) Suppose we have a feedforward neural
network with a single hidden layer and we want to train it to predict the output of a function given some
input. In the forward phase, an input is provided to the network and in this case it activates the neuron i.
This activity is propagated forward through the weights of neuron i with the next layer neurons e.g. Wi j.
This activity continues to be propagated through each layer of the network until it reaches the output layer
where the final output is produced. (B) In the backward phase, the error between the predicted output
and the actual output or target is calculated, and the weights in the network are adjusted to reduce this
error. This is done by propagating the error backward through the network, layer by layer, and updating
the weights using the calculated error. The update rule (equation in the dashed box) for each weight is
based on the chain rule of calculus, which states that the derivative of a composite function is equal to
the product of the derivatives of its individual components. The gradient of the error with respect to each
weight –error

–wi j
is calculated using this rule, and the weights are adjusted in the opposite direction of the

gradient to minimise the error. The learning rate, ·, is used to scale the gradient to control the size of the
weight updates to ensure convergence to the global minimum of the loss function.

1.1.2 The credit assignment problem

With frequent exposure to novelty, it is imperative that the brain is capable of rapidly adapting

in order to execute appropriate responses to new situations. The brain learns by modifying the

strength of the synaptic connections between neurons. However, it remains unclear how the brain

assigns accountability, or credit, to synapses to achieve learning and this is referred to as the

“credit assignment problem” Minsky (1961). This is a critical problem in both machine learning

(ML) and neuroscience. In ML, credit assignment is essential for optimising the performance of
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ANNs, while in neuroscience, it is crucial for understanding how the brain learns from experience

and adapts to changing environments.

In the context of supervised learning, where the desired output for a given input is known,

backprop is a typical solution to the credit assignment problem in neural networks. Gradients

computed using this algorithm can be seen as a way of assigning credit or blame to each weight

for the error in the output. However, in the context of reinforcement learning, where agents learn

from trial and error in an environment, credit assignment is more complex. The agent’s actions

affect not only the immediate reward but also the future rewards, and the relationship between

the agent’s actions and the rewards can be highly non-linear and non-trivial. As this encompasses

a temporal component, traditional backprop alone, which acts hierarchically in ANNs, is not

sufficient to solve the credit assignment problem in reinforcement learning. One approach is

to integrate backprop with other methods such as temporal difference learning which uses the

difference between predicted and actual rewards to update the value of actions (Sutton, 1988).

This can take the form of actor-critic architectures, where an actor network generates actions

and a critic network assigns credit to those actions (Konda and Tsitsiklis, 2003).

In neuroscience, the use of backprop has also been studied as a possible mechanism for credit

assignment in the brain. Recent research has shown that backprop-trained models produce

neuronal responses which are consistent with the activity observed from neurons in the posterior

parietal, primary motor and visual cortices (Lillicrap et al., 2020). For example, a study by Güçlü

and van Gerven (2015) demonstrated that the internal representations reconstructed from each

layer of an ANN trained on over a million natural images with backprop were representative of

the increasingly complex features found along the visual ventral stream. Despite outperforming

alternative frameworks in accurately reproducing cortical activity patterns and mounting evi-

dence that deep neural networks trained with backprop can help explain neural data, the extent

to which the brain uses backprop for credit assignment is still a topic of ongoing research as its

direct translation into physiology harbours numerous biological implausibilities (Crick, 1989;

Lillicrap et al., 2020; Cadieu et al., 2014).

1.1.3 Biologically plausible backprop algorithms

Recent developments have begun to capture the properties of backprop with more biologically

plausible implementations by introducing concepts from neuroscience including dendritic com-

putation, interneurons and bursting (Guerguiev et al., 2017; Sacramento et al., 2018; Payeur

et al., 2020). Downstream feedback is a key feature in backprop for credit assignment. The

properties of distal apical dendrites of pyramidal neurons have implicated their involvement in

credit computations. To begin with, they are a major recipient of feedback projections from higher

cortical areas such as the entorhinal cortex (EC) back to the CA1 region of the hippocampus

(Fig. 1.2A). In addition, it is well established that they are important for the generation of
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dendritic spikes, such as plateau potentials, and burst activity; thus, they are critical for updating

of synaptic connection weights within the network (Richards et al., 2019; Sjöström and Häusser,

2006; Bittner et al., 2015; Williams and Fletcher, 2019; Pike et al., 1999; Larkum et al., 2009).

In pyramidal cells, the coincidence of somatic spiking and synaptic input to the apical dendrite

or sufficient depolarisation of the apical dendrite alone can generate dendritic spikes including

plateau potentials (Fig. 1.2B) (Larkum and Zhu, 2002; Gambino et al., 2014). These regenerative

dendritic events induce burst firing in the pyramidal neuron and studies have demonstrated

that apical driven plateau potentials control the formation of CA1 place cells and determine

whether plasticity in basal dendrites occurs (Bittner et al., 2015). Given these properties of the

apical dendrite, it has been proposed that they integrate higher-order feedback error signals

that drive dendritic spikes and bursting to regulate synaptic plasticity. This has resulted in the

development of computational models that use the properties of apical dendrites to implement

credit assignment for synaptic plasticity (Guerguiev et al., 2017; Sacramento et al., 2018; Payeur

et al., 2020, 2021). However, these models still contain biological implausibilities and omit some

important factors for plasticity such as neuromodulation. Overall, feedback prediction errors

propagated via dendrites could govern the directionality of plasticity with neuromodulation

potentially acting as a gating mechanism for the process.

A B

FIGURE 1.2: The role of distal apical dendrites of pyramidal neurons in credit assignment.
(A) Schematic of a representative layer 5 neocortical pyramidal neuron. The basal and distal apical
dendrites are thought to be electrotonically separated compartments and generally receive different inputs.
Feedfoward (FF) inputs predominantly innervate the basal compartment whereas feedback (FB) inputs
mostly target the distal apical compartment. There is an area on the apical dendrite that possesses an
abundance of calcium channels (green) which enables the propagation of regenerative dendritic events
such as plateau potentials. (B; top) FF inputs alone trigger regular spiking activity which can lead to
backpropagating action potentials arriving into the apical dendrite (green traces) but this is not enough
to elicit a plateau potential. (bottom) However, the coincident activity from FF and FB inputs is strong
enough to activate the voltage-dependent calcium channels in the calcium active zone to generate a plateau
potential. This plateau potential results in burst firing at the soma and synaptic plasticity occurs. Adapted
from Richards and Lillicrap (2019).
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1.2 The hippocampus

The hippocampus, named after its resemblance to a seahorse, is a structure located deep in

the medial temporal lobes of the brain. Within the hippocampal formation, there exist distinct

subregions encompassing the hippocampus and the entorhinal cortex. Each of these subregions

plays a role in representing specific types of information, including spatial information (Brickman

et al., 2011; Seok and Cheong, 2020). As a result, the interconnected networks within the

hippocampus possess the essential elements required for hierarchical information organisation

similar to that of ANNs used in machine learning (McKenzie et al., 2014; Collin et al., 2017). The

hippocampus has been one of the most thoroughly studied brain regions, particularly in relation

to memory function. The famous case study of patient H.M., who suffered from an inability to form

new declarative memories following the removal of his hippocampus and neighbouring temporal

lobe regions, paved the way for extensive research concerning the hippocampus’s involvement in

learning and memory. As a result of this research, long-term potentiation (LTP) was discovered

in the hippocampus and has become the leading model for the cellular basis of memory (Bliss and

Lømo, 1973; Bliss and Collingridge, 1993; Malenka and Bear, 2004). In addition, the discovery

of place cells, head direction cells, and grid cells in the rodent hippocampal formation provided

a foundation for the idea that the hippocampus is crucial in memory formation by creating a

spatiotemporal framework that binds together the various sensory, emotional, and cognitive

components of an experience (Moser et al., 2015; O’Keefe, 1976; O’Keefe et al., 1998; Kim and

Cho, 2020; Sweatt, 2004). This framework enables the storage and retrieval of this experience as

a memory.

This section will review the architecture of the hippocampus, the function of the hippocampus in

learning and memory, synaptic plasticity in the hippocampus and the importance of dendritic

processing for hippocampal synaptic plasticity.

1.2.1 Architecture and circuits

The general architecture of the hippocampal anatomy remains remains fairly consistent across

species (Clark and Squire, 2013). In rodents, the hippocampus is situated just below the neocortex

and has a shape similar to that of a cashew (Fig. 1.3). It is primarily composed of three major

regions: the dentate gyrus (DG), the Cornu Ammonis (CA)3 region, and the CA1 region. The

hippocampal trisynaptic loop is the main pathway of information flow through the hippocampus:

axons from layer II of the entorhinal cortex (EC) transmits sensory information to the DG via

the perforant pathway (PP); the mossy fibre (MF) projections from DG granule cells relay this

information to the CA3 which propagates this forward to the CA1 via the Schaffer collateral (SC)

projections; CA1 pyramidal neurons then send projections back to layers IV and V of the EC

via the subiculum (Fig. 1.3). CA3 pyramidal neurons also have recurrent connectivity to other

ipsilateral and contralateral CA3 pyramidal neurons and these projections are known as the
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association and commissural pathways, respectively. Additionally, CA1 and subiculum receive

direction projections from layer III of the EC which is known as the temporammonic (TA) pathway.

These different projection pathways are found in particular layers or strata of the hippocampus

and each layer is composed of cells with distinct morphologies and functions. The hippocampus

has a laminar organisation consisting of the stratum oriens (SO), stratum pyramidale (SP),

stratum radiatum (SR), stratum lacunosum-moleculare (SLM), stratum lucidum (only present in

CA3) and stratum granulosum (only present in the DG). The soma of hippocampal pyramidal

cells are found in the SR: the basal and apical dendrites of these cells extend into the SO and

SLM, respectively. The SC pathway resides in the SR and predominantly innervates the proximal

apical dendrite of CA1 pyramidal cells, whereas the TA pathway projects through the SLM and

innervates the distal apical dendrite of CA1 pyramidal cells.

DG

CA1

TASC

CA3

Sub

EC L3

EC L4/5

EC L2
MF

PP

SR

SP

SO

SLM

FIGURE 1.3: Hippocampal anatomy and circuitry. Schematic of a rodent brain displaying the
location of hippocampi (grey) directly beneath the neocortex. Inset represents a transverse section of the
hippocampus and highlights the classic hippocampal trisynaptic pathway with arrows to indicate the
direction of information flow. DG, dentate gyrus; MF, mossy fibre pathway; SC, Schaffer collateral pathway;
TA, temporammonic pathway; PP, perforant pathway; EC, entorhinal cortex; L, layer; Sub, subiculum; SO,
stratum oriens; SP, stratum pyramidale; SR, stratum radiatum; SLM, stratum moleculare-lacunosum.

Although only accounting for approximately 10-15% of the total neurons in the hippocampus,

GABAergic inhibitory interneurons are a diverse neuronal population that plays an extremely

important role in regulating cellular and circuit function (Pelkey et al., 2017). In CA1, some of

the most thoroughly researched interneuron types include the parvalbumin-expressing (PV),

cholecystokinin-expressing (CCK) and somatostatin-expressing (SST) cells. These cell types

are anatomically and morphologically different from each other and their axons target distinct

postsynaptic domains allowing for a diverse range of modulatory effects. PV and CCK basket

cells are typically located around the SP and preferentially target the perisomatic region of

CA1 pyramidal cells. PV-expressing cells demonstrate fast-spiking behaviour without frequency

adaptation, while CCK basket cells exhibit notable spike frequency adaptation. In addition,

unlike PV expression, CCK expression is also found in several types of dendrite-targeting

inhibitory interneurons (Fig. 1.4). The state of PV and CCK feedforward inhibition has been

demonstrated to be important in the regulation of information flow into the CA1 circuit (Udakis

et al., 2020; Palacios-Filardo et al., 2021; Pouille and Scanziani, 2001; Pouille et al., 2013). Another

7



CHAPTER 1. INTRODUCTION

interneuron population that comprises of dendrite-targeting interneurons are the SST cells. The

SST molecular marker is detected in a variety of interneurons but the Oriens Lacunosum-

Moleculare (OLM) cells are the most extensively studied. The cell bodies and dendrites of these

cells reside in the SO and they have dense axonal arborisation in the SLM. OLM cells are

primarily excited by local pyramidal cells and provide inhibitory feedback to these cells (Honoré

et al., 2021). Additionally, they receive input from cholinergic afferents that originate from the

septum and diagonal band of Broca (Leão et al., 2012; Lovett-Barron et al., 2014). Local inhibitory

interneurons, particularly those expressing vasoactive intestinal peptide (VIP), also inhibit

OLM cells (Tyan et al., 2014). OLM cells predominantly target the distal apical dendrite of CA1

pyramidal cells but they also target other interneuron types including basket cells, bistratified

cells and cells located in the SR that innervate the proximal apical dendrite. This allows the OLM

cells to differentially modulate the excitatory afferents from the CA3 and EC onto CA1 pyramidal

cells by disinhibiting and inhibiting excitatory inputs from the SC and TA pathways, respectively.

It has been demonstrated that the capacity of this interneuron subtype to control the excitatory

inputs into CA1 is crucial for synaptic plasticity in CA1 and their activity modulates encoding

of object and fear-related memories (Leão et al., 2012; Siwani et al., 2018; Lovett-Barron et al.,

2014). These dendrite-targeting interneurons have also been incorporated into a plausible model

of backprop-like credit assignment as a critical component for the generation of error signals that

drive synaptic plasticity (Sacramento et al., 2018). Furthermore, incorporating the properties

of interneurons into such models has addressed key biological implausibilities associated with

directly translating backprop into biological systems. These include challenges related to how the

derivative of activation functions are computed, two-phase learning, the need for a distinct error

network and non-local learning rules (Greedy et al., 2022; Sacramento et al., 2018; Payeur et al.,

2021; Crick, 1989).

The hippocampus also receives a variety of neuromodulatory inputs from different brain regions,

which play important roles in learning and memory. Some of the major neuromodulators released

in the hippocampus include: acetylcholine released primarily from cholinergic projections of the

medial septum, dopamine released from dopaminergic projections of the ventral tegmental area,

serotonin released from serotonergic projections of the raphe nuclei and noradrenaline released

from noradrenergic projections of the locus coeruleus (Palacios-Filardo and Mellor, 2019; Ruivo

et al., 2017; Sara, 2009; Rosen et al., 2015; Ohmura et al., 2010). These neuromodulators act on

various receptors located on different types of neurons in the hippocampus, including pyramidal

neurons, interneurons, and glial cells, and can modulate synaptic transmission and plasticity.

One major focus of this thesis is to investigate the effects of acetylcholine on OLM interneurons

and synaptic plasticity, with a particular emphasis on using a model that has similarities to the

hippocampal microcircuit architecture (Sacramento et al., 2018).
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FIGURE 1.4: Circuit diagram illustrating some of the interneuron networks in the hippocampus.
Fast-spiking parvalbumin (PV; green) and regular-spiking cholecystokinin (CCK; purple) interneurons
project perisomatically onto CA1 pyramidal cells (PCs; grey) and mediate feedforward inhibition. Dendrite-
targeting CCK interneurons located at the border of the stratum lacunosum-moleculare (SLM) and stratum
radiatum are innervated by the perforant path fibres of the entorhinal cortex and project onto the dendrite
of CA1 PCs. Oriens Lacunosum-Moleculare (OLM; orange) interneurons receive inputs from CA1 PCs
providing feedback inhibition onto their distal dendrites in the SLM.

1.2.2 Synaptic transmission and plasticity

Synaptic transmission is the process through which neurons communicate with one another

by releasing and receiving chemical and electrical signals at specialised structures known as

synapses. Synapses are found between the axons of one neuron and the dendrites or cell bodies of

another neuron. The majority of synapses are chemical, and they interact using chemical messen-

gers known as neurotransmitters. The release of neurotransmitters from the presynaptic neuron

acts to excite or inhibit the postsynaptic neuron by binding onto distinct receptors. Excitatory

and inhibitory synaptic transmission is mediated by glutamate and °-aminobutyric acid (GABA)

release, respectively. Both glutamate and GABA bind onto ionotropic and metabotropic receptors

on the postsynaptic membrane. Activation of ionotropic glutamate receptors, such as AMPA,

NMDA and kainate receptors, results in the influx of positively charged ions, such as sodium and

calcium, into the postsynaptic cell. This influx of ions depolarises the postsynaptic membrane
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and generates an excitatory postsynaptic potential (EPSP), which can trigger an action potential

if it reaches the threshold for firing. On the other hand, activation of GABA receptors, GABAA

and GABAB, leads to the influx of negatively charged ions, such as chloride, into the postsynaptic

cell. This influx of ions hyperpolarises the postsynaptic membrane and generates an inhibitory

postsynaptic potential (IPSP), reducing the probability of the postsynaptic neuron firing an

action potential. Metabotropic glutamate receptors are G protein-coupled receptors that modulate

neuronal excitability through intracellular signalling pathways. Therefore, the postsynaptic effect

is dependent on the specific signalling pathway that is activated.

The strength and efficacy of synapses can be modified through a process called synaptic plasticity,

which is thought to underlie many forms of learning and memory. Distinct patterns of neural

activity induce different forms of synaptic plasticity, which are governed by diverse molecular

mechanisms (Citri and Malenka, 2008; Basu and Siegelbaum, 2015; Bliss et al., 2014; Nicoll, 2017).

The discovery of LTP provided the first piece of evidence to support the idea that synapses are

plastic in the mammalian brain (Bliss and Lømo, 1973). LTP is the most extensively researched

form of long-term synaptic plasticity and remains one of the most appealing cellular models for

learning and memory. It has been observed in vitro and in vivo at synapses across the brain (Nicoll,

2017). LTP exists in multiple forms but perhaps the most well-known is the homosynaptic Hebbian

LTP which was first discovered by Bliss and Lømo (1973) who demonstrated, in anaesthetised

rabbits, that a brief 100 Hz tetanic stimulation of the PP inputs to DG can cause an long-lasting

increase in synaptic transmission at the PP-DG synapses. Typically, LTP induced in hippocampal

synapses is via a postsynaptic mechanism and dependent on the NMDA receptor (NMDAR-LTP).

The exception is LTP at mossy fibres synapses in the CA3 as this is believed to be NMDAR-

independent and expressed presynaptically. The events that lead to NMDAR-LTP are as follows:

repeated rapid glutamate release, as seen during a high-frequency tetanus, from the presynaptic

terminal binds onto postsynaptic AMPA and NMDA receptors; initially, the influx of Na¯ and K¯

ions occurs through the AMPA receptor channel, while the NMDA receptor channel is blocked

by Mg2¯ ions; the influx of cations depolarises the postsynaptic neuron causing the release of

the voltage-dependent Mg2¯ block, allowing the entry of Ca2¯ through the NMDA receptor; Ca2¯

influx triggers a cascade of signalling events that result in the activation of various kinases

and phosphatases, including calcium/calmodulin-dependent protein kinase II (CaMKII) and

protein phosphatase 1 (PP1), which upregulate AMPA receptor trafficking; the insertion of new

AMPA receptors or the increase in the conductance of existing receptors leads to an increase in

the amplitude of postsynaptic currents (Nicoll, 2017). Synaptic plasticity is bidirectional: low

frequency stimulation (LFS) can induce long-term depression (LTD) or depotentiate LTP via the

activation of NMDARs and group I metabotropic glutamate receptors which trigger downstream

signalling pathways that reduce the probability of presynaptic glutamate release and cause the

endocytosis of AMPA receptors (Collingridge et al., 2010).

As in vivo recordings became more common, it became clear that the conventional high frequency

10



1.2. THE HIPPOCAMPUS

tetanic induction protocol did not accurately reflect the normal physiological firing range of hip-

pocampal pyramidal neurons (Bliss and Collingridge, 1993; Rose and Dunwiddie, 1986). Single

unit recordings of CA1 pyramidal cells in awake, freely moving rates indicate that the firing rate

of these cells range from 5-20 Hz (Waters and Smith, 2002). In addition, these cells exhibit spon-

taneous complex burst spiking activity which consists of high frequency trains of typically four to

five action potentials particularly during behavioural states important for learning and memory

(Grienberger et al., 2014). These observations led to the development of more physiologically-

relevant induction protocols including the theta-burst and primed-burst stimulation protocols

(Larson et al., 1986; Rose and Dunwiddie, 1986). The theta-burst stimulation paradigm (TBS)

encapsulates the bursting activity seen in the hippocampus and the rhythmic hippocampal theta

oscillations from the synchronous firing of hippocampal neurons (Larson and Munkácsy, 2015).

In vitro, this stimulation pattern of burst spiking at a repeated theta frequency produces robust

LTP, as effective as tetanic stimulation, in CA1 pyramidal cells.

Another more biologically plausible induction protocol is the Spike Timing Dependent Plasticity

(STDP) protocol. This is an asymmetric form of Hebbian learning that is induced by precise

temporal correlations between the spikes of pre- and postsynaptic neurons. LTP is induced when

a presynaptic spike occurs just before a postsynaptic spike within a specific time frame, while

the opposite sequence leads to LTD (Bi and Poo, 2001; Shouval et al., 2010). Similar to STDP,

associative LTP (aLTP) requires the precise timing of coordinated inputs such as those from the

SC and TA pathways to the CA1 region (Jarsky et al., 2005; Dudman et al., 2007; Takahashi

and Magee, 2009). This coordinated activity induces large, regenerative dendritic events known

as plateau potentials that cause bursting in the soma and ultimately LTP (Bittner et al., 2015).

aLTP can be heterosynaptic as demonstrated by Dudman et al. (2007): simultaneous stimulation

of the SC and TA pathways only produced LTP at the SC synapses.

LTP continues to be an attractive phenomenon for explaining the cellular processes underlying

learning and memory. Pharmacological studies infusing APV, an NMDA receptor antagonist,

into the hippocampus demonstrates that disrupting the mechanism of LTP results in impaired

learning (Morris et al., 1986). The impairment on learning and memory is further highlighted

in a study by Giese et al. (1998) which shows that knockin mice containing the point mutant

T286A of CaMKII prevents LTP as the downstream CaMKII signalling pathways involved in

LTP are disrupted. Furthermore, LTP has been correlated with fear conditioning and inhibitory

avoidance learning, and saturating LTP with repeated tetanic stimulation interferes with memory

(Moser et al., 1998; Whitlock et al., 2006; Rogan et al., 1997). Martinez et al. (2002) have also

demonstrated in vivo in anaesthetised rats that aLTP can occur in hippocampal CA3. More

specifically, they found that subthreshold LTP stimulation to either the commissural/associational

CA3 projections or perforant pathway projections could trigger aLTP at their respective CA3

synapses if this stimulation was delivered in conjunction with high-intensity activation of the

other pathway. Together, these data show that LTP can occur in vivo and suggest that it shares
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some of the mechanisms that have been identified in ex vivo experiments. This supports the use

of induction protocols used in ex vivo experiments as reliable models for studying LTP in vivo.

1.2.3 Dendritic integration

Dendritic integration is a process in which synaptic inputs from multiple sources are integrated

within the dendrites of a neuron. It is an essential part of neural processing and allows neurons to

perform complex computations. Dendrites were initially believed to be passive cables that simply

receive and transmit information to the soma (Yuste and Tank, 1996). However, work conducted by

Wong et al. (1979), which involved intradendritic recordings in hippocampal pyramidal neurons,

revealed the occurrence of regenerative events in dendrites following intracellular current

injections and synaptic stimulation. Dendritic spikes, which allow for non-linear integration

of inputs, enable neurons to enhance and tune their response to specific inputs (Burger et al.,

2023; Augusto and Gambino, 2019; Larkum et al., 2022). They have the potential to alter the

relationship between input and output in neurons, thereby enabling inputs to the distal dendrites

to exert greater influence on the initiation of action potentials at the soma (Branco and Häusser,

2011). There are several types of dendritic spikes that are mediated by different types of voltage-

gated ion channels, such as sodium or calcium, or are dependent on ligand-gated ion channels,

particularly NMDARs (Fig. 1.5) (Larkum et al., 2022; Schiller et al., 2000; Antic et al., 2010;

Larkum et al., 2009). Unlike calcium and sodium dendritic spikes, NMDAR-dependent spikes

(as well as plateau potentials) cannot be triggered solely by membrane depolarization, but

rather also require the presence of glutamate and glycine. Suprathreshold NMDAR-dependent

spikes/plateaus in layer V pyramidal cells do not increase in amplitude with increasing stimulus

intensity, but instead exhibit nearly linear growth in duration, which could potentially change

the time window for integration. In addition, depolarisation along the same dendrite can reduce

the glutamate threshold for NMDA spikes which enables interactions between distant synapses

(Major et al., 2013). It has been shown in ex vivo hippocampal slice experiments that the coincident

inputs of the SC and TA pathways onto the proximal and distal regions of CA1 pyramidal cells,

respectively, facilitate the generation of dendritic spikes (Jarsky et al., 2005; Dudman et al.,

2007; Takahashi and Magee, 2009). The temporal correlation of the two inputs determines the

generation of these dendritic events which induce LTP. This form of aLTP also drives the formation

and stabilisation of place fields (Bittner et al., 2015, 2017). Furthermore, a study conducted

by Sheffield et al. (2017) using virtual reality and two-photon imaging in mice found that

regenerative dendritic events occur during the formation of place fields. The prevalence of these

events was higher across the dendritic arbour when the animal traversed novel environments

compared to familiar environments. They also found that exposure to a novel environment is

accompanied by a short time window of reduced dendritic inhibition in CA1, facilitating branch

spiking and creating a window of plasticity for place field formation. This finding, along with

a study by Kim et al. (1995), which used intradendritic recordings from neocortical pyramidal
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neurons to demonstrate that IPSPs can diminish and ultimately block dendritic sodium and

calcium spikes elicited by current injections, provides evidence that inhibition plays a crucial role

in regulating dendritic responses.

A B

FIGURE 1.5: Types of dendritic regenerative events. Schematic of the different dendritic spikes
observed in neocortical pyramidal neurons. Electrodes at the distal (green) and basal (red and blue)
dendrites indicate the sites of membrane voltage recordings. (A) Local dendritic depolarisation of the
apical dendrite can produce calcium spikes (green waveform) mediated by voltage-gated Ca2¯ channels.
(B) Dendritic sodium spikes (blue waveform) experience significant attenuation as they propagate towards
the soma and can be observed in both apical and basal dendrites. Strong synaptic activation can lead to
the generation of N-methyl-D-aspartate (NMDA) spikes (green waveform). Adapted from Waters et al.
(2008).

1.2.4 Spatial navigation

The importance of the hippocampus in episodic memory is well-established but it serves a much

more complex function beyond being a mere memory storage unit. The discovery of place cells,

neurons that preferentially fire at specific locations in an environment known as "place fields",

has brought great attention to the hippocampus’ role in spatial memory (Fig. 1.6A-B) (O’Keefe

and Dostrovsky, 1971; O’Keefe, 1976). Place cells do not exhibit topography, indicating that two

adjacent cells may not have neighbouring place fields (O’Keefe et al., 1998). Within the place

field, place cells fire spikes in bursts at a high frequency, while they remain mostly inactive

outside of the place field (Bures et al., 1997). The place fields are allocentric in nature, which

implies that they are defined with respect to the outside world (world-centred) instead of the

body (egocentric) (O’Keefe and Burgess, 1996; Bures et al., 1997). By representing space based

on the environment instead of the individual, place fields can function effectively as neural
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maps of the environment (Jeffery et al., 2004). Subsequent lesion studies have supported the

hypothesis that the hippocampus implements cognitive maps (O’Keefe and Nadel, 1979). For

example, hippocampal lesions in rats during the Morris water maze and T maze alternation tasks

revealed that hippocampal damage results in deficits to spatial navigation and memory (Morris

et al., 1982; Cohen et al., 1971). It has also been shown that place cells respond to non-spatial

characteristics of the environment, such as odours, tactile inputs and timing, which suggests that

the hippocampus encodes both spatial and non-spatial information to form these cognitive maps

(Moser et al., 2015).

Variations in firing rates of spatially stable place cells have been hypothesised to represent

non-spatial components of an experience. This phenomenon is known as "rate remapping," which

involves no changes in the population of active cells or the location of their respective place

fields, but instead significant changes in firing rates (Fig. 1.6C) (Leutgeb et al., 2005). These

rate fluctuations can communicate features of experiences that fluctuate from one trial to the

next or between specific segments of a trial. They can also reflect minor differences in sensory

or motivational stimuli on a second-to-second basis within the same trial. The magnitude of

rate changes may differ across conditions, possibly depending on the degree of dissimilarity

between the conditions. If there are major changes between conditions, such as a complete novel

environment, "global remapping" occurs. Unlike rate remapping, global remapping is an all-or-

none phenomenon that results in changes to both the firing rate and place fields of place cells

(Fig. 1.6D) (Colgin et al., 2008). However, it remains unclear what the underlying mechanisms are

for initiating remapping. Experimental studies have demonstrated that the presence of plateau

potentials is important for the formation and stabilisation of place cells (Bittner et al., 2015, 2017).

Computational modeling has also suggested that the interaction between somatic and dendritic

inhibition facilitates these processes (Pedrosa and Clopath, 2020). Furthermore, studies have

shown that noradrenergic inputs from the locus coeruleus may induce place cell reorganisation,

and that lesions to the cholinergic projections into the hippocampus and entorhinal cortex can

significantly reduce the probability of remapping (Kaufman et al., 2020; Newman et al., 2012).

Therefore, it is possible that neuromodulation could control remapping through their regulatory

effects on local inhibition in the CA1 circuit.
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FIGURE 1.6: Place cells and remapping. (A; top) As the mouse traverses along a linear track envi-
ronment, (bottom) place cells are activated - each represented by a different colour associated with its
position of firing on the track. (B; left) Trajectory of mouse movement in circular arena with green and
pink dots representing spike firing of cells 1 and 2, respectively. Colour-coded rate maps showing place field
of (middle) cell 1 and (right) cell 2 (dark blue and red represent 0 Hz and peak firing rates, respectively).
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(C) Same as (B) but slight changes to the environment induces rate remapping of place fields: place fields
remain unchanged but there are variations in the firing rates. (D) Mouse is placed in a novel environment,
triggering global remapping which involves changes in both firing rates and place fields.

1.3 Acetylcholine

Neuromodulators are a class of signalling molecules in the central nervous system that can

modulate the activity of neurons and neural circuits. Under particular behavioural states, such as

novelty and fear, these neurotransmitters are released and can influence a variety of cellular pro-

cesses, including synaptic transmission and plasticity, over extended periods of time beyond what

is typical for classical neurotransmitters. Neuromodulation of neuronal activity is accomplished

by the coordinated actions of several central modulators, including acetylcholine, serotonin,

dopamine, norepinephrine, and various neuropeptides. The emphasis of this section will be on

the function of acetylcholine in memory and learning, specifically within the hippocampus.

1.3.1 Acetylcholine in the hippocampus

1.3.1.1 Septohippocampal pathway

The primary source of cholinergic input to the hippocampus is through the septohippocampal

pathway (Fig. 1.7). This pathway encompasses the medial and lateral septal nuclei as well as

the nucleus of the diagonal band of Broca (DBB). The medial septum is reciprocally connected

to the hippocampus via the fimbria-fornix pathway and provides innervation to all regions of

the hippocampus, including the stratum oriens of CA1 and CA3. Immunohistochemical analysis

has revealed that septal cholinergic, GABAergic, and glutamatergic neurons project to the

hippocampus. These projections target both pyramidal cells and GABAergic interneurons (Teles-

Grilo Ruivo and Mellor, 2013). While the structure of the cholinergic projection from the septum

to the hippocampus is well understood, there is limited knowledge regarding the functional

output of these neurons. It remains unclear whether the septohippocampal cholinergic system

should be considered as a cohesive unit that diffusely innervates the entire hippocampus or if

cholinergic neurons act independently to target specific cell types in distinct hippocampal regions.

Recent studies have provided evidence to suggest that cholinergic signalling is heterogeneous

and dependent on behavioural states (Lohani et al., 2020; Záborszky et al., 2018).

1.3.1.2 Acetylcholine receptors

When ACh is released into the hippocampus, it binds to and activates both nicotinic and mus-

carinic acetylcholine receptors (nAChRs and mAChRs, respectively). These receptors are classified

into subtypes that produce diverse effects and are differentially expressed in various cell types

throughout the hippocampus (Dannenberg et al., 2017). nAChRs are ionotropic receptors that
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FIGURE 1.7: Illustrative overview of cholinergic pathways in the rodent brain. The basal
forebrain and the brainstem are the two major sources of cholinergic projections. The basal forebrain
cholinergic system consists of the medial septum (MS), vertical limbs of the diagonal band of Broca (DBB),
the nucleus basalis of Meynert (NBM) and the substantia innominata (SI). The brainstem cholinergic
system consists of the laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei. These
cholinergic sources innervate various cortical and subcortical brain regions as indicated by the arrows.

mediate the flow of cations. They consist of five protein subunits and are formed from the homo-

meric or heteromeric combinations of fi2-10 and fl2-4 subunits. The fi7, fi4fl2, and fi3fl4 subtypes

of nAChRs are mainly expressed in the hippocampus (Alkondon and Albuquerque, 2004). In

CA1, pyramidal neurons and interneurons typically express fi7 and fi4fl2 nAChRs. Pharmaco-

logical studies using nAChR agonists have demonstrated that activation of nAChRs mediates

cell excitability: the presynaptic probability of neurotransmitter release and postsynaptic fast

excitatory synaptic transmission (Gray et al., 1996; Albuquerque et al., 2009; Dannenberg et al.,

2017). These receptors are highly sensitive to desensitisation (Haam and Yakel, 2017). Upon

ACh-induced depolarisation of inhibitory interneurons in the stratum radiatum, the desensitisa-

tion of these receptors can decrease inhibition, providing a mechanism for bidirectional control of

neuronal excitability by indirectly exciting pyramidal neurons (Frazier et al., 1998). Furthermore,

cholinergic inputs from the medial septum directly stimulate CA1 OLM interneurons via nAChRs.

These interneurons target the distal apical dendrites of CA1 pyramidal neurons in the SLM. By

activating these interneurons, cholinergic signaling could regulate the flow of information into

CA1 by altering the relative weights of the SC and TA inputs (Leão et al., 2012).

mAChRs are metabotropic receptors with five distinct subtypes M1-M5. M1, M3 and M5 receptors

are coupled to Gq proteins. Gq protein activation triggers the activation of phospholipase C which

raises inositol trisphosphate and diacylglycerol levels, causing calcium influx and increased

neuronal excitability. In contrast, M2 and M4 receptors are coupled to Gi/o proteins. Activation of

Gi/o proteins inhibits the activation of cyclic-adenosine monophosphate, leading to downstream
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signalling pathways that result in reduced cell activity (Eglen, 2006). The hippocampus predomi-

nantly expresses the M1, M2 and M4 subtypes of muscarinic receptors (Dannenberg et al., 2017).

However, the expression of the M2 subtype is limited to interneurons and is absent in pyramidal

cells (Levey et al., 1995).

M1 receptors have a vital role in the modulation of pyramidal cell excitability in response to

transient ACh application in slices (Gulledge and Kawaguchi, 2007). Previous pharmacologi-

cal studies using intracellular recordings in guinea pig hippocampal slices revealed that the

application of ACh to the perisomatic region of CA1 pyramidal neurons resulted in a slow and

prolonged depolarisation and an increase in spike frequency (Benardo and Prince, 1982). This

depolarisation occurred due to the blockade of voltage-dependent K conductance. Other studies

performed on rat hippocampal slices have also shown that pyramidal cells experience this slow

depolarising effect but via cholinergic modulatory suppression of a leak potassium current (Cole

and Nicoll, 1984). Local transient ACh application at the soma of CA1 pyramidal cells results

in membrane hyperpolarisation and inhibition of action potential generation whereas tonic

application of carbachol, an AChR agonist, depolarises these cells via the activation of M1 and

M3 receptors (Dasari and Gulledge, 2011). Basket cells and OLM interneurons exhibit increased

excitability upon activation of M1 and M3 receptors (Lawrence et al., 2006; Cea-del Rio et al.,

2010). However, this increase in excitability does not necessarily result in increased inhibitory

transmission (Pitler and Alger, 1992). A study by Szabó et al. (2010) demonstrated that activation

of presynaptic M2 receptors can reduce the amplitude of IPSCs produced by PV interneurons onto

CA3 pyramidal cells. Additionally, postsynaptic M1 and M3 receptors can trigger the synthesis of

endocannabinoids in pyramidal cells, which can reduce GABA release from CCK basket cells via

type I cannabinoid receptor activation.

Studies have demonstrated that the cholinergic suppression of synaptic transmission in the SC

pathway is a result of presynaptic M4 receptor activation (Dasari and Gulledge, 2011; Palacios-

Filardo et al., 2021). Recently, it has also been shown that presynaptic M3 receptor activation

reduces excitatory and feedforward inhibitory transmission in the temporammonic pathway

(Palacios-Filardo et al., 2021). Together, these data suggests that cholinergic modulation is

capable of gating information flow into CA1 via its heterogeneous effects on different cell types

and pathways.

1.3.2 Learning and memory

It is well-established that ACh plays a critical role in learning and memory. Acetylcholinesterase

inhibitors such as Donepezil, Rivastigmine and Galantamine are commonly used drugs to improve

memory function in Alzheimer’s disease patients by inhibiting the degradation of ACh (Haam and

Yakel, 2017). Selective lesion studies in monkeys and rodents using Ig-saporin have demonstrated

that the loss of cholinergic modulation leads to severe impairments in working and visual
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recognition memory (Turchi et al., 2005; McGaughy et al., 2005). Additionally, electrolytic lesions

in the medial septum and selective cholinergic lesions in the hippocampus and medial septum

result in impairments in spatial memory (Pang and Nocera, 1999; Winson, 1978; Cai et al.,

2012). Lesions to septohippocampal projections in rats impairs novel place field formation and

remapping, and causes place fields to become less stable (Shapiro et al., 1989; Ikonen et al., 2002).

During spatial learning and object exploration, ACh levels increase in the brain (Dannenberg

et al., 2017). When scopolamine, an AChR antagonist, is infused into the hippocampus and medial

septum, animal performance on spatial memory tasks is impaired (Blokland et al., 1992; Elvander

et al., 2004). Intracerebroventricular injection of scopolamine also degrades hippocampal place

cell firing (Brazhnik et al., 2003). The concentration of ACh is important as carbachol impairs

memory when infused into the medial septum (Elvander et al., 2004). Additionally, the timing of

ACh release is critical. For instance, during a reward-based navigation task in mice, optogenetic

stimulation of cholinergic neurons impaired memory formation when activated at the goal

location, but not during navigation (Jarzebowski et al., 2021). In summary, these findings indicate

that the temporal dynamics of ACh release in the brain is crucial for the formation of place cells

and spatial memory.

1.3.3 Cholinergic modulation of synaptic plasticity

Cholinergic receptor activation not only alters the intrinsic properties of neurons, but it also

influences synaptic plasticity. Depending on the spatiotemporal activation of nAChR, LTP is

either induced or inhibited: nAChR-mediated activation of presynaptic glutamatergic synapses

induces LTP but nAChR-mediated interneuron activation can inhibit this (Ge and Dani, 2005; Ji

et al., 2001). In addition, the activation of M1 receptors has been shown to facilitate LTP induction

via a number of mechanisms: M1 receptor-mediated inhibition of small conductance calcium-

activated potassium channels, voltage-activated Kv7 and Kv4.2 potassium channels resulting in

the enhancement of NMDAR activity, bursting activity and dendritic excitability, respectively

(Buchanan et al., 2010; Petrovic et al., 2012; Losonczy et al., 2008). This muscarinic receptor

dependent control of LTP has also been shown in vivo by Ovsepian et al. (2004). They demonstrate

that subthreshold LTP stimulation of CA1 basal dendritic synapses paired with medial septum

stimulation is sufficient to induce LTP and this form of LTP induction is inhibited by muscarinic

receptor antagonists. Furthermore, optogenetically-evoked release of ACh has been shown to

independently increase dendritic excitability leading to the generation of plateau potentials and

bursting activity which provides another mechanism for inducing LTP (Williams and Fletcher,

2019). The effect of ACh on synaptic plasticity is bidirectional as ACh has been shown to depress

SC synapses and muscarinic activation receptor can switch LTD to LTP, suppress both LTP and

LTD and potentiate LTP (Brzosko et al., 2017; Sugisaki et al., 2011). Taken together, this suggests

that the spatiotemporal activation of cholinergic receptors determines the direction of synaptic

plasticity.
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1.3.4 Theories of acetylcholine and cognitive processing

While there is extensive knowledge about how acetylcholine physiologically affects cellular and

network dynamics, there is yet a unified theory on how these properties contribute to cognitive

function. Computational modelling has been used to integrate these seemingly disconnected areas

of knowledge in an attempt to gain a better understanding of how certain aspects of cholinergic

modulation may play a role in cognitive processing. Since the environment is constantly changing,

animals must develop the ability to effectively acquire new information, assimilate feedback and

adapt their behaviour in order to survive. Zannone et al. (2018) proposed that this behavioural

flexibility could be achieved through the interplay of ACh and dopamine. As ACh has been

shown to bias synaptic plasticity of SC synapses towards depression, this enables learning from

negative outcomes. Specifically, when a negative outcome occurs, the synapses associated with the

unrewarding choices are depressed, which suppresses those choices and encourages systematic

exploration. This ACh-dependent LTD enables learning from negative outcomes by facilitating

the suppression of previously learned sequences of actions that no longer yield rewards. On the

other hand, dopamine is capable of converting this depression to potentiation which reinforces

certain actions associated with reward (Brzosko et al., 2017). These observations were combined

to form a plasticity rule which was tested on a simplified network model of a radial arm maze

test. Cholinergic modulation facilitated flexible learning by suppressing unrewarding actions and

promoting systematic exploration of the maze (Zannone et al., 2018). Prince et al. (2021) also

demonstrated in a spiking neural network model of CA3 that ACh and noradrenaline positively

shifts the E-I balance at CA3 synapses via the inhibition of feedforward inhibition in the mossy

fibre pathway, allowing for LTP and ensemble formation at CA3-CA3 synapses. However, unlike

noradrenaline, ACh had opposite effects on cellular excitability and basal synaptic strength which

enhanced the robustness of ensemble formation and the amount of allowable overlap between

ensembles. These results suggest that acetylcholine and noradrenaline play distinct roles in

facilitating memory formation in the CA3 network.

Ideas in cognitive neuroscience and statistical inference offer an alternative perspective on how

ACh may promote learning and behavioural adaptability to environmental changes. Here, ACh

is thought to provide a measure of uncertainty; this can be framed as prediction errors, which

ACh has recently been found to encode (Sturgill et al., 2020). Yu and Dayan (2005) proposes

ACh signals expected uncertainty which refers to the amount of uncertainty that an organism

anticipates in the environment. Noradrenaline complements ACh in this system by signalling

unexpected uncertainty which refers to situations where an individual encounters unpredicted

events or stimuli, which deviate from their prior expectations or beliefs about the environment.

These two neuromodulatory systems allow the brain to update its internal model of the world.

When there is a high level of expected uncertainty, the brain needs to allocate more attentional

resources to monitoring the environment, in order to update its predictions and adjust behavior

accordingly. Experimental observations support the role of ACh in selectively gating top-down
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versus bottom-up processing: ACh can promote the processing of external stimuli by potentiating

the incoming afferent projections that convey bottom-up sensory input and inhibiting the intrinsic

projections that represent top-down learned expectations (Newman et al., 2012).

Another view of the role of ACh in adaptive learning, described by Doya (2002) in the context of

reinforcement learning, proposes that ACh controls the learning rate of weight updates. There

is mounting evidence to suggest that ACh is important in regulating the strength of synapses

or weights (see Section 1.3.3) and it has also been shown that the modulatory effects of ACh on

memory update is dependent on the presence of prediction errors (Krawczyk et al., 2021).

Taken together, these findings indicate that the physiological properties of ACh offer diverse

mechanisms to facilitate efficient learning and behavioural adaptability in response to changing

environments. Furthermore, by integrating the concept of prediction errors into cholinergic

modulation, researchers have gained new perspectives on the contributions of ACh to cognitive

function and behaviour.

1.4 Aims and hypotheses

This literature review indicates that while the backprop algorithm is a good solution to the

credit assignment problem, its direct translation into the brain faces biological implausibilities.

Recent models have been developed to address this issue by incorporating known physiological

properties of the brain. However, these models still contain some biological implausibilities and

fail to account for important factors that affect plasticity such as neuromodulation. It has been

shown that ACh can have varied effects on different types of cells, offering distinct mechanisms

for synaptic plasticity. One particular cell type of interest are the OLM interneurons located in

the hippocampus as their property of targeting distal dendrites suggests that they may have a

significant role in regulating synaptic plasticity. Although ex vivo pharmacological experiments

have shown that ACh increases the intrinsic excitability of these interneurons, the impact of ACh

on the inhibitory transmission of OLM interneurons onto CA1 pyramidal cells is not yet fully

understood. The overall objective of this thesis is to investigate whether the brain could employ

a backprop-like approach for credit assignment and how ACh might interact with the cortical

circuitry to modulate this process. The specific aims are outlined below:

1. To develop a model for cholinergic neuromodulation in a biologically plausible deep learning

network that is consistent with experimental findings.

2. To develop a neural network model by integrating known physiological properties of cortical

networks to approximate the backpropagation algorithm.

3. To test the effect of cholinergic modulation on dendrite-targeting OLM interneurons in the

hippocampal CA1 circuit.
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4. To assess whether OLM interneurons are capable of regulating the induction of associative

LTP in the hippocampus.

Aim 1: To develop a model for cholinergic neuromodulation in a biologically plausible deep

learning network that is consistent with experimental findings.

A long-standing debate of the cholinergic system is the dynamics of acetylcholine release. Early

work suggested cholinergic modulation acted globally across the brain with a homogeneous effect

(Descarries, 1998; Lohani et al., 2020). However, more recently there has been evidence to indicate

the contrary (Lohani et al., 2020). It is not well understood what benefits either observation

would provide for the functionality of the brain. Therefore, building a biologically plausible deep

network with cholinergic modulation capable of performing tasks to a similar degree of accuracy

as humans helps us to understand the consequences of altering the behaviour of the cholinergic

system. In Chapter 2, we propose a model of the cholinergic system as an adaptive module that

incorporates error information and uses it to modify synaptic updates obtained from a biologically

plausible backprop-like model (Sacramento et al., 2018). This model also generated a prediction

about how ACh would affect a certain synapse which could be tested experimentally in Chapter 4.

Aim 2: To develop a neural network model by integrating known physiological properties of

cortical networks to approximate the backpropagation algorithm.

As the use of the backpropagation algorithm in artificial neural networks has proven to enable

learning of non-trivial tasks to human-like levels of accuracy, there has been a resurgence of

interest into whether the brain employs a similar method for credit assignment. Recent work

has attempted to develop biologically plausible models of backprop but many implausibilities

remain (Sacramento et al., 2018; Payeur et al., 2021, 2020). Therefore, constructing a model to

further address the biological implausibilities while maintaining the high performance qualities

demonstrated by backprop takes us one step closer to understanding whether backprop in the

brain is a reasonable concept. This novel model is introduced in Chapter 3 and incorporates the

concept of burst ensemble multiplexing which provides a clear mechanism for the framework of

cholinergic modulation developed in Aim 1 (Naud and Sprekeler, 2018; Payeur et al., 2021).

Aim 3: To test the effect of cholinergic modulation on dendrite-targeting OLM interneurons in

the hippocampal CA1 circuit.

The hippocampal circuitry is heavily involved in the encoding of memories, particularly episodic

memories that involve the spatial context provided by place cells residing in CA1. Cholinergic

modulation is thought to gate hippocampal synaptic plasticity via a number of proposed mecha-

nisms including the regulation of excitatory and feedforward inhibitory activity from the local

CA3 circuitry and external entorhinal cortex (Palacios-Filardo et al., 2021). Another population

of cells thought to be relevant in regulating the activity in the CA1 circuit is the local feedback
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OLM interneurons. This subpopulation of SST cells almost exclusively reside in the stratum

oriens of CA1 and target the distal dendrite of CA1 pyramidal cells (PCs) (Leão et al., 2012).

This indicates that they have the ability to also regulate information flow to the CA1 circuit

and thus carries the potential to regulate the formation of new memories. Although there have

been studies to investigate the effect of acetylcholine on the excitability of these interneurons, it

remains unclear how this influences the final inhibitory output onto CA1 PCs (Pelkey et al., 2017;

Zheng et al., 2011; Lawrence et al., 2006; Lawrence, 2008). The model developed in Aim 1 predicts

the effect of ACh modulation on this OLM-PC synapse, which is then tested pharmacologically in

Chapter 4 and also with a dual optogenetics approach in Chapter 5 using whole-cell patch clamp

electrophysiology.

Aim 4: To assess whether OLM interneurons are capable of regulating the induction of associative

LTP in the hippocampus.

It is known that the coincident activity of the Schaffer collateral and temporammonic inputs in

the hippocampus is crucial for the generation of plateau potentials that result in bursting activity

for the induction of LTP (Bittner et al., 2015). As previously mentioned, the distal dendrite-

targeting property of OLM interneurons make them an obvious cell population that could play

an important role in mediating these coincident events and therefore hippocampal synaptic

plasticity. A study by Leão et al. (2012) performing extracellular field recordings demonstrated

this, as the activation of these interneurons modulated synaptic plasticity in CA1. However, this

technique lacked cellular resolution, thus, could not provide details of how it was affecting the

properties of the CA1 PCs to achieve this modulatory effect. Additionally, in this study the LTP

induction protocol was applied to either the Schaffer collateral or temporammonic pathways but

never both so did not address the question of how the OLM interneurons regulated associative

plasticity. Chapter 4 uses ex vivo whole-cell patch clamp electrophysiology to investigate the

effects of OLM inhibitory transmission on the induction of associative LTP.
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CHOLINERGIC-MEDIATED ADAPTIVE LEARNING IN A CORTICAL

MICROCIRCUIT MODEL

2.1 Statement of contributions

This work was done in collaboration with a PhD student, Will Greedy, from the Department of

Computer Science at the University of Bristol. Data involving the Spiral dataset and the Eve and

Yi optimisers were predominantly produced by me. Will and I contributed equally to the rest of

this project.

2.2 Introduction

The brain can adapt remarkably well to new situations. Some of the properties that enable it to

do so include robustness to noise, rapid learning and generalisation (Viswanathan et al., 2016;

Cole et al., 2013; Asok et al., 2019). Advancements in machine learning have demonstrated that

adaptive learning methods applied to artificial neural networks are capable of achieving these

properties (Kingma and Ba, 2014; Liu et al., 2019; Keskar and Socher, 2017; Zeiler, 2012). These

methods rely on fine control of individual synaptic learning rates for gradients often derived

using the backprop algorithm.

In neuroscience, it is well documented that specific neuromodulators control learning (Rasmusson,

2000; Hasselmo, 2006; Lovett-Barron et al., 2014). In particular, there is extensive research

to support a strong role of the cholinergic system in learning and memory (Rasmusson, 2000;

Hasselmo, 2006; Ballinger et al., 2016). There is also growing evidence to suggest that the effect

of the cholinergic system on learning is produced by heterogeneous modulation of both pyramidal
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neurons and interneurons within various neural circuits (Klausberger and Somogyi, 2008; Lovett-

Barron et al., 2014; Schmid et al., 2016; Urban-Ciecko et al., 2018; Leão et al., 2012; Haam

et al., 2018; Williams and Fletcher, 2019). In particular, a study by Lovett-Barron et al. (2014)

demonstrates that the cholinergic modulation of somatostatin-positive (SST) interneurons in the

hippocampus is important for contextual fear conditioning. These dendrite-targeting feedback

interneurons function to have an important role in cortical microcircuits. They can regulate the

generation of plateau potentials (Royer et al., 2012; Lovett-Barron et al., 2012, 2014) which are

involved in the learning of novel spatial representations (Bittner et al., 2015).

Building upon these findings, we introduce a framework which explores the idea of the cholinergic

system as a module that receives error information from and modulates backprop-like credit

assignment across the brain. This is consistent with the presence of cholinergic innervations

throughout the brain (Obermayer et al., 2017; Disney and Higley, 2020) and how the cholinergic

signal could be representing an unsigned prediction error (Sturgill et al., 2020). We incorporate

this framework within an implementation of the error-encoding dendritic microcircuit model pro-

posed by Sacramento et al. (2018) which approximates the backprop algorithm using biologically

plausible mechanisms. This model consists of local feedback SST interneurons which control

the encoding of error signals in the apical dendrites of neighbouring pyramidal neurons and

closely reflects the CA3-CA1-EC circuitry involved in spatial memory. Here, we propose a model of

cholinergic-mediated credit assignment (ChoCA) in cortical microcircuits in which the cholinergic

system computes modulation factors, akin to adaptive learning methods from machine learning,

by accumulating local error information which can in principle be decoded through multiplexing

of bursting activity (Payeur et al., 2020, 2021; Naud and Sprekeler, 2018).

Neuromodulators are widely believed to operate diffusely, therefore not having the level of

specificity often required by machine learning adaptive learning rules (Obermayer et al., 2017;

Záborszky et al., 2018; Disney and Higley, 2020). However, it remains unclear exactly how

spatially specific the neuromodulation provided by the cholinergic system is (Obermayer et al.,

2017; Záborszky et al., 2018; Disney and Higley, 2020). Therefore, we examined the impact

of modulating credit assignment with adaptive learning at different levels (synaptic, neuron,

layer and network). Additionally, motivated by the importance of modulating SST interneurons

during learning (Lovett-Barron et al., 2014), we tested whether it was necessary to apply the

same modulation to the interneurons within our model. We showed that modulation at the level

of the synapse was not necessary for adaptive learning methods to perform well. Additionally,

we demonstrated that it was important to modulate interneurons within the network as the

lack of modulation resulted in a significant reduction in performance. Finally, we showed that

these adaptive methods can yield increased sparsity and task-specific selectivity but they do not

mitigate catastrophic forgetting.
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2 Gradient modulation
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error

FIGURE 2.1: Model of adaptive credit assignment in cortical microcircuits via cholinergic
modulation (ChoCA). (A) The cholinergic adaptive module receives weight gradient information f (rWPP

)
across a multi-layered cortical network. These gradients are then integrated at one of three levels of
specificity (neuron, layer or full network) and a signal M is generated to modulate credit assignment at the
same level of specificity. (B) Simplified representation of an error-encoding dendritic cortical network with
multiple layers receiving cholinergic neuromodulation (Sacramento et al., 2018). (C) Simplified schematic
of an error-encoding dendritic microcircuit with cholinergic modulation. In this example, each neuron
receives neuron-specific modulation (indicated by the green colour code; cf. (A)) from the cholinergic system
(green terminals). This in turn modulates learning at all three connections (WPP

k¯1,k, WIP and WPI) and

receives a function of the gradients with respect to the incoming weights of Pk¯1, f (rWPP
k¯1,k ).

2.3 Adaptive credit assignment in cortical microcircuits

First, we introduce the Sacramento et al. (2018) model with cholinergic modulation, followed by a

description of the different adaptive methods we considered.

2.3.1 Error-encoding Dendritic Network

Our model builds on Error-encoding Dendritic Networks (EDNs) (Sacramento et al., 2018). Here

we focus on the elements of EDNs that are key to our model. This is a layered network model that

consists of two cell types: pyramidal cells (P) and SST-interneurons (I) (Fig. 2.1). Each pyramidal

cell is modelled with three simple dendritic compartments: somatic u, basal vB and apical vA,

which have been observed to be key dendritic integration sites (Spruston, 2008; Larkum, 2013).

Within layer k, the basal and apical compartments receive bottom-up (WPP
k,k¡1) and top-down

connections (WPP
k,k¯1), respectively. Consistent with experimental observations (Urban-Ciecko and

Barth, 2016; Williams and Holtmaat, 2019), SST-interneurons, I, target apical compartments vA

of P thereby enabling the generation of error signals within pyramidal cells by aiming to cancel

top-down input onto these compartments (Fig. 2.1C). These interneurons have connections, WIP
k,k,
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from neighbouring pyramidal cells that they project back to through WPI
k,k.

We now outline how the learning rules of EDNs are modulated by the cholinergic system. The

learning rules for the three connection-types mentioned above are given by

rWPP
k,k¡1 ˘

‡
`(uP

k )¡`(v̂P
B,k)

·‡
rP

k¡1

·T
,(2.1)

¢WPP
k,k¡1 ˘ Mk fl

h
·PPrWPP

k¯1

i
,(2.2)

¢WIP
k,k ˘ Mk¯1 fl

•
·IP

‡
`(uI

k)¡`(v̂I
k)

·‡
rP

k

·T
‚

,(2.3)

¢WPI
k,k ˘ Mk¯1 fl

•
·PI

‡
vrest ¡vP

A,k

·‡
rI

k

·T
‚

,(2.4)

where (¢)T denotes vector transpose, rk ˘ `(uk) are the layer k firing rates and Mk is the adaptive

modulation factor. Modulation of the interneuron connections is done by Mk¯1 because the

interneurons need to have the same dimensionality as layer k ¯1 (Sacramento et al., 2018). This

factor is a matrix applied element-wise fl to layer k synaptic weight updates. The same modulation

factor is applied to all learning rules to preserve the delicate learning dynamics required for

successful approximate backprop in the model (Fig. 2.1C) (Sacramento et al., 2018). The different

terms in Eqs. 2.1 and 2.4 represent the neuron’s prediction error vP
A,k … errork (vrest ˘ 0). We can

interpret the impact of M as modulating the error directly through the modulation of the apical

dendrite excitability (Williams and Fletcher, 2019). In Eq. 2.3, Mk modulates the connection

directly, consistent with strong modulation of PC-onto-SST synapses (Urban-Ciecko et al., 2018).

To compute Mk, a function of the gradient used for feedforward updates, f (rWPP
k,k¡1 ), is received by

the cholinergic system (Fig. 2.1A; see next section for more details).

For computational efficiency, we used the simplified EDN configuration and dynamics described

by Sacramento et al. (2018). In this case, the network is initialised in its optimal self-predicting

configuration in which interneurons perfectly cancel top-down inputs. In addition, the model

follows simplified dynamics with two simulation steps before synaptic learning rules are applied.

For error backpropagation a weak supervised nudging signal (‚ ˘ 0.1) is given to the last layer.

Finally, we also learn the neuronal biases which follow similar learning rules as Eqs. 2.2 and 2.3.

We tested this network in a range of tasks using the MNIST and Fashion-MNIST (F-MNIST)

datasets. As in Sacramento et al. (2018) target classes are one-hot encoded. During testing, the

class is determined by selecting the most active output neuron.

Here we summarise the two-step update of the simplified EDN model (Sacramento et al., 2018).

In the forward pass, after presenting an example image, all pyramidal cells and interneurons

are updated using their feedforward activations such that uP
k ˘ vP

B,k ˘ WPP
k,k¡1`(uP

k¡1) and uI
k ˘

vI
k ˘ WIP

k,k`(uP
k ). In the second phase, output neuron potentials, uP

N , are nudged towards a target

output, utrgt
N ˘ `¡1(ˆ(rtrgt

N )), where `¡1 is the inverse transfer function, rtrgt
N is the one-hot

encoded target vector and ˆ is a softening function that transforms values of 0 and 1 to 0.2
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and 0.8, respectively. The strength of this nudging is determined by the mixing factor, ‚N , in

uP
N ˘ (1¡‚N )vP

B,N ¯‚Nutrgt
N . The updated somatic potentials are then used to update the previous

layer interneurons with a weak teaching signal, uI
k ˘ (1¡‚I)vI

k ¯‚IuP
k¯1. These new interneuron

potentials are used to update the pyramidal neurons’ apical compartment potentials within the

same layer following, vP
A,k ˘ WPP

k,k¯1`(uP
k¯1)¯WPI

k,k`(uI
k). Finally, the somatic compartments of the

pyramidal cells are updated to include the original feedforward input as well as the new error

signal encoded within the apical compartments, uP
k ˘ vP

B,k ¯‚kvP
A,k. This process is repeated for

all previous layers which are revisited in reverse order. After all compartment potentials have

been computed, the synaptic weight updates are performed using Eqs. 2.2-2.4 and the biases are

updated using

rbPP
k,k¡1 ˘

‡
`(uP

k )¡`(v̂P
B,k)

·
,(2.5)

¢bPP
k,k¡1 ˘ Mb

k fl
h
·PPrbPP

k¯1

i
,(2.6)

¢bIP
k,k ˘ Mb

k¯1 fl
h
·IP

‡
`(uI

k)¡`(v̂I
k)

·i
,(2.7)

where Mb
k refers to the bias-specific modulation factor accumulated using f (rbPP

k,k¡1), similar to

the weight updates described in Section 2.3.1. In the case of network level modulation, Mb
k ˘ Mk.

2.3.2 Cholinergic adaptive modulation methods

Below we describe the adaptive modulation methods that we propose to be abstract models of the

function provided by the cholinergic system.

2.3.2.1 Adagrad-ChoCA

Adagrad was introduced by Duchi et al. (2011) to facilitate learning through modulation of learn-

ing rates as a function of the gradient magnitude. Here, together with the original modulation

variable G t 2 RNK £NJ£NS 1 and inspired by the cholinergic system, we consider less specific and

more biologically plausible variants in which the gradients are collapsed across synaptic weights,

1Note that for simplicity this is a more general case in a fully connected network with the same number of neurons
across layers.
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GS
t 2 RNK £NJ , neurons, GJ,S

t 2 RNK , or layers, GK ,J,S
t 2 R1£1, as follows

G t ˘ G t¡1 ¯ (rWPP
)2 weight-specific,(2.8)

GS
t ˘ GS

t¡1 ¯
1

NS

NSX

s˘0
(rWPP

k, j,s )2 neuron-specific,(2.9)

GJ,S
t ˘ GJ,S

t¡1 ¯
1

NS NJ

NJX

j˘0

NSX

s˘0
(rWPP

k, j,s )2 layer-specific,(2.10)

GK ,J,S
t ˘ GK ,J,S

t¡1 ¯
1

NS NJ NK

NKX

k˘0

NJX

j˘0

NSX

s˘0
(rWPP

k, j,s )2 full network,(2.11)

Mt ˘
‡q

G⁄
t ¯†

·¡1
.(2.12)

where NS, NJ and NK denote the number of parameters, neurons and layers, respectively.

Here, G⁄
t denotes any level of modulation {G t,GS

t ,GJ,S
t ,GK ,J,S

t }. Mt is then used to modulate

learning rules in EDNs as ¢W ˘ Mtfl·rW (see Eqs. 2.2-2.4). Note that we only store the necessary

dimensions for G⁄
t which are Nk £N j £Ns, Nk £N j, Nk and 1, for synapse-specific, neuron-specific,

layer-specific and the full network, respectively. These are then broadcasted in PyTorch so that

element-wise fl multiplication can be performed in Eqs. 2.2-2.4. Finally, similar operations are

performed for biases, and the respective G⁄
t are kept in memory.

We argue that it is necessary for the simultaneous modulation of all three learning rules to be

carried out by a separate system (Eqs. 2.2-2.4; Fig. 2.4 & 2.13). Biologically, the information (mean

of the squared gradients) required for this type of modulation at the neuron-specific, layer-specific

or network level can in principle be decoded from neural activity sent to the cholinergic system.

Recently, Payeur et al. (2020) have proposed biologically plausible models capable of encoding

gradient information through the multiplexing of event rates and burst probabilities, allowing

for both feedforward activity and error signals to be decoded from neural activity.

2.3.2.2 RMSprop-ChoCA

One of the key problems with Adagrad is that G does not decay; thus, M only decreases over time

and ultimately leads to no parameter updates. Tieleman et al. (2012) introduced RMSprop, in

which the adaptive component is modelled as a running average, as follows

G t ˘ ‰G t¡1 ¯ (1¡‰)(rWPP
)2,(2.13)

Mt ˘
‡q

G⁄
t ¯†

·¡1
.(2.14)

Similarly to Adagrad, we consider more biologically plausible variants for RMSprop in which G

is also collapsed across synapses, neurons, layers or the full network.
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2.3.2.3 Adadelta-ChoCA

Similar to RMSprop, Adadelta (Zeiler, 2012) keeps a running average of the gradient magnitude:

G t ˘ ‰G t¡1 ¯ (1¡‰)(rWPP
)2,(2.15)

Mt ˘

p
Zt ¯†

q
G⁄

t ¯†
.(2.16)

Adadelta also includes another factor that depends on the weight update directly, Zt ˘ ‰Zt¡1 ¯

(1 ¡ ‰)(Mt fl rWPP
)2, which is collapsed in the same way as G when we are considering more

biologically plausible variants across the different levels of modulation.

2.3.2.4 Adam-ChoCA

A more recent and popular adaptive method in machine learning is Adam (Kingma and Ba, 2014).

Similarly to Adadelta, Adam keeps a running average of the estimates of the first (Z) and second

(G) moments of the gradient:

G t ˘ fl2G t¡1 ¯ (1¡fl2)(rWPP
)2,(2.17)

Mt ˘
Ẑtq

Ĝ⁄
t ¯†

,(2.18)

where Ĝ⁄
t ˘ G t

1¡flt
2

and Ẑt ˘ Zt
1¡flt

1
. In addition, Adam includes a bias correction term to account for

the initial estimate of these moments (fl1 and fl2) being inaccurate at the beginning of training.

Adam also uses momentum to help smooth the updates and escape from poor local minima.

As is the case with Adagrad, RMSprop and Adadelta, we consider more biologically plausible

variants at the different levels of modulation. For this method, we assume that the first moment,

Zt ˘ fl1Zt¡1 ¯ (1¡fl1)rWPP
, can be computed locally.

2.3.2.5 Yi-ChoCA

The Yi method is an adaption of the optimisation method proposed by Yi et al. (2021). It scales

the learning rate by the current value of the cost function:

Mt ˘
1
n

nX

i˘1
(uP

N ¡utrgt
N )2,(2.19)

where n is each training example in a batch.
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2.3.2.6 Eve-ChoCA

The Eve method is an adaption of the optimisation method proposed by Hayashi et al. (2016). It

scales the learning rate dependent on the history of values evaluated from the cost function:

Ct ˘
1
n

nX

i˘1
(uP

N,t ¡utrgt
N,t )2,(2.20)

Dt ˘
jCt ¡Ct¡1j

min{Ct,Ct¡1}¡C⁄ ,(2.21)

D̂t ˘ clip(Dt, [1/c, c]),(2.22)

D̃t ˘ flD̃t¡1 ¯ (1¡fl)D̂t,(2.23)

Mt ˘
1

D̃t
(2.24)

where Ct is the evaluated cost at timestep t, C⁄ is the value at its global minimum (i.e. 0) and

n is each training example in a batch. c is a clipping constant, set to 10 in our experiments, to

constrain the magnitude of the modulation factor to prevent updates that are too large or too

small.

2.3.3 Related work

In machine learning, a few adaptive methods have been developed to address the issue of the

memory requirements linearly scaling with the number of model parameters. Shazeer and Stern

(2018) present Adafactor, an adaptation of Adam, that maintains per-row and per-column sums

of the moving averages and uses these to obtain an estimate for the original full-size modulation

matrix. Anil et al. (2019) build on this work and present the SM3 algorithm that estimates the

per-synapse statistics from other measures such as the maximum of gradient magnitudes over

larger subsets of synapses. From a biological perspective, these methods are less plausible as they

require the computation and application of per-synapse modulation factors. Some recent work

argues that adaptive methods are not that important in machine learning (Wilson et al., 2017).

However, these studies do not mention that, despite the fact that SGD can achieve similar or

even better performance in the long run, adaptive methods can often learn much quicker, which

would be a critical property in maximising an animal’s chances of survival.

Within a biologically motivated reinforcement learning framework, Doya (2002) proposes that

cholinergic neuromodulation is responsible for controlling the learning rate. Other computational

accounts have also demonstrated a role of neuromodulatory systems in modulating the learning

rate (Jepma et al., 2018; Sales et al., 2019; Aljadeff et al., 2019). For example, recent work

by Miconi et al. (2020) uses standard backpropagation to optimise standard Hebbian learning

rules coupled with neuromodulated eligibility traces. Our model is different in that we start from

biologically plausible backpropagation framework that is then modulated via the cholinergic

system, which is adaptive but not optimised via gradient descent.

31



CHAPTER 2. CHOLINERGIC-MEDIATED ADAPTIVE LEARNING IN A CORTICAL
MICROCIRCUIT MODEL

2.4 Experimental details

2.4.1 Parameter requirements for each optimiser

Table 2.1 shows the number of optimiser parameters required to perform each optimisation

method. The table highlights the large reduction in parameters when applying the adaptive

methods at broader levels of modulation compared to their synapse level counterparts. For

example, from the synapse to neuron level with Adagrad, RMSprop, Adadelta and Adam methods,

there is a 99.76%, 99.76%, 99.76% and 49.87% reduction in parameters, respectively.

Method No. Parameters (MNIST & F-MNIST)

SGD 0 -

sAdagrad 203530 (100%)
nAdagrad 532 (0.26%)
lAdagrad 4 (0.0020%)
fAdagrad 1 (0.00049%)

sRMSprop 203530 (100%)
nRMSprop 532 (0.26%)
lRMSprop 4 (0.0020%)
fRMSprop 1 (0.00049%)

sAdadelta 407060 (100%)
nAdadelta 1064 (0.26%)
lAdadelta 8 (0.0020%)
fAdadelta 2 (0.00049%)

sAdam 407060 (100%)
nAdam 204062 (50.13%)
lAdam 203534 (50%)
fAdam 203531 (50%)

TABLE 2.1: Number of additional parameters required by each adaptive method. The percentage
values reflect the relative number of additional parameters required compared with the synapse level
methods.

2.4.2 Hyperparameter Search

A hyperparameter search was performed for the learning rate of the MNIST and F-MNIST image

classification tasks. The range of values evaluated for SGD, Eve and all Adagrad and Adadelta

methods was · 2 {1.0,0.1,0.01,0.001,0.0001}. For all RMSprop and Adam methods, the ranges

were · 2 {0.1,0.01,0.001,0.0001,0.00001} and · 2 {0.001,0.0001,0.00001,0.000001,0.0000001},

respectively. The range for the Yi was · 2 {10,5,2,1,0.1}. Table 2.2 shows the best parameters

found and used in the two tasks. Bayesian hyperparameter optimisation was performed (using

Weights & Biases (Biewald, 2020)) for the standard ANN model used on the Spiral dataset and
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the 3 hidden layer EDN models used on F-MNIST (Tables 2.3-2.4).

Method MNIST [ChoCA] F-MNIST [ChoCA]

SGD 0.1 0.1

Yi 5 5

Eve 0.1 0.1

sAdagrad 0.01 0.01
nAdagrad 0.01 0.01
lAdagrad 0.01 0.01
fAdagrad 0.001 0.01

sRMSprop 0.0001 0.0001
nRMSprop 0.0001 0.0001
lRMSprop 0.0001 0.0001
fRMSprop 0.0001 0.0001

sAdadelta 0.1 0.1
nAdadelta 0.1 0.1
lAdadelta 0.1 0.1
fAdadelta 0.1 0.1

sAdam 0.0001 0.0001
nAdam 0.0001 0.0001
lAdam 0.0001 0.0001
fAdam 0.0001 0.0001

TABLE 2.2: Learning rates obtained using hyperparameter search for the EDN model trained
on MNIST and F-MNIST. These values correspond to the learning rate of the pyramidal-to-pyramidal
feedforward weights, ·PP, with interneuron learning rates, ·IP ˘ ·PI ˘ 2·PP.

Method Learning rate (·)

SGD 0.889

Yi 0.993

Eve 0.945

TABLE 2.3: Learning rates obtained using Bayesian hyperparameter optimisation for the
standard ANN models trained on the Spiral dataset.

2.4.3 Learning tasks

In this section, we give details of the different tasks and model architectures that were used.
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Method Learning rate (·) ·IP scalar ·PI scalar Beta

SGD 0.00979 1.80 0.755 -

Eve 0.00402 1.88 0.480 0.828

Yi 0.0319 3.39 3.70 -

TABLE 2.4: Hyperparameters obtained using Bayesian hyperparameter optimisation for the 3
hidden layer EDN models trained on F-MNIST. Beta is the decay constant used for the modulation
factor stored with the Eve method.

2.4.3.1 MNIST and F-MNIST

For training on the MNIST and F-MNIST classification tasks, the same network structure was

used for both tasks: 784 input neurons (28x28 greyscale images), a single hidden layer with

256 neurons and 10 output neurons. Sigmoid activation functions were used for the hidden

layer neurons in all cases. An additional network structure of 784-256-256-256-10 was used to

compare the performance of the Yi and Eve optimisers against SGD on F-MNIST. The network

contained hidden layer interneurons that matched the number of pyramidal neurons in the

layer above to allow for the self-prediction of next layer pyramidal neuron output activities.

Sigmoid activation functions were also used for these interneurons. The feedforward weights

and biases were initialised from U(¡0.1,0.1), the interneuron weights were initialised in a self-

predicting configuration and the feedback weights were tied to the feedforward weights such that

WPP
k,k¯1 ˘ (WPP

k¯1,k)T . These parameters were updated according to the synaptic plasticity rules

outlined in Section 2.3.1 with learning rates obtained through the hyperparameter search, given

in Tables 2.2 & 2.4, with a batch size of 10. All nudging factors, ‚N ,‚k (for all k) and ‚I, were set

to 0.1.

2.4.3.2 Spiral

The Spiral dataset consists of two spiral planars. The first spiral was generated by randomly sam-

pling datapoints, x, from 2
p

x cos(4…
p

x ) and the second spiral from 2
p

x sin(4…
p

x ). Datapoints

from the first and second spirals were assigned a label of 0 and 1, respectively (Fig. 2.2).

For training on the Spiral dataset, we used an ANN model with a network architecture of 2 inputs,

3 hidden layers with 20 units and 2 output units. Also, we used a sigmoid for the feedforward

activation functions and a batch size of 50.

2.4.3.3 Catastrophic forgetting tasks

To evaluate the effect of each method on mitigating catastrophic forgetting, the split MNIST

benchmark and variants of this task were used (Zenke et al., 2017). For all tasks, we used a

one hidden layer EDN model with the same network architecture as mentioned for the MNIST
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FIGURE 2.2: The Spiral dataset. Yellow and purple spirals form the two classes that the model must
learn to classify.

and F-MNIST tasks (Section 2.4.3.1). We used a multi-head approach in which the loss was only

computed for digits present in the current subset trained on. Unlike Zenke et al. (2017), the

optimiser state was not reset after training each task.

MNIST-split-five and F-MNIST-split-five

MNIST-split-five and F-MNIST-split-five are variants of the split MNIST benchmark (Zenke

et al., 2017), in which each of the MNIST and F-MNIST datasets were split into two subsets of

five classes (Kemker et al., 2017). During the initial phase of the split-five tasks, the model was

trained with a batch size of 10 on the first subset. Once this base set was learned, the model was

trained with a batch size of 1 on the remaining 5 classes. In both phases, examples were sampled

i.i.d. from the corresponding training set. We evaluated the mean classification accuracy on the

base set after training at regular intervals to assess the model’s memory of the classes learned in

the first phase.

Split MNIST and split F-MNIST

Split MNIST (Zenke et al., 2017) is a catastrophic forgetting benchmark and split F-MNIST is

a slightly harder variant using the F-MNIST dataset. These tasks involve dividing the entire

MNIST and F-MNIST training datasets into five subsets, each consisting of consecutive digits. A

model is trained on these five subsets to differentiate between two consecutive digits in the range

of 0 to 9.
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2.5 Results

To empirically evaluate our adaptive methods at different levels of modulation, we used the

MNIST and F-MNIST image classification tasks. The Spiral dataset was also used to further test

the Yi and Eve optimisation methods. We refer to the adaptive methods as {s,n,l,f}method where

s = synapse, n = neuron, l = layer and f = full network.

2.5.1 Synapse-specific neuromodulation is not required for efficient adaptive
learning
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FIGURE 2.3: Efficient adaptive learning without synaptic-specific neuromodulation. Test set
accuracy of each adaptive method for (A-D) MNIST and (E-H) F-MNIST. Data represented as mean and
standard error (n = 5).

First, we evaluated whether our gradient-based methods (Adagrad-ChoCA, RMSprop-ChoCA,

Adadelta-ChoCA and Adam-ChoCA) could be used to train the EDN model and if methods

operating with less fine-grained modulation could retain the desirable properties of their synapse-

level counterparts. A key property of standard adaptive learning methods is the increased

performance they can achieve. To demonstrate that our methods maintain this property, we

evaluated the test accuracy for each task throughout training (Fig. 2.3). Interestingly, when

modulation was applied to the weight changes (Eqs. 2.2-2.3), the self-predicting state remained

stable. In all cases, training with neuron- and layer-level modulation achieved similar accuracies

to synapse-level modulation. These results suggest that the majority of the methods do not
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suffer from significant reductions in performance despite using much less gradient information

(see Table 2.1 for memory usage comparison) and having much coarser-grained control. When

modulation was applied at levels lower than the full network, all ChoCA methods performed

better than SGD with the exception of Adadelta for which the performance was comparable

(Fig. 2.3C, G). These results indicate that it is beneficial to adaptively control synaptic plasticity

throughout training and are consistent with a wide range of experimental observations showing

an important function of the cholinergic system in learning (Rasmusson, 2000; Hasselmo, 2006;

Ballinger et al., 2016).

2.5.2 The effect of removing cholinergic modulation on interneuron synaptic
plasticity and learning
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FIGURE 2.4: Impact of removing cholinergic modulation of interneuron synapses on adaptive
learning. Difference in performance between the EDN model without interneuron modulation and a
model with standard microcircuit neuromodulation, for both (A-D) MNIST and (E-H) F-MNIST. Both
models are initialised in the optimal self-predicting state. Data represented as mean and standard error
(n = 5).

To test the importance of microcircuit modulation by the cholinergic system, we investigated

the difference in performance between modulating all connections (Eqs. 2.2-2.3) and only the

feedforward weights. For all methods, excluding network-level modulation, the results show that

the application of interneuron modulation increases overall performance (Fig. 2.4). This suggests

that modulating interneuron synaptic plasticity is important for efficient adaptive learning.
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2.5.3 Adaptive learning increases sparsity and selectivity
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FIGURE 2.5: Adaptive learning yields a better use of network representation capacity by
increasing sparsity and selectivity. The sparsity of activations present in each method are shown
across epochs of training for (A-D) MNIST and (E-H) F-MNIST. (B) The selectivities of neurons to
particular classes in the (I) MNIST and F-MNIST (J) datasets across methods are displayed using the
CCMAS metric with a black dashed line indicating SGD as a reference for baseline selectivity. Both the
sparsity and selectivity measures were calculated from neurons in the hidden layer. Data represented as
mean and standard error (n = 5).

Adaptive learning methods implicitly control which parts of neural networks change over training,

which should encourage more distributed neuronal representations in comparison to non-adaptive

methods (e.g. SGD). We evaluated sparsity following Cayco-Gajic et al. (2017)2 of each method in

2Sparsity is measured as
N¡

(
P

i xi )2
P

i x2
i

N¡1 , where N is the number of neurons and xi is the neuron activity (Cayco-Gajic
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both the MNIST and F-MNIST tasks and found that, with the exception of Adadelta-ChoCA and

full network Adagrad, the methods produced sparser representations compared to SGD (Fig. 2.5A-

H). Sparsity is thought to be an important property in encouraging neurons to have feature

selective responses (Sharkey and Sharkey, 1995; Murre, 2014). We investigated whether the

increased sparsity seen in these methods would result in increased selectivity for specific classes

as quantified by the class-conditional mean activity selectivity (CCMAS) metric (Morcos et al.,

2018). Consistent with the population sparseness results shown for MNIST and F-MNIST, the

same methods displayed an increase in selectivity for distinct classes in the datasets (Fig. 2.5I-J).

2.5.4 The effect of adaptive learning on catastrophic forgetting
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FIGURE 2.6: The impact of adaptive learning on catastrophic forgetting for the MNIST- and
F-MNIST-split-five tasks. Classification accuracy for (A-D) MNIST and (E-H) F-MNIST variants of the
split MNIST benchmark to quantify the degree of catastrophic forgetting as novel examples from unseen
classes are presented after training on five classes. All methods are displayed against SGD as a reference
for baseline levels of forgetting. Data represented as mean and standard error (n = 5).

The learning rate modulation of these adaptive methods diminishes updates in synapses that

have experienced large amounts of change. This property of the dynamics could provide a

mechanism to consolidate synapses important for features required to solve the task at hand.

Therefore, as these methods are exposed to future tasks, the modulation parameters could act

as a form of memory for the past tasks, thus, mitigating catastrophic forgetting. Additionally,

et al., 2017).
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we were interested in whether the increased sparsity and selectivity properties observed with

the adaptive methods would affect catastrophic forgetting. This is because sparse activations

can promote generalisation and make more efficient use of network resources which helps to

prevent overfitting, making sparse networks less prone to catastrophic forgetting (Srivastava

et al., 2014). To examine the effect of the adaptive methods on catastrophic forgetting, we

first evaluated the methods on MNIST-split-five and F-MNIST-split-five, variants of the split

MNIST benchmark (Zenke et al., 2017), in which each dataset was split into two subsets of five

classes (Kemker et al., 2017). The model is initially trained on the first subset and the task is

to continue to remember this whilst training on the remaining 5 classes. We used a multi-head

approach in which the loss was only computed for digits present in the current subset trained

on (see Section 2.4.3.3 for complete experiment details). We evaluated the mean classification

accuracy on the base set after regular intervals of training on the remaining classes to assess

the model’s memory of the classes learned in the first phase. Our results show that the majority

of the adaptive methods exhibit equal or greater catastrophic forgetting when compared to to

SGD (Fig. 2.6). However, network-level modulation consistently demonstrates lower catastrophic

forgetting. In the network-level setup, as all gradients are collapsed into one modulation factor,

the gradients of each layer in the network affects the updates within the same layer and the other

layers. Therefore, if the magnitude of the output layer gradients is much bigger than the other

layers, then updates in the other layers are suppressed more relative to the output layer. Due to

the multihead approach freezing the output heads for the initial classes, the representations for

them are unaffected when training occurs for the remaining classes which means that the overall

output for the initial classes remains the same resulting in minimal catastrophic forgetting.

In addition to the MNIST-split-five and F-MNIST-split-five tasks, we evaluated the performance

of each adaptive method on the split MNIST benchmark (Zenke et al., 2017) (Fig. 2.7) and a

slightly harder variant using the F-MNIST dataset (Fig. 2.8). For the split MNIST and split F-

MNIST benchmarks, we directly followed the experimental methodology provided by Zenke et al.

(2017) using our previously mentioned models. The optimiser state was not reset after training

each task as we were evaluating how the dynamics of these adaptive methods would impact

catastrophic forgetting. The performance of each adaptive method was evaluated on the mean

classification accuracy on all previous tasks as a function of number of tasks trained. In general,

the adaptive methods were not as good as SGD at remembering previous tasks (Fig. 2.7-2.8).

2.5.5 Neuromodulation of synaptic plasticity directly using cost information
improves learning

Based on the findings from gradient-based methods, which indicate that coarser-grained mod-

ulation can be as effective as synapse-level modulation for improving learning, we sought to

investigate the characteristics of new adaptive learning methods that are more aligned with the

current understanding of how the cholinergic system functions. Therefore, inspired by Yi et al.
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FIGURE 2.7: Performance of adaptive methods on split MNIST. The first five panels show classi-
fication accuracies on the five two-digit tasks after training on each task (x-axis). The panel furthest to
the right shows the mean classification accuracy as a function of the number of tasks. All methods of (A)
Adagrad, (B) RMSprop, (C) Adadelta and (D) Adam are displayed against SGD as a reference for baseline
levels of forgetting. In this setup, five binary readout heads are used so an accuracy of 0.5 corresponds to
chance represented by the grey dashed line. Data represented as mean and standard error (n = 5).

(2021) and Hayashi et al. (2016), we developed two novel optimisation methods, called Yi-ChoCA

and Eve-ChoCA, which modulates the learning rate using the error information from the cost

function. Unlike the gradient-based methods, these methods strictly have a global, homogeneous

effect and increases modulatory output to error signals to facilitates synaptic plasticity, consis-

tent with how the cholinergic system is thought to behave (Hasselmo, 2006; Obermayer et al.,
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FIGURE 2.8: Performance of adaptive methods on split F-MNIST. The first five panels show
classification accuracies on the five two-digit tasks after training on each task (x-axis). The panel furthest
to the right shows the mean classification accuracy as a function of the number of tasks. All methods of (A)
Adagrad, (B) RMSprop, (C) Adadelta and (D) Adam are displayed against SGD as a reference for baseline
levels of forgetting. In this setup, five binary readout heads are used so an accuracy of 0.5 corresponds to
chance represented by the grey dashed line. Data represented as mean and standard error (n = 5).

2017; Záborszky et al., 2018; Disney and Higley, 2020). In addition to the MNIST and F-MNIST

datasets, we tested the properties of these two cost-based methods on the Spirals dataset.
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FIGURE 2.9: Performance of cost-based methods on the Spirals dataset in standard deep neural
networks. (A) Test set accuracy of each adaptive method for the Spirals dataset. (B) The sparsity of
activations present in each method are shown across epochs of training. (C) The selectivities of neurons
to particular classes across methods are displayed using the CCMAS metric with a black dashed line
indicating SGD as a reference for baseline selectivity. Data represented as mean and standard error (n =
5).

2.5.5.1 Spirals

Initially, both cost-based adaptive methods were tested on the Spirals dataset using a standard

3 hidden layer ANN. We found that the learning performance of our methods were similar to

that of SGD (Fig. 2.9A). They displayed increased sparsity and selectivity as seen with the

gradient-based adaptive methods (Fig. 2.9B-C).

2.5.5.2 MNIST
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FIGURE 2.10: Performance of cost-based adaptive methods on the MNIST dataset in the EDN
model. (A) Test set accuracy of each adaptive method for the MNIST dataset. (B) The sparsity of
activations present in each method are shown across epochs of training. (C) The selectivities of neurons
to particular classes across methods are displayed using the CCMAS metric with a black dashed line
indicating SGD as a reference for baseline selectivity. Data represented as mean and standard error (n =
5).

When these cost-based adaptive methods were applied in a one hidden layer EDN model on
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the MNIST image classification task, we found an increase in performance compared to SGD

(Fig. 2.10A). Similar to the properties seen on the Spirals dataset in ANNs, these methods also

demonstrate increased sparsity and selectivity (Fig. 2.10B-C).

2.5.5.3 F-MNIST

A

A
cc

ur
ac

y

B C

FIGURE 2.11: Performance of cost-based adaptive methods on the F-MNIST dataset in the
EDN model. (A) Test set accuracy of each adaptive method for the F-MNIST dataset. (B) The sparsity of
activations present in each method are shown across epochs of training. (C) The selectivities of neurons
to particular classes across methods are displayed using the CCMAS metric with a black dashed line
indicating SGD as a reference for baseline selectivity. Data represented as mean and standard error (n =
5).

Similar to the results found with the MNIST dataset, cost-based adaptive learning in a one hidden

layer EDN model on F-MNIST improved learning performance compared to SGD, promoted sparse

activations and increased selectivity of neurons to distinct classes (Fig. 2.11). Next, we wanted to

test whether these properties changed with a deeper network. Therefore, these adaptive methods

were applied in a three hidden layer EDN model and evaluated on the F-MNIST task. With this

deeper network, Eve-ChoCA still performs slightly better and displays faster learning compared

to SGD (Fig. 2.12A). However, Yi-ChoCA performs significantly worse than SGD and also loses

the increased sparsity and selectivity properties previously shown. The Eve-ChoCA method

maintains the selectivity property for all hidden layers and the increased sparsity seen before,

remain in the earlier layers (Fig. 2.12B-C).

Together, these results suggest that, similar to the gradient-based adaptive methods, both

cost-based adaptive methods improve learning performance and display a consistent increase

in sparsity and selectivity across different tasks in the EDN model with shallower network

architectures. However, the Yi-ChoCA method loses its increased performance, sparsity and

selectivity properties when it is applied in deeper networks whereas the Eve-ChoCA is more

robust to changes in network architecture.
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FIGURE 2.12: Performance of cost-based adaptive methods on the F-MNIST dataset in a 3
hidden layer EDN model. (A) Test set accuracy of each adaptive method for the F-MNIST dataset. (B-D;
left) The sparsity of activations present in each method are shown across epochs of training. (B-D; right)
The selectivities of neurons to particular classes across methods are displayed using the CCMAS metric
with a black dashed line indicating SGD as a reference for baseline selectivity. Both the sparsity and
selectivity measures were calculate for all hidden layers. Data represented as mean and standard error (n
= 5).

2.5.6 The effect of cost-based adaptive modulation of interneurons on
learning

Similar to Section 2.5.2, we wanted to examine the effect of removing the modulation, provided

by the cost-based adaptive methods, of interneuron synaptic plasticity in the EDN model. In the

one hidden layer EDN model, the results demonstrate that interneuron modulation is critical for

learning with the Yi-ChoCA method as removal leads to a significant decrease in performance on

the MNIST and F-MNIST tasks. However, an opposite effect is seen with the Eve-ChoCA method

as the removal of interneuron modulation results in an increase in performance on the two

image classification tasks (Fig. 2.13A-B). In the three hidden layer EDN model, both Yi-ChoCA

and Eve-ChoCA methods suffer a reduction in performance with the removal of interneuron

modulation (Fig. 2.13C). These data suggest that interneuron modulation is important for the

Yi-ChoCA method but has inconsistent effects for the Eve-ChoCA method depending on the

network architecture.
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FIGURE 2.13: Impact of removing cost-based cholinergic modulation of interneuron synaptic
plasticity on adaptive learning. Difference in performance between the EDN model without interneuron
modulation and a model with standard microcircuit neuromodulation for (A) MNIST, (B) F-MNIST and (C)
F-MNIST with a deeper network architecture of 3 hidden layers instead of one. Both models are initialised
in the optimal self-predicting state. Data represented as mean and standard error (n = 5).

2.5.7 The effect of cost-based adaptive learning on catastrophic forgetting

The same tasks in Section 2.5.4 were used to examine the effect of the Yi-ChoCA and Eve-

ChoCA methods on catastrophic forgetting. For the MNIST-split-five and F-MNIST-split-five

tasks, both cost-based adaptive methods demonstrated greater level of catastrophic forgetting

in comparison to SGD (Fig. 2.14). This result was consistent for Yi-ChoCA on split MNIST but

similar performances to SGD were seen with Eve-ChoCA on split MNIST and both methods on

split F-MNIST (Fig. 2.15). These results indicate that both cost-based methods do not mitigate

catastrophic forgetting.
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FIGURE 2.14: The impact of cost-based adaptive learning on catastrophic forgetting for the
MNIST- and F-MNIST-split-five tasks. Classification accuracy for (A) MNIST and (B) F-MNIST variants
of the split MNIST benchmark to quantify the degree of catastrophic forgetting as novel examples from
unseen classes are presented after training on five classes. All methods are displayed against SGD as a
reference for baseline levels of forgetting. Data represented as mean and standard error (n = 5).

2.6 Discussion

Here, we have proposed a framework for the cholinergic system as an adaptive learning module

that integrates error information to modulate synaptic plasticity throughout the brain. In our

model, we have specifically explored the idea of acetylcholine as a neuromodulator that controls

the learning rate of a system via cholinergic modulation of synaptic credit assignment akin

to adaptive learning algorithms used in machine learning (Doya, 2002; Duchi et al., 2011;

Tieleman et al., 2012; Zeiler, 2012; Kingma and Ba, 2014; Shazeer and Stern, 2018; Anil et al.,

2019; Yi et al., 2021; Hayashi et al., 2016). Our results show that despite its diffuse nature,

cholinergic neuromodulation in the brain can enhance the efficiency of learning when this

is coupled with synaptic credit assignment. We have shown across different tasks that, with

the exception of network-level Adagrad-ChoCA and Adadelta-ChoCA, the adaptive modulation

of synaptic plasticity in cortical microcircuits provides significant improvements to learning.

There has been a longstanding debate about whether the cholinergic system acts as a global

modulator, influencing brain activity in a non-specific, homogeneous manner, or whether it

acts more specifically to modulate particular neural circuits or regions (Disney and Higley,

2020). We have shown with the gradient-based adaptive methods that more heterogeneous

models of cholinergic modulation are better at enhancing learning. A recent study by Lohani

et al. (2020) using dual-color mesoscopic imaging of both acetylcholine and calcium activity

across the neocortex demonstrates that different behavioural states are associated with distinct

spatiotemporal patterns of cholinergic signalling. This suggests that the cholinergic system

can provide dynamic, heterogeneous fluctuations in acetylcholine depending on the current

state of the brain. This does not mean that the cholinergic system does not act as a diffuse,
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FIGURE 2.15: Performance of cost-based adaptive methods on split MNIST and split F-MNIST.
The first five panels show classification accuracies on the five two-digit tasks after training on each task
(x-axis). The panel furthest to the right shows the mean classification accuracy as a function of the number
of tasks. Both methods were tested on (A-B) split MNIST and (C-D) split F-MNIST. They are displayed
against SGD as a reference for baseline levels of forgetting. In this setup, five binary readout heads are
used so an accuracy of 0.5 corresponds to chance represented by the grey dashed line. Data represented as
mean and standard error (n = 5).

global neuromodulator but implies that it is also capable of more targeted effects. We have

also shown that the homogeneous, global effect of the cost-based adaptive methods, which are
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more consistent with experimental observations of the cholinergic system as a network that

encodes valence-free prediction error signals, facilitates learning, albeit to a lesser degree than

the finer-resolution gradient-based adaptive methods (Hangya et al., 2015; Sturgill et al., 2020).

However, the Eve-ChoCA method was better at mitigating catastrophic forgetting in the split

MNIST and split F-MNIST tasks compared to the gradient-based adaptive methods that improved

learning on the image classification tasks. In addition, the network-level gradient-based adaptive

methods consistently performed better than their less diffuse counterparts on the forgetting tasks.

Collectively, this indicates that there is a context-dependent function for both homogeneous and

heterogeneous cholinergic signals. In addition, our use of adaptive methods removes the need for

hand-tuned layer-specific learning rates as used in the EDN model by Sacramento et al. (2018).

In the current implementation of adaptive learning in our model, the cholinergic modulation di-

rectly alters the learning rate of the plasticity rules. We can interpret this modulation as a change

in the excitability of the distal apical dendrite where the error signals are computed (Williams

and Fletcher, 2019). For example, a large modulation factor indicates a high concentration of

acetylcholine release which increases the excitability of the distal dendrite; thus, increasing the

potential and scaling the error signal to promote plasticity of the bottom-up synapses. However,

if this altered error signal is directly propagated down the network then earlier layers in the

network would experience updates that are misaligned with backprop-derived gradients. This

would likely cause the model to not correctly follow gradient descent and ultimately harm learn-

ing in the network. Therefore, a correction would need to be made for this modulation in the

outgoing signals. If we increase the excitability of the distal dendrite with cholinergic modulation

as shown by Williams and Fletcher (2019) then we would need to depress the weight of the

feedback excitatory and inhibitory connections. The reduction in weight of the feedback excitatory

pathway is consistent with experimental observations by Palacios-Filardo et al. (2021). They show

that when you patch onto a CA1 pyramidal cell there is a reduction in the excitatory response

from the temporammonic feedback pathway in the presence of acetylcholine. Another prediction

would be that the SST-to-PC connection must also be down-regulated by acetylcholine which is

examined in Chapter 4.

In the EDN model, the distal dendrite-targeting interneurons play a critical role in the generation

error signals that are used for the update of feedforward synapses. We found that inhibiting

cholinergic modulation of interneuron synaptic plasticity in the non-network-level gradient-

based adaptive methods and cost-based adaptive methods in deep networks significantly reduced

learning capabilities. Without this modulation, the feedforward weights are likely changing at a

rate that the interneuron weights cannot follow resulting in the EDN losing its self-predicting

state; thus, generating error signals that begin to not align with backprop-derived gradients. If

the brain performs credit assignment in a similar manner to the EDN model, this suggests that

cholinergic modulation of these interneurons is important for learning.
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Acetylcholine has been shown to play a role in regulating the activity of neurons in the brain. Some

studies suggest that acetylcholine release in specific brain regions or circuits leads to increased

sparsity of neuronal firing patterns, which may enhance neural coding efficiency and improve

cognitive function (Pinto et al., 2013; Goard and Dan, 2009). Consistent with these findings, we

have demonstrated that the adaptive methods capable of facilitating learning produce sparse

activations and increase the selectivity of neurons in the network. Although we thought the

increased sparsity property would help mitigate catastrophic forgetting, a contrasting effect was

seen. Contrary to our initial beliefs, sparse activations can also lead to a network becoming more

prone to catastrophic forgetting as neurons becoming specialised for specific inputs can result in

reduced generalisation and increased sensitivity to changes in the input distribution. This can

make it harder for the network to adapt to new tasks without forgetting previous ones. Overall,

the relationship between sparse activations and catastrophic forgetting is complex and depends

on various factors which means we cannot be certain of the effects of this property.

We acknowledge that there is a prominent role for the cholinergic system in memory and we

demonstrate that our implementation of the cholinergic system does not yield properties of

reduced forgetting which we consider important for memory consolidation (Hasselmo, 2006).

However, we are not implying that the cholinergic system is strictly participating in this form

of adaptive learning. We are simply stating that this could be one of many functions of the

cholinergic system. In fact, the framework we have proposed in which the cholinergic system

receives and integrates error information from cortical networks enables it to freely process

this information to achieve various functions. It would be interesting to explore a meta-learning

approach in which the cholinergic system can be explicitly modelled as a separate neural network

(Beaulieu et al., 2020). This provides an unbiased approach for optimising the required strategy

to achieve known functions of the cholinergic system including efficient learning and mitigating

catastrophic forgetting. For example, a similar approach to Andrychowicz et al. (2016) could be

used to explicitly model the cholinergic system as a recurrent neural network that meta-learns to

produce modulation factors which affect the learning rate as a function of the error information it

receives. Unlike, the current adaptive methods, an architectural constraint can be applied to the

network so that the modulation is diffuse. By adding physiological constraints to these models,

the meta-learning process can act as the evolutionary process of the cholinergic system which

can provide us with a theoretical understanding of how the cholinergic system may be acting to

produce its effects.

2.6.1 Limitations

Although we have proposed a framework in which error signals are transmitted to the cholinergic

system, it is unclear exactly how this could be achieved with the current EDN model. Additionally,

the EDN model requires the SST interneurons to be one-to-one with the number of pyramidal

cells in the next layer which is not equal to the relative proportions between interneurons and

50



2.6. DISCUSSION

pyramidal cells observed in the brain. We attempt to address these issues with our new model in

Chapter 3 which uses burst ensemble multiplexing to simultaneously communicate inference

and error signals within spiking activity patterns (Naud and Sprekeler, 2018).

Our biological interpretation of how the cholinergic modulation can alter the learning rate of

plasticity in our current model applies well to the cholinergic system as a global modulator. This

is because a homogeneous signal allows the entire network to have access to the same modulatory

information. With modulation at a finer resolution, the interneurons in one brain region would

need access to the modulation factor in another brain region. This would imply that different

parts of the microcircuit in one area receives different cholinergic signals and that acetylcholine

release onto interneurons is identical to that of pyramidal cells in a upstream brain area.

2.6.2 Closing remarks

In conclusion, we have introduced a brain-wide deep learning model of cholinergic neuromodula-

tion as an adaptive learning system that integrates error information to dynamically modulate

synaptic plasticity. We have shown that this neuromodulation produces efficient learning when

coupled with a biologically plausible credit assignment mechanism and applied in a similar

manner to adaptive learning algorithms found in machine learning.
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SINGLE-PHASE DEEP LEARNING IN CORTICO-CORTICAL NETWORKS

3.1 Statement of contributions

This work was done in collaboration with a PhD student, Will Greedy, from the Department

of Computer Science at the University of Bristol. A large amount of the content in this chap-

ter is directly taken from our co-first author published paper "Single-phase deep learning in

cortico-cortical networks" (Greedy et al., 2022). The spiking and continuous model data was

predominantly produced by Will Greedy. The reinforcement learning data was predominantly

produced by me. The analytical proof of BurstCNN approximating the backpropagation algo-

rithm was mainly done by Will Greedy and Joseph Pemberton, another PhD student from the

Department of Computer Science at the University of Bristol, with minor input from me. Will

and I contributed equally to the rest of this project.

3.2 Introduction

For effective learning, synaptic modifications throughout the brain should result in improved

behavioural function. This requires a process by which credit should be assigned to synapses

given their contribution to behavioural output (Roelfsema and Holtmaat, 2018; Richards et al.,

2019; Lillicrap et al., 2020). In multilayer networks, credit assignment is particularly challenging

as the impact of changing a synaptic connection depends on its downstream brain areas. Classical

local Hebbian plasticity rules, even when coupled with global neuromodulatory factors, are unable

to communicate enough information for effective credit assignment through multiple layers of

processing (Lillicrap et al., 2020). In machine learning, the error-backpropagation (backprop)

algorithm is the most successful solution to the credit assignment problem. However, it relies
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on a number of biologically implausible assumptions to compute gradient information used for

synaptic updates. Previous work has attempted to address these implausibilities but important

issues remain open when mapping backprop to the neuronal physiology. Earlier attempts relied

on using single-compartment neuron models (Lillicrap et al., 2016; Richards and Lillicrap, 2019)

but this poses a problem as single-compartment neurons are unable to simultaneously store the

necessary inference and credit assignment signals. One solution is to model neurons with an

apical dendritic compartment that separately stores credit information (Sacramento et al., 2018;

Richards and Lillicrap, 2019), supported by the electrotonic separation of the soma and apical

dendrites (Williams and Stuart, 2002). These distal credit signals can then be communicated

to the soma through non-linear dendritic events that trigger bursting at the soma (Xu et al.,

2012), thereby inducing long-term synaptic plasticity (Sjostrom et al., 2008). In particular, two

recent approaches, Error-encoding Dendritic Networks (EDNs) (Sacramento et al., 2018) and

Burstprop (Payeur et al., 2021), have demonstrated how such multi-compartment neuron models

can be used to construct networks capable of backprop-like credit assignment. EDNs encode credit

signals at apical dendrites resulting from the mismatch between dendritic-targeting interneuron

activity and downstream activity. Burstprop uses bursting, controlled by dendritic excitability, as

a mechanism to communicate credit signals. However, these models still have major issues, such

as the inability to effectively backpropagate error signals through many layers (EDNs) and the

requirement for a multi-phase learning process (Burstprop).

Here, we propose a new model called the Bursting Cortico-Cortical Network (BurstCCN) as a

solution to the credit assignment problem which addresses several outstanding issues of current

biologically plausible backprop research. Our model builds upon prior multi-compartment neuron

models (Sacramento et al., 2018; Payeur et al., 2021): it encodes credit signals in distal dendritic

compartments which trigger bursting activity at the soma to drive backprop-like synaptic updates.

We demonstrate that combining well-established properties of cortical neurons such as bursting

activity, short-term plasticity (STP) and dendrite-targeting interneurons provides a biologically

plausible mechanism for performing credit assignment. In contrast to previous models, BurstCCN

is highly effective at backpropagating credit signals in multi-layer architectures while only

requiring a single-phase learning process. We implement multiple versions of the BurstCCN at

different levels of abstraction in order to demonstrate some of its key properties and to empirically

confirm our theoretically motivated claims.

First, we use a spike-based implementation of the BurstCCN to demonstrate its ability to learn

without the need for multiple phases. We further show the importance of this single-phase

learning by training a continuous-time rate-based version of the BurstCCN on a continuous-time

non-linear regression task. Next, we show both empirically and analytically that our model’s

dynamics result in learning that approximately follows backprop-derived gradients. Then, we

use a simplified discrete-time BurstCCN implementation to demonstrate that the model achieves

good performance on non-trivial image classification tasks (MNIST and CIFAR-10), even in the
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FIGURE 3.1: Bursting cortico-cortical networks (BurstCCN) for credit assignment through
bursting activity. (A) Network schematic consisting of neuron ensembles and connection-type-specific
STP. Events from the input are propagated forward through short-term depressing (STD) connections, W.
Output event rates are compared to a target value which generates a teaching signal that is presented
to the output layer apical dendrites. This acts as an error signal and appears as a deflection in the
dendritic potential from its resting potential which causes changes to bursting activity from its baseline.
The error-carrying bursting signals are propagated back through short-term facilitating connections, Y,
which we interpret as being communicated by populations of dendrite-targeting interneurons. Events are
also propagated backwards via STD connections, Q, to provide a means of cancelling baseline bursting
activity. The difference in activity from these two feedback connections results in changes to dendritic
excitability that lead to burst-dependent synaptic plasticity. (B) Burst-dependent plasticity rule. Simple
setup of a single connection between a pre- and post-synaptic cell that are both modelled with Poisson
spike trains with equal rates. As the firing rates increase, (top) plasticity of the synaptic weight switches
from long-term depression (LTD) to long-term potentiation (LTP) (middle) when the burst probability
increases above the baseline value. (bottom) The magnitude of the weight change is scaled by the event
rate. (C) Homeostatic plasticity rule for Q weights. The difference between the signals through Q and Y
dictates the direction and magnitude of synaptic plasticity.

presence of random feedback synaptic weights. We also demonstrate that the BurstCCN can

be applied to a reinforcement learning (RL) context and performs similarly to artificial neural

networks in the CartPole-v0 RL task. Finally, we demonstrate that by incorporating various

types of interneurons and their respective STP connectivity, it is possible to adjust our model to

adhere to Dale’s law while retaining the capacity to learn MNIST.

3.3 Bursting Cortico-Cortical Networks

3.3.1 Burst Ensemble Multiplexing

Burst Ensemble Multiplexing (BEM) (Naud and Sprekeler, 2018) refers to the idea that ensembles

of cortical neurons are capable of simultaneously representing multiple distinct signals within

the patterns of their spiking activity. Typically, pyramidal cells receive top-down and bottom-up

signals into their apical and basal dendrites, respectively. Bottom-up basal inputs affect the
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rate of spiking and top-down apical inputs convert these somatically induced spikes into high-

frequency bursts. Postsynaptic populations can then use STP to decode these distinct signals

from the overall spiking activity.

The BurstCCN uses the concept of BEM in a similar way to Burstprop (Payeur et al., 2021) in

which ensembles of cells encode both feedforward inference signals and feedback error signals.

The model encodes these signals as the rates of events and bursts, respectively, across the

ensembles. Here, the specific definition of a burst is a collection of spikes with interspike intervals

less than 16 ms and an event is either a burst or a single isolated spike (i.e. a spike not followed

or preceded by another within 16ms). The burst probability of an ensemble is defined as the

probability that an event at a given time is a burst and is computed as a ratio of the event rate

(e) and burst rate (b): p ˘ b/e.

3.3.2 Rate-based BurstCCN

In our discrete-time implementation of the rate-based BurstCCN, example input-output pairs

are processed independently in discrete timesteps. For each example, the event rates of the

input layer, e0, encode the input stimulus. The model then computes each subsequent layer’s

activities, equivalent to that of a standard feedforward artificial neural network (Fig. 3.1A).

Specifically, somatic potentials are computed by integrating basal input as vl ˘ Wlel¡1 where Wl

are short-term depressing (STD) feedforward weights from layer l ¡1 to layer l. The STD nature

of these weights ensures that only event rate information propagates forwards. Each layer’s event

rates are then computed by applying a non-linear activation function, f , to the somatic potentials,

el ˘ f (vl). These linear and nonlinear operations are repeated for each layer in the network to

ultimately obtain the output layer event rates, eL, where L denotes the total number of layers.

The desired target output of the network, etarget, is compared to the output layer event rates to

produce a signed error, etarget ¡eL, which is used as a teaching signal. This error information is

then propagated backwards through each layer in the network by altering the apical dendritic

compartment potential and, as a result, the burst probability of each pyramidal ensemble. At the

output layer, the burst probability is computed directly as pL ˘ pb
L¯pb

Lfl(etarget¡eL)flh(eL) where

fl denotes the element-wise product, pb
L represents the baseline burst probability in the absence of

any teaching signal and h(el) ˘ f 0(vl) fl e¡1
l . These burst probabilities are used at the output layer

(l ˘ L) to compute the burst rates as bl ˘ el flpl which are decoded and sent backwards to layer

l ¡1 apical dendrites by a set of short-term facilitating (STF) feedback weights, Yl¡1. The STF

feedback weights and STD feedforward weights are similarly used in Burstprop. However, the

BurstCCN additionally includes a novel set of apical dendrite-targeting STD feedback weights,

Ql¡1, which send event rates backwards. We interpret the STF feedback connections as being

provided via a type of dendrite-targeting interneuron and STD feedback as direct connections in

line with recent experimental studies (Lee et al., 2013; Kinnischtzke et al., 2014; Petrof et al.,
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2015; Zolnik et al., 2020; Naskar et al., 2021; Martinetti et al., 2022). The signals through both

sets of feedback weights lead to the apical potentials in the previous layer, ul¡1 ˘ Ql¡1el ¡Yl¡1bl .

These determine the layer’s burst probabilities which are computed as pl¡1 ˘ ¾̄(ul¡1 fl h(el¡1))

where ¾̄ denotes the sigmoid function, ¾, with scaling and offset parameters, ¾̄(x) ˘ ¾(fix ¯ fl)

(Payeur et al. (2021); see SM of Greedy et al. (2022)). The same process is repeated backwards for

each layer until the input layer to obtain their dendritic potentials and burst probabilities. Note

that for all experiments, we set fi ˘ 4 (and fl ˘ 0) to prevent this function from implicitly scaling

down the errors propagating backwards through each layer by a factor of 4 (since d¾
dx … 1

4 around

x ˘ 0).

After the error information has been propagated backwards, feedforward synaptic weight changes

are computed using a burst-dependent synaptic plasticity rule:

(3.1) ¢Wl ˘ ·(W)
l ((pl ¡pb

l ) fl el)eT
l¡1

where ·(W) is a learning rate and ¢T is the transpose operation. Importantly, the learning rule

depends on the change in burst probability from the predefined layer-wise baseline burst prob-

ability, pb
l ˘ pb

l (1, . . . ,1)T , which represents the signed error signal required for backprop-like

learning. Consequently, when we make both pre- and postsynaptic cells fire following Poisson

statistics we obtain long-term depression and long-term potentiation for low and high firing rates,

respectively (Fig. 3.1B). This is in line with a large number of experimental studies of cortical

synapses (Bienenstock et al., 1982; Sjöström et al., 2001). It can be shown that the updates

produced by this learning rule approximate those obtained by the backpropagation algorithm in

the weak-feedback case (see Section 3.5.3.1 and SM of Greedy et al. (2022)).

In the absence of a teaching signal, it is important for pyramidal ensembles to produce a baseline

level of bursting such that no weight changes occur (cf. Eq. 3.1). This holds true for the output

layer as there are no other inputs onto the apical dendrites. However, for the hidden layers the

event rate signals through Q and the burst rate signals through Y need to exactly cancel each

other out such that the apical dendritic potentials are at rest (i.e. u ˘ 0). For any Y weights, there

is always an optimal set of Q weights that will produce this exact cancellation regardless of the

event rates propagating through the network. Specifically, they must be set as Ql ˘ pb
l Yl which

we refer to as the weights being in a Q-Y symmetric state. However, it is not biologically plausible

for the Q synapses to have direct knowledge of Y. Therefore, inspired by earlier work (Vogels

et al., 2011; Sacramento et al., 2018), we use a learning rule for Q to provide this cancellation:

(3.2) ¢Ql ˘ ¡·(Q)
l ul eT

l¯1

which explicitly aims to silence the apical potentials (Fig. 3.1C). In the absence of a teaching

signal at the output layer, all Q weights will eventually converge to their optimal values and

achieve a symmetric state under reasonable assumptions (see SM of Greedy et al. (2022)). Note
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that we can have add this learning rule on the Y feedback weights to cancel the activity through

the Q weights, which produces similar results (Fig. 3.5).

When teaching signals are applied at the output layer, it is important to note that only the

bursting activity propagated through the Y connections changes because the event rates through

Q are unaffected by the dendritic activity. This enables single-phase learning as the symmetry in

the two feedback connection types (Q and Y) can be exploited to directly compare without teacher

signals (i.e. at baseline) to with teacher signals.

3.3.3 Continuous-time BurstCCN

In contrast to the discrete-time implementation, the continuous-time BurstCCN does not process

each input example independently from one another at discretised timesteps. The network

dynamics instead evolve through a continuous-time simulation incrementing with timesteps of

¢t ˘ 0.1s, where there is a memory of the prior network state at each timestep and no parallel

processing of mini-batches. The signals into the input layer are now given by a time-varying

function, x(t), along with target signals to the output layer, y(t). The input layer event rate is set

instantaneously as e0(t) ˘ x(t). All somatic potentials and other layer event rates evolve with:

dvl(t)
dt

˘
1
¿v

‡
¡vl(t)¯Wl(t)el¡1(t)

·
(3.3)

el(t) ˘ f (vl(t))(3.4)

where ¿v is the membrane leak time constant of the soma. The output layer burst probabilities

are also set instantaneously as pL(t) ˘ pb
L ¯pb

L fl(y(t)¡eL(t))flh(el(t)). The hidden layer dendritic

potentials, burst probabilities and burst rates evolve with:

dul(t)
dt

˘
1
¿u

‡
¡ul(t)¯ h(el(t))fl

h
Ql(t)el¯1(t)¡Yl(t)bl¯1(t)

i·
(3.5)

pl(t) ˘ ¾(ul(t))(3.6)

bl(t) ˘ pl(t)flel(t)(3.7)

where ¿u is the membrane leak time constant of the apical dendrite. Finally, the feedforward

weights change over time following:

dWl(t)
dt

˘
1

¿W

‡h
pl(t)¡pb

l

i
flel(t)

·
eT

l¡1(t)(3.8)

where ¿W is a time constant that determines the learning rate.

3.3.4 Spiking BurstCCN

Previous backprop-like learning models rely on computations across distinct phases to obtain

the necessary error signals to learn (Guerguiev et al., 2017; Payeur et al., 2021). For example,
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Burstprop, proposed by Payeur et al. (2021), computes the difference between the level of bursting

between two phases: an initial phase with no teaching signal and a second with a teaching signal

present. The burst-dependent plasticity rule used in the spiking implementation of Burstprop

requires neuron ensembles to compute a moving average of their burst probability over time. This

quantity needs to reach stability in order to generate useful error signals. Therefore, there must

be a period with no plasticity before a teaching signal is presented. This requires global plasticity

switches between the two phases which is problematic because a high level of coordinated

plasticity is needed across the whole network. To address these issues, we build upon Burstprop’s

plasticity rule and propose a spiking implementation of our rate-based burst-dependent plasticity

rule (Eq. 3.1):

(3.9)
dwi j

dt
˘ ·

h
Bi(t)¡ Pb

i E i(t)
i
Ẽ j(t)

where Pb is the baseline burst probability, Ẽ is an eligibility trace of presynaptic activity (with

time constant ¿pre), · is a learning rate and Bi and E i are burst and event trains, respectively.

In contrast to Burstprop, we use this constant baseline burst probability (Pb) instead of a moving

average of the burst probability to control the relative magnitude of positive and negative weight

changes. This makes it unnecessary to have a separate phase to compute its value since it

is no longer time-dependent. However, to make single phase learning possible, we have also

introduced a set of STD feedback weights that cancel baseline bursting feedback activity into

apical compartments such that only deviations from the baseline are communicated. With just

STF feedback weights, as is the case for Burstprop, cells will not consistently burst at baseline in

the absence of a teaching signal. This is due to the bursting signals they communicate having a

dependence on the feedforward activity (i.e. events) and necessarily varying across input stimuli.

We include this spike-based burst-dependent synaptic plasticity rule in a spiking implementation

of the BurstCCN. Unlike the two rate-based implementations, the spiking BurstCCN more

accurately models the internal neuron spiking dynamics instead of abstracting these details

away and only considering the ensemble-level behaviour. Pyramidal neurons are modelled with

two compartments corresponding to the soma and apical dendrites. The remaining details of

this model along with the hyperparameters used are described by Payeur et al. (2021) and the

simulation of all neurons was carried out using the Auryn simulator (Zenke and Gerstner, 2014).

3.3.5 Dalean BurstCCN

For the Dalean implementation of the rate-based BurstCCN, each connection type (W, Q and Y)

was divided into separate excitatory and inhibitory pathways. For the feedforward W weights,

the excitatory pathway was implemented as a direct excitatory connection, A, between pyramidal

cells (PCs) in subsequent layers, whereas the inhibitory pathway, B, was implemented using a

feedforward inhibitory interneuron population which we interpreted as being parvalbumin (PV)
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interneurons. Initially, the effective weight from neuron i to j, Wi j, was initialised using a normal

distribution and was split into the excitatory pathway and inhibitory pathway weights as follows:

(3.10) Ai j ˘

8
<

:
Wi j ¯ c Wi j ¨ 0

c Wi j • 0

(3.11) Bi j ˘

8
<

:
¡Wi j ¯ c Wi j ˙ 0

c Wi j ‚ 0

where c is a constant added to all weights to prevent initial starting weights of 0. The sign

of excitatory, Ai j, and inhibitory, Bi j, weights are kept constant. Together, the combination of

the excitatory and inhibitory weight pathways form the effective weight between two neurons,

Wi j ˘ Ai j ¡Bi j. The feedforward interneuron population in the inhibitory pathway received event

rates from PCs in the previous layer, vPV
l ˘ el¡1 (the PC-to-PV weights were interpreted as

the identity matrix), and inhibited current layer PCs by transmitting the negated form of this

information, ¡BlvPV
l ˘ ¡Blel¡1. The direct excitatory pathway transmitted event rates from

one layer to the next as Alel¡1. Therefore, the somatic potentials of the PCs are computed by

integrating the excitatory and inhibitory inputs as vl ˘ Alel¡1¡BlvPV
l ˘ Alel¡1¡Blel¡1 ˘ Wlel¡1.

A similar approach to separate the excitatory and inhibitory pathways was undertaken for the

feedback Q and Y weights. For the Q weights, a direct excitatory connection, C (defined similarly

to A in Equation 3.10 but Wi j replaced with Qi j), was implemented to communicate event rates

backwards to previous layer PCs. A feedforward inhibitory interneuron population which we

interpreted as being neuron derived neurotrophic factor (NDNF) interneurons was used for

the inhibitory pathway, D (defined similarly to B in Equation 3.11 but Wi j replaced with Qi j).

The feedforward interneuron population in the inhibitory pathway received event rates from

PCs in the next layer, vNDNF
l ˘ el¯1 (the PC-to-NDNF weights were interpreted as the identity

matrix), and inhibited current layer PCs by transmitting the negated form of this information,

¡DlvNDNF
l ˘ ¡Dlel¯1. The direct excitatory pathway transmitted event rates backwards to the

current layer as Clel¯1. Therefore, the apical potential contribution are computed by integrating

the excitatory and inhibitory inputs as Clel¯1 ¡DlvNDNF
l ˘ Clel¯1 ¡Dlel¯1 ˘ Qlel¯1.

For the Y weights, the excitatory pathway, E, was implemented by the disinhibition of an in-

hibitory interneuron population which we interpreted as vasoactive intestinal peptide-expressing

(VIP) interneurons disinhibiting somatostatin (SST) interneurons. The inhibitory pathway, F,

was implemented by a feedforward inhibitory interneuron population which we interpreted as

a different population of SST interneurons (SST2). E and F weights are defined similarly to A

and B in Equations 3.10-3.11 but Wi j replaced with Yi j. The feedforward interneuron population

in the inhibitory pathway received burst rates from PCs in the next layer, vSST2
l ˘ bl¯1 (the

PC-to-SST2 weights were interpreted as the identity matrix), and inhibited current layer PCs by
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transmitting the negated form of this information, ¡FlvSST2
l ˘ ¡Flbl¯1. The excitatory pathway

consisted of VIP interneurons that received bursting information from PCs in the next layer,

vV IP
l ˘ bl¯1, inhibiting downstream SST interneurons, vSST

l ˘ 1¡vV IP
l (the constant of 1 is added

as a tonic level of activation to provide SST activity for the VIP interneurons to inhibit). This

SST interneuron population then inhibits the apical dendrite and the overall apical contribution

is computed by integrating the disinhibitory and inhibitory inputs as:

¡ElvSST
l ¡FlvSST2

l ˘ ¡El
¡
1¡vV IP

l
¢
¡FlvSST2

l

˘ ¡El
¡
1¡bl¯1

¢
¡Flbl¯1

˘ Elbl¯1 ¡Flbl¯1 ¡El1

˘ Ylbl¯1 ¡El1.

which is equivalent to the contribution of the Y feedback pathway in Section 3.3.2 with an

additional term ¡El1. In this ideal case, we introduced a bias term, El1, that exactly cancels

this extra term. We believe that in theory this could be learned by a separate cell population,

although this was not explicitly modelled.

Together, the signals through the feedback weights lead to the apical potentials in the current

layer, ul ˘ Qlel¯1 ¡Ylbl¯1, which determine the layer’s burst probabilities.

The learning rules for the excitatory pathway weights are the same as Equations 3.1-3.2 and are

negated for the inhibitory pathway weights.

3.3.6 Related work

As previously mentioned, BurstCCN takes inspiration from two prior models: EDNs (Sacramento

et al., 2018) and Burstprop (Payeur et al., 2021). Similar to these models, the BurstCCN uses

a separate apical dendritic compartment to represent an error signal. To silence this apical

compartment and maintain correct error signals, the EDN uses a homeostatic plasticity rule

from local interneurons to cancel the signals received from a separate feedback pathway. In the

BurstCCN, we use the same principle by adapting this plasticity rule for learning of the novel Q

weights. Unlike the EDN, we use a similar idea to Burstprop in which error signals are encoded

as bursts in the neural activity and decoded by STP dynamics.

Within each layer, Burstprop includes a set of recurrent connections onto the apical compartments

which aim to maintain the dendritic potential in the linear regime of the feedback non-linearity.

Updating the weights of these connections requires separate learning phases and it is unclear

how the plasticity rule can be justified. In contrast, the BurstCCN does not require these

connections. Instead, the novel set of STD feedback connections (Q) onto the apical dendrites

provide a mechanism for single-phase learning and perform a similar role of linearising the

feedback. Additionally, burst-dependent plasticity in our model relies on a constant baseline burst

probability instead of using a moving average of the burst probability (Section 3.3.4).
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3.4 Experimental details

In the following section, we provide additional details on the experimental setups used to obtain

the results.

3.4.1 Spiking XOR task

In the spiking XOR task, we used networks consisting of 5 distinct neuron populations: 2

populations that encoded each input, 2 hidden layer populations and a single population that

encoded the output. Each population consisted of 500 individual neurons. These neurons were

sparsely connected in the feedforward and feedback directions with a connection probability

of 0.05. All neurons received balanced excitatory and inhibitory Poisson noise into both their

somatic and dendritic compartments.

In the two-phase setup, learning rates for the weights and biases were set to ·W ˘ 0.004 and

·B ˘ 0.0001, respectively. We reduced learning rates to ·W ˘ 0.0004 and ·B ˘ 0.00001 in the

one-phase setup due to the increased duration where plasticity was on.

Each simulation was carried out for 16000s (2000 examples £ 8s per example) with timesteps of

dt ˘ 0.1s. Learning of the feedforward weights was carried out by each model’s burst-dependent

synaptic plasticity rule with the time constant of the pre-synaptic input eligibility trace ¿pre ˘ 0.1s.

The moving average time constant for Burstprop, ¿ma, was set to 2s. Baseline burst probabilities

in the BurstCCN were set to Pb
hidden ˘ 0.18 and Pb

out ˘ 0.401 in the hidden and output layers,

respectively. The remaining task details can be found in (Payeur et al., 2021).

3.4.2 Continuous-time input-output task

This task was carried out using a 2-layer continuous-time BurstCCN with 3 inputs, 50 hidden

units and a single output unit. The simulation was ran for 106 timesteps with dt ˘ 0.1s to give

a total simulation time of 105s. During the first 100s of the simulation, plasticity and teaching

signals were switched off to provide a means of comparing the initialised network to the trained

network (Fig. 3.3C-D). The time constants used in the simulation for the somatic potentials,

dendritic potentials and the synaptic weights were set to ¿v ˘ 0.1s, ¿u ˘ 0.1s and ¿W ˘ 100.0s,

respectively.

3.4.3 CartPole-v0 reinforcement learning benchmark

To train on the CartPole-v0 RL task from the OpenAI Gym environment (Brockman et al., 2016),

we used a standard deep Q-network (DQN) model and a BurstCCN equivalent which involved

substituting the conventional ANN in the DQN model with the BurstCCN (Mnih et al., 2013). The

same network structure was used for both model types: 4 inputs, 2 hidden layers with 50 units

and 2 output units. We used a sigmoid for the feedforward activation functions and a batch size
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of 512. The models were trained with momentum and Table 3.1 shows the best hyperparameters

found for each model. To enhance training stability, we employed a large experience replay buffer

of 50000 samples and updated the target network every 100 steps (Mnih et al., 2015). Once the

experience replay buffer captured 50000 samples, the main network started updating every step.

Due to the use of sigmoidal activations, the output range was restricted to 0 and 1. Therefore, to

fit the rewards into the range of a sigmoid, we scaled them such that the maximum total episodic

reward was 0.6. The network was trained to produce values in the range of 0.2 and 0.8 which

corresponded to the predicted value with an offset of 0.2.

Model type Learning rate (·) Momentum

ANN 1.2 0.99
BurstCCN 0.008 0.99

TABLE 3.1: CartPole-v0 hyperparameters

3.4.4 Rate-based model experiments

3.4.4.1 Hyperparameter search

Bayesian hyperparameter optimisation was performed (using Weights & Biases (Biewald, 2020))

for the shared hyperparameters of each rate-based model shown in Tables 3.2-3.3 and 3.5-3.6.

This was also performed for the model-specific parameters that are stated in the following

relevant sections.

3.4.4.2 Feedback plasticity on Q weights

As described in Section 3.5.3.2, this task involved fixing the W and Y weights and allowing

the Q weights to learn following the plasticity rule given in Equation 3.2. Throughout training,

independent Gaussian noise was added to the event rates propagating forwards to give somatic

potentials, vl ˘ Wl(el¡1 ¯») where » » N (0,¾2I). This noise was introduced to decorrelate neural

activities in each layer to facilitate the alignment of Q to Y (see alignment proof in SM of Greedy

et al. (2022)). For all configurations, we set ¾ ˘ 0.1 during training but removed the noise when

evaluating the apical potential magnitudes (Fig. 3.4B,F) and alignment angles (Fig.3.4C-D,G-H).

Similarly, in the without-teacher setups, teaching signals were added only for the evaluation of the

alignment angles to backprop or feedback alignment. Table 3.2 shows the best hyperparameters

for each setup optimised for Q-Y alignment.

3.4.4.3 MNIST

For MNIST, we used standard ANN, BurstCCN, Burstprop and EDN models. The same network

structure was used for all model types: 784 inputs (28£28 grayscale images), n number of hidden
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Feedback mode Teacher Q learning rate (·(Q)) Y init. scale (¾Y) Q init. scale (¾Q)

Random (FA)
No 0.00520 0.5 0.0148
Yes 0.00380 0.5 0.0488

Symmetric
No 0.00337 N/A 0.0075
Yes 0.00677 N/A 0.0735

TABLE 3.2: Q-weight learning hyperparameters

layers with 500 units and 10 output units. In all cases, we used a sigmoid for the feedforward

activation functions and a batch size of 32. Table 3.3 shows the best hyperparameters found for

the 5-layer networks of each model which were shared across all network sizes.

BurstCCN The additional Q weights were trained with a learning rate of 3.5£10¡5 and the

baseline burst probability pb
l ˘ 0.5 for all layers.

Burstprop The additional recurrent weights were initialised from a Gaussian distribution

(with „ ˘ 0 and ¾ ˘ 1.3£10¡4) and trained with a learning rate of 2.6£10¡4. The baseline burst

probability at the output layer was set to 0.2.

EDN Learning rates for the interneuron-to-pyramidal (·PI
l,l) and pyramidal-to-interneuron (·IP

l,l)

weights were set proportionally to the feedforward learning rates (·PP
l¯1,l) as ·PI

l,l ˘ ·IP
l,l ˘ fi·PP

l¯1,l

with the proportionality constant fi ˘ 0.643.

Model Type Learning rate (·) Y init. scale (¾Y) Momentum Weight decay

ANN 0.201 1.49 0.474 1.09£10¡9

BurstCCN 0.0246 0.638 0.836 4.01£10¡10

BurstCCN (Q-Y sym) 0.0246 0.638 0.836 4.01£10¡10

Burstprop 0.481 1.71 0.347 7.59£10¡6

EDN 0.00578 2.60 0.198 2.01£10¡7

TABLE 3.3: MNIST hyperparameters

3.4.4.4 CIFAR-10

For CIFAR-10, we used convolutional ANN, BurstCCN and Burstprop models with three convolu-

tional layers followed by two fully-connected layers (Table 3.4). In all cases, we used a sigmoid for

the feedforward activation functions and a batch size of 32. Table 3.5 and Table 3.6 show the best

hyperparameters shared across the different models in the random fixed Y and W-Y symmetric

feedback weight regimes, respectively.
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BurstCCN The additional Q weights were trained with a learning rate of 2.21£10¡3 and the

baseline burst probability pb
l ˘ 0.5 for all layers.

Burstprop Under the random fixed Y feedback weight regime, the additional recurrent weights

were initialised from a Gaussian distribution (with „ ˘ 0 and ¾ ˘ 2.0£10¡4) and trained with a

learning rate of 2.0£10¡4. Under the W-Y symmetric weight regime, the additional recurrent

weights were initialised from a Gaussian distribution (with „ ˘ 0 and ¾ ˘ 2.5£10¡2) and trained

with a learning rate of 2.2£10¡5. For both weight regimes, the baseline burst probability at the

output layer was set to 0.2.

Layer number Layer type Size

0 Input 32£32£3
1 Convolutional 5£5, 64, stride=2
2 Convolutional 5£5, 128, stride=2
3 Convolutional 3£3, 256, stride=1
4 Fully-connected 1480 neurons
5 Fully-connected 10 neurons

TABLE 3.4: CIFAR-10 architecture

Model Type Learning rate (·) Y init. scale (¾Y) Momentum Weight decay

ANN 0.00335 0.363 0.502 5.96£10¡8

BurstCCN 0.0343 0.424 0.0142 1.01£10¡10

BurstCCN (Q-Y sym) 0.0132 0.290 0.578 2.65£10¡9

Burstprop 0.102 0.981 0.698 3.91£10¡9

TABLE 3.5: CIFAR-10 hyperparameters (random fixed Y feedback weight regime)

Model Type Learning rate (·) Momentum Weight decay

ANN 0.0814 0.447 1.60£10¡6

BurstCCN (Q-Y sym) 0.155 0.496 1.50£10¡8

Burstprop 0.146 0.869 2.53£10¡8

TABLE 3.6: CIFAR-10 hyperparameters (W-Y symmetric weight regime)

3.4.5 MNIST with Dalean model

Bayesian hyperparameter optimisation was performed (using Weights & Biases Biewald (2020))

and best hyperparameters are shown in Table 3.7. We used the Dalean BurstCCN network

architecture of 784 inputs (28 £ 28 grayscale images), 6 hidden layers with 500 units and 10

output units. Also, we used a sigmoid for the feedforward activation functions and a batch size of

32.
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Hidden layer
learning rate (·)

Output layer
learning rate (·)

Q learning rate (·(Q)) Feedback scale

0.185 0.189 0.000731 0.644

TABLE 3.7: Dalean BurstCCN hyperparameters for MNIST

FIGURE 3.2: Spiking BurstCCN does not require multi-phase learning to solve the XOR classifi-
cation task. Schematic of the (A) two-phase and (B) single-phase learning settings. (A) For each input
during two-phase learning, networks are given a 7.2s prediction period during which teaching signals and
plasticity are turned OFF, followed by a 0.8s learning period where both teaching signals and plasticity
are turned back ON. (B) During single-phase learning, both the teaching signals and plasticity remain
ON throughout training. (C, D) Top: event rate (e) of the output layer. Middle: burst probability (p) for
the output layer and the baseline or moving average of the burst probability (pb or p̄) for BurstCCN and
Burstprop, respectively. Bottom: the resulting weight updates for connections from hidden layer neurons.
Model results represent mean § standard error (n = 5).

3.5 Results

3.5.1 BurstCCN can learn with a single learning phase

A key motivation for developing the BurstCCN was to design a model capable of learning without

the need for separate learning phases, while being consistent with a range of cortical features

across multiple levels. To demonstrate that our model can perform single-phase learning, we

trained the spiking version of our model on the XOR classification task and contrasted it with

Burstprop, which requires a two-phase learning process (Fig. 3.2). In both single- and two-phase

learning regimes, the input stimulus is presented for a total of 8s before the next example is

shown. The two-phase learning regime has an initial prediction phase, lasting 7.2s for each
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input presentation, where plasticity is switched off throughout the network and the output

neurons do not receive any teaching signals (Fig. 3.2A). This is followed by a teacher phase for

the remaining 0.8s where plasticity is restored and teaching signals are delivered at the output.

The single-phase regime removes the initial prediction phase and extends the teacher phase to

the full duration of the input stimulus (Fig. 3.2B).

Our results show that both models were capable of successfully learning the task in the two-phase

regime as indicated by the high output event rates in response to the (0,1) and (1,0) inputs

and low event rates for the (0,0) and (1,1) inputs (Fig. 3.2C). However, when training in the

single-phase regime, only BurstCCN was able to learn the task (Fig. 3.2D). The inability of

Burstprop to learn the task can be explained by comparing the moving average of the burst

probability (p) with the actual burst probability (p) which determines the sign of synaptic weight

updates (Fig. 3.2D). Burstprop failed to learn in the single-phase learning setup due to the

teaching signal remaining on and preventing p from being able to provide a stable representation

of the without-teacher burst probability.

3.5.2 BurstCCN can learn with dynamic input-output

Typically, studies that have attempted to solve the credit assignment problem with biologically

plausible implementations of backprop make an implicit assumption that during learning there is

a period where the continuous-time input stream is fixed (Sacramento et al., 2018; Payeur et al.,

2021). This is required in most cases to allow the network to stabilise its activities before learning

can take place. With single-phase learning, we can relax this assumption to enable learning in

conditions where the inputs and their corresponding teaching signals are dynamically changing

over time. We assessed this ability by training the continuous-time BurstCCN (Section 3.3.3) on an

online non-linear regression task (Fig. 3.3). This task consisted of three sinusoidal inputs, xi(t) ˘

sin(fii t ¯ fli), with random frequencies fii » U(0, …
2 ) and phase offsets fli » U(0,2…) (Fig. 3.3A).

The network had a single output unit for which a non-trivial target was obtained by passing the

same inputs to a 3-25-1 artificial neural network (ANN). This approximates a setting in which a

given cortical area learns to regress its input onto the activity of another cortical area. The ANN

weights were randomly initialised with w1
i j » U(¡

p
3 ,

p
3 ) for the first layer and w2

i j » U(¡0.6,0.6)

for the second layer. Despite the BurstCCN initially producing outputs that were significantly

different to the target (Fig. 3.3C), the results show that over training it learned to produce output

patterns that closely matched the non-linear and dynamic target (Fig. 3.3B,D). This highlights

that the BurstCCN is capable of adequately backpropagating useful error signals when both

inputs and teaching signals are constantly changing.
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D

FIGURE 3.3: BurstCCN can learn a dynamic non-linear regression task. (A) Schematic of the task.
Three sinusoidal waves with random frequencies are given as inputs. The task is to learn to match the
target pattern which is obtained by passing the same inputs through a fixed, randomly initialised ANN.
(B) Learning curve for the (continuous-time) BurstCCN. (C, D) Example output traces for (C) before and
(D) after training. Model results represent mean § standard error (n = 5).

3.5.3 Feedback plasticity rule facilitates alignment to backprop updates

Next, we wanted to understand how well our model approximates backprop. As stated above, the

purpose of the learning rule for the feedback STD Q connections (Eq. 3.2) is to silence the apical

compartments in every ensemble by cancelling activity through the feedback STF Y connections.

When a teaching signal is applied, this becomes important for computing the correct local error

signal that is used for learning and backpropagated to previous layers. Here, we show both

analytically and empirically using the discrete version of the model how the computed errors

relate to backprop.

3.5.3.1 BurstCCN with weak feedback approximates backpropagation algorithm

Under some small assumptions, we analytically show that the feedback pathway of BurstCCN

is approximately communicating the same error gradients that are computed by backprop.

Specifically, we assume that the feedback weights are optimally aligned (i.e. Ql ˘ pb
l Yl) and focus

on the change in burst rate, –bl :˘ (pl ¡pb
l ) fl el . If we let Etask ˘ jjeL ¡etargetjj2 define the task

error then, by construction, the change in burst rate at the output layer is equivalent to the

negative error gradient, –bL ˘ ¡@Etask

@vL
. For the hidden layers, we derive the following iterative

relationship (see SM of Greedy et al. (2022) for further details):

(3.12) –bl ˘ f 0 (vl)fl (¡Yl)–bl¯1 ¯O (u3
l ).
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This approximates the same relationship present in backprop up to a third-order1 term with

respect to the apical potentials ul if the feedback weights are set to be symmetric with the feed-

forward weights (i.e. Yl ˘ ¡WT
l¯1). We refer to this as the W-Y symmetric state. The link between

weight updates from simply performing gradient descent with backprop and the BurstCCN can

be seen clearly:

¢WBurstCNN
l ˘ ·(W)

l –bl eT
l¡1(3.13)

¢Wbackprop
l ˘ ¡·(W)

l
@Etask

@vl
eT

l¡1(3.14)

It remains to be shown that the apical potentials, ul , of every layer are indeed appropriately

small (so that the approximation error, jju3
l jj, is small). Under the assumption ul¯1 is small, we

can derive the recursive relationship ul … f 0 (vl¯1)fl (¡Yl)ul¯1 (see SM of Greedy et al. (2022) for

further details). We show that if f 0 is bounded (as is the case for sigmoid and many activation

functions) and the weights Yl are reasonably small then jju3
l jj • jju3

l¯1jj. This means that if the

error gradient at the output layer, @Etask

@eN
, is small then, by induction, jju3

l jj is small for every layer

and ¢WBurstCNN
l … ¢Wbackprop

l .

3.5.3.2 Learning Q feedback connections better approximates backprop-derived

gradients

We empirically evaluated our feedback plasticity rule by updating only the Q weights of a

randomly initialised 5-layer discrete-time BurstCCN with all other weight types (W and Y) fixed.

We used multiple initialisations and training regimes to understand how the plasticity rule

behaves in different scenarios. The network was either initialised in the W-Y symmetric state or

with random feedback weights (where Yl 6˘ ¡WT
l¯1). We computed the angle between the update

that would have been made by the feedforward plasticity rule (Eq. 3.1) and either backprop

or feedback alignment (Lillicrap et al., 2016) for the symmetric and random configurations,

respectively. We examined both cases: in the theoretically ideal case for learning Q where no

teaching signal is present (Fig. 3.4A-D) and with a teaching signal at the output layer (Fig. 3.4E-

H).

In all cases, as the alignment between the Q and Y connections improved (Fig. 3.4A,E), the

apical potential decreased (Fig. 3.4B,F) and this resulted in updates that more closely aligned

to backprop (Fig. 3.4C,G) and feedback alignment (Fig. 3.4D,H). In the absence of a teaching

signal, this alignment angle to both backprop and feedback alignment eventually became very

small which supports our analytical results that show our model approximates these methods

(Fig. 3.4C-D). Despite producing less aligned feedforward updates in the presence of a teaching

signal, the updates computed were still informative since they were consistently well below 90–

of the direction of steepest descent (Fig. 3.4G).

1Here we use abuse of notation u3
l ˘

‡
u3

l,1,u3
l,2, . . .

·T
to represent the element-wise cubic of ul
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with
teacher

without
teacher

symmetric only random only

symmetric only random only

feedback weights:

FIGURE 3.4: Feedback learning rule enables a close alignment with backprop and feedback
alignment. The network is a randomly initialised 5-layer discrete-time BurstCCN with random (solid
line) or symmetric (dashed line), fixed W and Y weights. The Q weights are updated in the presence of
(A-D) no teaching signal or (E-H) a teaching signal. (A,E) Alignment between Q and Y weights, (B,F) the
mean absolute value of the apical potentials, (C,G) the alignment to backprop (BP) and (D,H) feedback
alignment (FA) as the Q weights learn to silence apical dendrite potential. Updates below 90– marked by
the black dashed line are considered useful as they still follow the direction of backprop on average. Model
results represent mean § standard error (n = 5).

3.5.3.3 Feedback plasticity on Y-weights

The feedback plasticity rule used on the Q weights could likewise be applied to the Y weights to

produce a similar effect. This would be in line with long-term synaptic plasticity observations of

dendrite-targeting interneurons (Chiu et al., 2018).

(3.15) ¢Yl ˘ ·(Y)
l ul eT

l¯1

In an identical experimental setup to the one used for investigating the feedback plasticity rule on

the Q weights (Section 3.5.3.2), we examined the impact on the alignment to backprop when the

feedback plasticity rule was instead applied onto the Y weights. In all cases, as the alignment be-

tween the Q and Y connections improved (Fig. 3.5A,E), the apical potential decreased (Fig. 3.5B,F)

and this resulted in updates that more closely aligned to backprop (Fig. 3.5C,G) and feedback

alignment (Fig. 3.5D,H). In the absence of a teaching signal, this alignment angle to both back-

prop and feedback alignment eventually became very small (Fig. 3.5C-D). Despite producing less

aligned feedforward updates in the presence of a teaching signal, the updates computed were

still informative since they were consistently well below 90– of the direction of steepest descent

(Fig. 3.5G). Overall, this suggests that the feedback plasticity rule on the Q weights is equally

effective when applied to the Y weights.
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with
teacher

without
teacher

symmetric only random only

symmetric only random only

feedback weights:

FIGURE 3.5: Feedback plasticity rule on Y weights facilitates updates to align with backprop
and feedback alignment. The network is a randomly initialised 5-layer discrete-time BurstCCN with
random (solid line) or symmetric (dashed line), fixed W and Y weights. The Y weights are updated in
the presence of (A-D) no teaching signal or (E-H) a teaching signal. (A,E) Alignment between Q and Y
connections, (B,F) the mean absolute value of the apical potentials, (C,G) the alignment to backprop (BP)
and (D,H) feedback alignment (FA) as Y weights learn to silence apical dendrite potential. Updates below
90– marked by the black dashed line are considered useful as they still follow the direction to backprop on
average. Model results represent mean § standard error (n = 5).

3.5.4 BurstCCN learns image classification tasks with multiple hidden layers

3.5.4.1 MNIST

FIGURE 3.6: BurstCCN learns to classify handwritten digits (MNIST) with deep networks. (A)
Learning curve of 5-layer ANN (black), BurstCCN (blue), BurstCCN (·(Q) ˘ 0) (light blue), Burstprop (red)
and EDN (green). (B) Test error with different numbers of hidden layers for all models. (C) Alignment
to backprop (BP) over time for all 5-layer models. (D) Alignment to backprop with different numbers of
hidden layers for all models. The black circle indicates that the hyperparameters for each model were
optimised for 5-layer networks. Model results represent mean § standard error (n = 5).

Next, to test whether our model can indeed perform backprop-like deep learning, we trained a
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number of (discrete-time) BurstCCN architectures on the MNIST handwritten digit classification

task (LeCun and Cortes, 2010). We compared the BurstCCN with Burstprop (Payeur et al., 2021)

and EDNs (Sacramento et al., 2018) using similar architectures (Section 3.4.4.3). We focused

on the more biologically plausible case of using random fixed feedback weights (i.e. feedback

alignment (Lillicrap et al., 2016); see Section 3.5.5 for symmetric feedback weight case) with the

remaining connection types of the different models updated using their respective plasticity rules.

We also tested the BurstCCN in its idealised case where the feedback STD weights (Q) were fixed

in the Q-Y symmetric state (see Section 3.3.2). We denote this model as "BurstCCN (Q-Y sym)".

Using 5-layer networks, the BurstCCN obtained a test error of 1.84§0.01%, comparable to

that of Burstprop with 1.75§0.01% and significantly outperforming the EDN with 10.65§0.09%

(Fig. 3.6A). As the network depth was increased, both BurstCCN and Burstprop retained high

performances but the EDN showed a substantial decay in performance with deeper networks

(Fig. 3.6B). We then compared the alignment between the models and backprop. For the 5-

layer networks, Burstprop’s updates were most closely aligned to backprop, followed by the two

BurstCCN models which all vastly outperformed the EDN (Fig. 3.6C). As expected, the BurstCCN

with Q-Y symmetry could better propagate error signals. By increasing the network depth, we

demonstrate that it was more difficult to produce updates that were closely aligned to backprop.

However, we show that the BurstCCN was still capable of backpropagating useful error signals

in relatively deep networks (Fig. 3.6D).

3.5.5 Symmetric MNIST

Here, we trained the same models used in Section 3.5.4.1 under the W-Y symmetric weight

regime. This regime is implausible due to sharing of weights but we investigated this to isolate

the ability of each network to backpropagate errors in the ideal setting that most resembles

backprop.

Using 5-layer networks, BurstCCN (Q-Y sym) obtained a test error of 1.86§0.03% similar

to that of an ANN (1.97§0.04%) and outperforming both Burstprop (2.79§0.03%) and EDN

(12.28§0.26%) (Fig. 3.7A). However, the BurstCCN with Q weight learning achieved a perfor-

mance of 5.27§0.07%. This was lower than the random fixed Y weight regime (Fig. 3.6) due to

the increased difficulty of aligning with the rapidly moving Y weights as the network learns. As

the network depth was increased, both BurstCCN and Burstprop retained high performances but

the EDN showed a substantial decay in performance with deeper networks (Fig. 3.7B). We then

compared the alignment between the models and backprop. For the 5-layer networks, BurstCCN

consistently produced updates that aligned with backprop at around 50– (Fig. 3.7C). As expected,

the BurstCCN with Q-Y symmetry was significantly better at propagating error signals. With

increased network depths, we demonstrate that it was more difficult to produce updates that

were closely aligned to backprop. However, we show that the BurstCCN was still capable of
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backpropagating useful error signals in relatively deep networks (Fig. 3.7D).

FIGURE 3.7: BurstCCN with W-Y symmetric weights. (A) Learning curve and (C) alignment to
backprop of 5-layer BurstCCN (blue), BurstCCN (·(Q) ˘ 0) (light blue), Burstprop (red) and EDN (green).
(B) Different number of hidden layers across all models. (D) Alignment to backprop (BP) across number
of hidden layers. The black circle indicates that the hyperparameters for each model were optimised for
5-layer networks. Model results represent mean § standard error (n = 5).

3.5.5.1 CIFAR-10
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FIGURE 3.8: BurstCCN with convolutional layers learns to solve natural image classification
task (CIFAR-10). (A) Schematic of BurstCCN architecture consisting of an input layer, three convolutional
layers, a fully-connected hidden layer and output layer. For the BurstCCN, each layer was connected with
a set of feedforward weights, W, and feedback weights, Y and Q. (B) Learning curve and (C) alignment to
backprop of the different models with random (solid lines) and symmetric (dashed lines) feedback weight
regimes. Model results represent mean § standard error (n = 5).

Finally, we wanted to investigate the capabilities of the BurstCCN on more challenging tasks

that are commonly tested in deep learning. We constructed a deep network consisting of three
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convolutional layers followed by a fully-connected hidden layer and output layer (Fig. 3.8A). We

trained ANN, BurstCCN and Burstprop models using this network architecture on the CIFAR-10

image classification task (Krizhevsky et al., 2014). BurstCCN (Q-Y sym) was trained in the Q-Y

symmetric regime whereas BurstCCN was initialised in this state and Q weights were then

updated using the corresponding plasticity rule. All model types were tested with two feedback

weight regimes: W-Y symmetric and random fixed Y feedback weights (i.e. feedback alignment).

After training in the random feedback weight regime, we observed a test error of 38.99§0.18%

for BurstCCN, similar to performances achieved by an ANN (36.30§0.16%) and Burstprop

(41.32§0.14%) (Fig. 3.8B). For the W-Y symmetric regime which most resembles backprop,

BurstCCN (22.92§0.03%) performed significantly better than all random feedback setups and,

once again, obtained a similar error to the symmetric ANN (22.62§0.10%) and Burstprop

(24.15§0.17%) models. In the symmetric setups, there was a large improvement in the alignment

angles to backprop compared to the random feedback setup (Fig. 3.8C). This suggests that they

were backpropagating errors more effectively which likely explains the increase in performance.

However, as seen within the random feedback setups, an improvement in this alignment does not

guarantee an improvement to performance. This is because each model will traverse a different

learning trajectory and converge to a different local minimum but the alignment angle remains a

good indicator of expected performance.

3.5.6 Deep reinforcement learning with BurstCCN

Thus far, we have solely presented results for BurstCCN regarding supervised machine learning

tasks, which prompts the question of whether explicit supervised learning signals occur in the

brain. Although complex spikes found in the cerebellum provide evidence for the existence of

these signals, it is still uncertain if they are present in other regions of the brain (Hull, 2020).

While we do not directly answer this question, our objective is to exhibit that supervised learning

signals are not necessarily required for effective learning in the BurstCCN. To achieve this, we

incorporate the BurstCCN into a reinforcement learning (RL) scenario that only necessitates

globally available reward signals. We integrate the BurstCCN into a Q-learning framework

by substituting a conventional ANN with the BurstCCN in a standard deep Q-network (DQN)

approach (Mnih et al., 2013). Q-learning is a popular method in RL that uses the concept of

the temporal difference (TD) error to update their estimates of the state-action value function

(Q-function), which is used to evaluate the expected future rewards of taking an action in a

given state. The TD error measures the error between the predicted and actual outcomes in a

sequence of states and actions. The dopamine reward system in the brain is believed to behave in

a similar manner by using reward prediction errors to signal discrepancies between expected

and actual rewards received. The dopamine reward prediction error can be seen as a biological

implementation of the TD error, providing a plausible mechanism for how the brain learns from

rewards (Daw and Tobler, 2014; Starkweather and Uchida, 2021; Tsutsui-Kimura et al., 2020;
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Glimcher, 2011).

To investigate whether the BurstCCN can learn in an RL context with global reward signals,

we chose to evaluate its performance on the CartPole-v0 RL benchmark from the OpenAI Gym

environment (Fig. 3.9A) (Brockman et al., 2016). The goal of the task is to balance a pole upright

on a cart by moving the cart left or right along a one-dimensional track. An episode ends when

the agent succeeds in preventing the pole from falling over for 200 timesteps or fails if it can no

longer keep it upright. The task is solved when the average total timesteps for the episode reaches

195 over 100 consecutive trials. For a fair comparison, we used a 3-layer network architecture

comprising of sigmoidal units to train both an ANN and the BurstCCN. Both models received the

state of the environment which consists of four continuous variables: the position and velocity of

the cart, and the angle and angular velocity of the pole. Our results demonstrate that, although it

takes longer than an ANN, the BurstCCN is capable of solving the CartPole-v0 task (Fig. 3.9B-C).

Cartpole-v0
A B

C

FIGURE 3.9: BurstCCN learns a policy to perform well on the CartPole-v0 reinforcement
learning benchmark. (A) Schematic of the CartPole-v0 task: the agent is the cart moving left and right
to keep the pole upright. A reward is given at every timestep the pole remains upright for a maximum of 200
timesteps. (B) The moving average of the number of timesteps the agent keeps the pole upright after 10000
episodes. A moving average of 195 timesteps is considered solving the task. (C) The learning timecourse
for the BurstCCN (blue) and a standard artificial neural network (grey). Model results represent mean §
standard error (n = 10).
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3.5.7 Dalean BurstCCN learns MNIST

In neuroscience, Dale’s law is a principle that states a neuron releases the same neurotransmitters

at all of its postsynaptic connections regardless of the nature of the target neuron (Strata et al.,

1999). According to this, a presynaptic neuron can only exert either an excitatory or an inhibitory

effect on its postsynaptic partners, but not both simultaneously. Most ANNs and all previously

described BurstCCN implementations violate this architectural constraint as it impairs the

learning performance of these models. In these networks, neurons consist of a mixture of positive

and negative outgoing synaptic weights which can change their sign after initialisation. This is

one of the most notable disconnects between the observed physiological architecture of neural

circuits and the design of ANNs in the field of deep learning (Cornford et al., 2020). Recent

efforts have been made to reconcile this disparity by demonstrating it is possible to modify

neural networks to comply with Dale’s law without undermining their learning potential (Payeur

et al., 2021). Here, we have made comparable alterations to the architectural connectivity of

the BurstCCN, introducing distinct inhibitory units into both the feedforward and feedback

pathways (Fig. 3.10A). We have proposed the presence of certain interneuron subtypes in each

pathway based on experimental observations of their cortical STP connectivity (Lee et al., 2013;

Kinnischtzke et al., 2014; Petrof et al., 2015; Zolnik et al., 2020; Naskar et al., 2021; Martinetti

et al., 2022). Our results show that this model is capable of producing updates that consistently

align within 90– of backprop-derived gradients and after training, it learns to classify MNIST

handwritten digits with a small error of 4.23§0.558% (Fig. 3.10B-C).

3.6 Discussion

We have introduced a new model to address the credit assignment problem by integrating

known properties of cortical networks to capture the essence of backprop. We have shown that by

combining the biological mechanisms of namely bursting, STP and dendrite-targeting inhibition it

is possible to construct a model that effectively learns in a continuous, online setting reminiscent

of learning in the brain. We have demonstrated that such a model is capable of learning complex

image classification tasks from machine learning that many current models of approximate

backprop struggle to solve. In addition, we have shown that the model does not require explicit

supervised learning signals by integrating it into a RL framework. Furthermore, even when

we impose architectural constraints to comply with Dale’s law, the BurstCCN is still capable of

learning to perform well on MNIST. The ability of BurstCCN to perform single-phase learning

has largely been made possible by the introduction of an additional set of Q feedback connections.

These connections removed the requirement for temporally non-local computations by providing

a method of representing non-teacher bursting activity for the generation of error signals which

approximate backprop-derived gradients.

Our model proposes specific STP dynamics on the feedforward and feedback connections. It
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FIGURE 3.10: BurstCCN with Dalean constraints learns to classify handwritten digits (MNIST).
(A) Schematic of the Dalean BurstCCN with proposed interneuron populations: parvalbumin (PV), somato-
statin (SOM), vasoactive intestinal peptide (VIP) and neuron-derived neurotrophic factor (NDNF). (B)
Alignment to backprop (BP) over time. (C) The learning timecourse of the model. Model results represent
mean § standard error (n = 5).

requires STD on cortico-cortical projections onto pyramidal cells in line with experimental

evidence (Lee et al., 2013; Kinnischtzke et al., 2014; Petrof et al., 2015; Zolnik et al., 2020; Naskar

et al., 2021). In addition, it suggests a key role for dendrite-targeting interneurons such as

SST-positive Martinotti cells in the feedback pathway. There is evidence that these interneurons

receive STF top-down connections whereas top-down projections onto pyramidal cells exhibit STD

dynamics as required by our model (Lee et al., 2013; Kinnischtzke et al., 2014; Petrof et al., 2015;

Zolnik et al., 2020; Naskar et al., 2021; Martinetti et al., 2022). Although we have introduced

independent inhibitory units into our Dalean implementation of the BurstCCN, the specific

interneuron subtypes proposed are not explicitly modelled. Therefore, it would be interesting to

see the impact of adding this extra complexity on the ability of the model to learn and to further

increase biological plausibility.

A prediction from our model is that manipulations of interneurons with STF connections would

lead to disruptions in burst decoding from the layer (brain area) above thereby obstructing

learning in the brain area below. Additionally, as error signals alter the level of bursting in

the network, the model predicts that the variance in bursting activity and the distal dendritic

potentials would correlate with the severity of errors made by the network during learning.
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The current model does not include a proposed function for the commonly observed local feedback

element of dendrite-targeting SST interneurons. In the EDN, this feature was critical for the

generation and backpropagation of error signals but here we have incorporated the SST interneu-

rons in a different mechanism. As this part of the circuitry is currently not modelled, it provides

an opportunity to explore the possible benefits it could functionally contribute to the model. As

these SST interneurons will be receiving activity and feeding this back onto local neurons, they

have the necessary information and connectivity to be able to implement a concept from machine

learning known as layer normalisation (Ba et al., 2016). Layer normalisation ensures that all

neurons in a given layer have a consistent activity distribution across all features for a particular

input. In deep ANNs, this technique has been shown to be effective in improving training and

generalisation. In terms of biological plausibility, layer normalisation can be thought of as a

homeostatic process to stabilise and normalise the range of network activities which is typically

found in the brain to prevent the onset of neurological disorders such as epileptogenesis. For the

BurstCCN, this could provide network stability by discouraging the saturation of neurons which

is detrimental to error backpropagation.

As we have established here, the BurstCCN provides improvements on previous biologically

plausible models of backprop including the model used in the previous chapter. Therefore, it would

be interesting to examine the benefits of integrating the BurstCCN with the ChoCA framework

from Chapter 2.

3.6.1 Limitations

Although our model captures a wide range of biological features, some biological implausibilities

remain. Currently, we use feedback alignment to provide a solution to the weight transport

problem (Crick, 1989) but this has a substantial impact on performance, particularly in more

challenging tasks. Therefore, it would be important to explore some of the recently introduced

plausible feedback learning rules (Lee et al., 2015; Akrout et al., 2019; Ahmad et al., 2020; Kunin

et al., 2020) which could be used in conjunction with our proposed learning rules to outperform

feedback alignment (Lillicrap et al., 2016).

Sigmoidal units are used in the BurstCCN to represent the physiological firing of neurons but

this becomes an issue for regression tasks with output targets outside the range of the sigmoid

activation function (0 and 1). Therefore, the model is restricted to RL tasks with a finite time

horizon to allow for a bounded total episodic reward. We can then scale this bounded total reward

to fit within the range of the sigmoid activation function otherwise our network saturates.

Another limitation in the current RL setup is the DQN approach. Although it has proved to be a

powerful tool for RL, it relies on several assumptions that are not consistent with physiology of

the brain. One assumption is that the learning process requires two neural networks: a main

network and a target network. These two networks have the same architecture and different
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weights but after a certain amount of time, the weights from the main network are copied to the

target network. It is unclear in the brain where such a target network would exist. Additionally,

the networks do not update in an online fashion after each time step due to stability: it waits and

updates its weights based on samples from a memory buffer that stores and replays previous

experiences. In contrast, the brain continuously updates and integrates new experiences into

existing knowledge.

3.6.2 Closing remarks

Our model provides a novel solution to the credit assignment problem that has demonstrated

improvements from previous models alike including Burstprop and the EDN (the model used in

Chapter 2). Overall, this work suggests that a range of cortical features from sub-cellular to the

systems level jointly underlie single-phase, efficient deep learning in the brain.
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CHOLINERGIC MODULATION OF OLM INTERNEURONS AND THEIR

REGULATION OF LTP

4.1 Introduction

With frequent exposure to novelty, it is imperative that the brain is capable of rapidly adapting

in order to execute appropriate responses to novel situations. Neuromodulators are released

under these conditions to provide the necessary regulation of network activities for synaptic

plasticity to occur. Acetylcholine (ACh) is one of the major neuromodulators released during

novelty that evokes functional reconfiguration of neural networks to create a window for learning

(Palacios-Filardo et al., 2021). The importance of ACh in learning and memory has been widely

examined (Hasselmo, 2006; Teles-Grilo Ruivo and Mellor, 2013; Giocomo and Hasselmo, 2007).

Physical and chemical lesions of the cholinergic neuromodulatory system impairs learning in a

myriad of memory tasks (Hasselmo, 2006). ACh facilitates the induction of synaptic plasticity via

the activation of nicotinic and muscarinic ACh receptors (nAChRs and mAChRs, respectively).

The intracellular signalling pathways downstream of these receptor subtypes act to up- or down-

regulate the activity of both GABAergic and glutamatergic neurons (Picciotto et al., 2012). In

the hippocampus, the activation of muscarinic M1 AChRs directly excites CA1 pyramidal cells

(PCs) and induces long-term potentiation (LTP) of their glutamatergic inputs (Dennis et al.,

2016; Buchanan et al., 2010; Dasari and Gulledge, 2011). In addition, information processing in

the hippocampal circuits is regulated by the differential inhibitory actions of ACh primarily on

feedforward parvalbumin (PV) and cholecystokinin (CCK) interneurons in the Schaffer collateral

(SC) and temporammonic (TA) pathways, respectively (Palacios-Filardo et al., 2021; Cea-del Rio

et al., 2010, 2011; Szabó et al., 2010; Raza et al., 2017).
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Another class of interneurons in the hippocampus affected by cholinergic neuromodulation are

the feedback, dendrite-targeting interneurons commonly identified by the expression of the

neuropeptide somatostatin (SST) (Pelkey et al., 2017). A study by Lovett-Barron et al. (2014)

demonstrated that the activity of the SST interneurons was crucial for contextual fear condi-

tioning and pharmacological intervention revealed that cholinergic inputs were responsible for

driving their activity. The SST molecular marker encompasses a diverse population of interneu-

rons; the SST interneurons Lovett-Barron et al. (2014) eluded to were the dendrite-targeting

Oriens-Lacunosum Moleculare (OLM) cells. This major subclass of hippocampal interneurons is

heterogeneous to other hippocampal SST interneuron populations primarily due to their exclusive

expression of the �2 subunit of nAChRs (Chrna2) (Mikulovic et al., 2015). OLM interneurons

have been shown to control synaptic plasticity in the hippocampus by disinhibiting and inhibiting

the proximal and distal dendritic compartments of CA1 PCs, respectively (Leão et al., 2012).

These cells receive direct cholinergic input and it is known that mAChR modulation increases

their excitability (Pelkey et al., 2017). However, there is no direct evidence to suggest that this

increase in excitability translates to an increase in inhibition at the SST/OLM-to-PC synapse.

Furthermore, the involvement of the inhibitory output from OLM interneurons in regulating

associative long-term potentiation (aLTP) remains unclear.

Therefore, investigating the impact of ACh on the functional output of these dendrite-targeting

interneurons is crucial for understanding how cholinergic modulation regulates synaptic plasticity.

To examine the effects of ACh on the SST/OLM-to-PC synapse and the regulation of plasticity

by the OLM interneurons, ex vivo whole-cell patch clamp electrophysiology experiments were

carried out in acute hippocampal slices. Carbachol (CCh), an acetylcholine (ACh) receptor agonist,

was found to reduce the inhibitory activity of OLM and SST interneurons onto CA1 pyramidal

cells despite increasing their intrinsic excitability. Furthermore, OLM interneurons inhibited

the induction of aLTP in the SC pathway and facilitated long-term depression (LTD) in the TA

pathway.

4.2 Materials and methods

4.2.1 Materials

All reagents were purchased from Fisher Scientific unless otherwise stated.

4.2.2 Animals

Animal care and use was in accordance with the UK Animals (Scientific Procedures) Act of

1986 and were approved by the University of Bristol ethical review committee. Experiments

were performed on male and female mice aged 4 to 15 weeks. C57BL/6J (Charles River) mice

were used as the background strain. Cre reporter allele mice (The Jackson Laboratory) were
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used to tag specific neuronal populations: somatostatin (SST) interneurons (SST-Cre; MGI:

4838416) and oriens-lacunosum moleculare (OLM) interneurons (Chrna2-Cre; MGI: 5490768).

These Cre reporter mice were crossed with homozygous Ai32 (MGI: 5577173) to generate litters

of heterozygous offspring expressing channelrhodopsin (ChR2). Chrna2-Cre reporter mice were

also crossed with homozygous Ai14 (MGI: 3817869) to generate litters of heterozygous offspring

expressing TdTomato. Mice were housed under regulated temperature (22 § 2–C) in a normal 12

h light/dark cycle with ad libitum access to food and water.

4.2.3 Hippocampal slice preparation

Following cervical dislocation and decapitation, mouse brains were removed and dissected in

ice-cold cutting solution (in mM: 205 sucrose, 10 glucose, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4,

0.5 CaCl2, 5 MgSO4) saturated with 95% O2 and 5% CO2. 400 µm thick parasagittal slices were

prepared with a Leica VT1200 vibratome (Leica, Germany) and slices were incubated in artificial

cerebrospinal fluid (aCSF; in mM: 124 NaCl, 10 glucose, 24 NaHCO3, 3 KCl, 1.25 NaH2PO4, 2.5

CaCl2, 1.3 MgSO4) at 34–C for 25 min and then stored at room temperature for at least 30 min

before use.

4.2.4 Electrophysiology

In all electrophysiology experiments, slices were transferred to a submerged recording chamber

perfused with aCSF at a flow rate of 2.5 ml/min and kept at 32–C via an inline heating system

(TC-324, Warner Instruments). The constant flow and removal of aCSF was maintained by

a 101U/R peristaltic pump (Watson Marlow) and a Dymax 5 vacuum pump (Charles Austin),

respectively. Target cells were visualised with infrared differential interference contrast optics on

an Olympus BX-50WI microscope. Patch electrodes with a resistance of 3-7 M› were pulled from

borosilicate filamented glass capillaries (1.5 OD x 0.86 ID x 100 L mm, Harvard Apparatus) with

a horizontal puller (P-87, Sutter Instrument Co., UK).

Recordings from hippocampal neurons were made with a MultiClamp 700A amplifier (Molecular

Devices, USA), filtered at 2.4 kHz and digitised at 10 kHz with a CED Power1401 data acquisition

board and Signal 5.12 acquisition software (CED, Cambridge, UK). Cells were voltage clamped at

0 or –70 mV (not corrected for junction potential). Series resistance was monitored throughout

the experiments and cells that showed >40% change were discarded from subsequent analysis.

Recordings were also rejected from analysis if the series resistance was greater than 35 M›.

Excitatory synaptic responses were evoked in independent pathways with two 2 ms square voltage

steps applied at 20 Hz through bipolar stimulating electrodes located in the Schaffer collateral

(SC) pathway from CA3 and the temporammonic (TA) pathway at the stratum lacunosum-

moleculare (SLM). Whilst, inhibitory synaptic responses were evoked optogenetically with five
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2 ms square light steps applied at 10 Hz via a mounted 470 nm LED illuminator (M470L2 with a

LEDD1B driver, Thorlabs, US) through a 40x objective lens.

4.2.4.1 Carbachol dose-response

In ChR2-expressing Chrna2-Cre (Chrna2-Cre x Ai32) and SST-Cre (SST-Cre x Ai32) mice, whole-

cell patch-clamp recordings were made in CA1 pyramidal neurons with patch pipettes filled with

an intracellular solution containing (in mM) 130 CsMeSO3, 4 NaCl, 10 HEPES, 0.5 EGTA, 10

TEA, 1 QX-314 chloride, 2 Mg-ATP, 0.5 Na-GTP. Cells were voltage clamped at 0 mV, far from the

chloride reversal potential, to maximise the amplitude of inhibitory postsynaptic current (IPSC)

recordings. A stable baseline period of 10 min was achieved before the consecutive application

of carbachol (CCh) at 0.1, 0.3, 1, 3, 10 and 30 �M for 10 min periods each. The 0.1 �M dose

was excluded in experiments targetting the OLM interneurons. The rise time of the IPSC was

calculated as the time it took for the response to reach 80% of its maximum amplitude from

20%. The tau decay time constant was calculated by fitting a monoexponential curve to the

waveform after the max amplitude had been reached. The dose-response curved was fit using

a four parameter logistic curve. The paired pulse ratio (PPR) was calculated by dividing the

ampltiude of the second peak by the amplitude of the first peak (P2/P1). Data points and bar

plots represent the mean § standard error of the last 3 mins of each drug concentration.

4.2.4.2 Somatostatin interneuron excitability

In slices prepared from SST-Cre x Ai32 animals, current clamp recordings were made from SST

cells located in the stratum oriens (SO) with patch pipettes filled with an intracellular solution

containing (in mM) 135 K-gluconate, 10 HEPES, 8 NaCl, 2 Na-ATP, 0.3 Mg-GTP, 0.2 EGTA and

adjusted to pH 7.4, 390-395 mOsm. Once a cell was patched, SST cells were identified by their

step-like response to a 100 ms blue light pulse. The resting membrane potential of the cell had to

be at least –55 mV or lower for the experiment to begin. Action potentials were evoked in the cell

with 1.5 s square current steps that started at –50 pA and increased in +10/20 pA increments

up to a maximum of +250 pA. However, to prevent inducing excessive damage to the cell, if

the current step caused the membrane potential of the cell to exceed –30 mV then no further

steps were delivered to the cell. These recordings were made without CCh, in the presence of

10 �M CCh and if the resting membrane potential increased after drug application, the cell was

repolarised back to baseline and another set of recordings were made in the presence of 10 �M

CCh. Spikes were counted in Python 3.9 using the SciPy package and results were presented as

the average number of spikes elicited using a current step that produced approximately half of

the maximum number of spikes during the baseline (without drug) period.
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4.2.4.3 Associative LTP

In slices prepared from Chrna2-Cre x Ai32 animals, voltage clamp recordings were made from

CA1 pyramidal neurons with patch pipettes filled with an intracellular solution containing (in

mM) 120 KMeSO3, 10 HEPES, 0.2 EGTA, 4 Mg-ATP, 0.3 Na-GTP, 8 NaCl, 10 KCl and adjusted

to pH 7.4, 280-285 mOsm. These experiments were carried out in parasagittal slices to maximise

the density and connectivity of temporammonic fibres in the SLM. Cells were voltage clamped at

–70 mV to obtain excitatory currents. Postsynaptic currents were recorded in three independent

pathways: SC test pathway, TA test pathway and SC control pathway. A steady 5 min baseline was

achieved before attempting to induce plasticity via the application of a theta burst protocol (TBP)

to the two test pathways. The TBP consisted of a train of 10 bursts where each burst contained 5

pulses at 100 Hz with the frequency of bursts set at 5 Hz. The TBP was applied through the two

test pathway stimulating electrodes either in combination with light pulses following the same

pattern, to activate the ChR2-expressing OLM interneurons, or in the absence of light. During

the TBP, cells were in the current-clamp configuration and were injected with a current that

initially held their resting membrane potentials at -70 mV before the TBP. The waveforms from

the activities of these cells during this period were also recorded. The protocol was performed

within 10 min of reaching the whole-cell configuration to prevent washout of plasticity. After

TBP, responses from both pathways were recorded for a further 25 min. Consecutive traces were

averaged to produce a mean response every 30 seconds. The mean amplitude response of the

baseline period was used to normalise the responses of each pathway. Plasticity was assessed by

comparing the average ESPC amplitude during the last 5 min of the experiment between the

control and test pathways.

The waveforms during the TBP were analysed for number of spikes, number of bursts and the

total area underneath the waveform. Spikes were counted in Python 3.9 using the SciPy package.

A burst was counted for each theta-burst period with 2 or more spikes. The total area underneath

the waveform was calculated first by detecting and removing spikes in the waveform; fitting

a biexponential curve to capture the fast and slow components of an afterhyperpolaristion in

order to estimate the baseline; then taking the area between the fitted baseline curve and the

waveform itself.

4.2.5 Immunohistochemistry

Prior to immunohistochemical staining of target neurons, mice brains were fixed via perfusion

fixation. First, mice received an intraperitoneal injection of sodium pentobarbital at a lethal

dose of 100 mg/kg. After the cessation of breathing and reflexive responses from foot pinching,

the abdomen was opened and the rib cage was separated to expose the heart. A small incision

was made in the right atrium to allow blood and old solution to drain whilst 20 ml of 0.01 M

phosphate-buffered saline (PBS) was being injected into the left ventricle followed by another
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20 ml of 4% paraformaldehyde in 0.01 M PBS (PFA). The mice were then decapitated, the skulls

were cut open following the midline sutures (sagittal and interfrontal sutures) and the brains

were extracted. Before slicing, the brains were submerged in 4% PFA for 24 hours and then

transferred to 30% sucrose in 0.01 M PBS until they sank to the bottom of the container which

took approximately 48 hours. 40 µm thick parasagittal slices were obtained using a freezing

microtome and stored in 0.01 M PBS with 0.01% sodium azide.

For immunohistochemistry, free-floating slices were washed with gentle agitation in 0.01 M PBS

for 10 min and three additional times (10 min each) in 0.01 M PBS with 0.2% Triton X-100 (0.2%

PBST). Slices were then incubated in a blocking solution containing 5% donkey serum (Sigma-

Aldrich D9663-10ML) in 0.3% PBST for 1 hour at room temperature. Slices were subsequently

incubated at 4–C for 24 hours in blocking solution containing either anti-SST (1:1000 Santa

Cruz SC-7819) or anti-GFP (1:1000 Abcam ab13970) which are antibodies for visualising SST

and ChR2, respectively. After 24 hours, slices were brought up to room temperature for 1 hour.

Following three washes with 0.2% PBST (10 min each), slices were incubated in blocking solution

containing either anti-goat Alexa Fluor 488 (1:500, Invitrogen Antibodies A-11055) or anti-goat

Alexa Fluor 594 (1:500, Invitrogen Antibodies A-11058) and anti-chicken Alexa Fluor 488 (1:500,

Jackson ImmunoResearch 703-545-155) for 2.5 hours at room temperature. Finally, slices were

washed twice in 0.2% PBST and once in 0.01 M PBS (10 min each), before being stained with

DAPI (1:10000, Invitrogen D1306), mounted on microscope slides and covered with rectangular

glass cover slips using Fluorsave (Merck Millipore).

4.2.6 Microscopy

Sections were examined using a Leica DMI6000B microscope with a HC PL FLUOTAR 10x/0.30

DRY objective lens. The DAPI (excitation 350/50 nm, dichroic 400 nm, emission 460/50 nm), GFP

(excitation 480/40 nm, dichroic 505 nm, emission 527/30 nm) and Tx Red (excitation 560/40 nm,

dichroic 595 nm, emission 645/76 nm) filter cubes were used. Images were captured using a

Photometrics Prime 95B sCMOS camera and processed using Leica Application Suite X (Leica,

Germany).

4.2.7 Imaging analysis

All images were taken in sections typical of hippocampal slices used for ex vivo electrophysiological

recordings. Hippocampal layers within the CA1 were identified based on density of DAPI-stained

nuclei, 250 x 600 µm sections of CA1 (covering all layers) were processed using ImageJ software

and fluorescence intensity analysis of each channel (fluorophore of interest) was performed using

MATLAB (R2022b). The normalised intensity profile was calculated by averaging the fluorescence

intensity across the width of the image to provide representative intensities from the top to the

bottom of the CA1. The maximum fluorescence intensity was used to normalise the trace and
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the normalised trace was averaged across slices. The fluorescence contribution per layer was

calculated as an average across the layer.

4.2.8 Statistical analysis

The experimental unit was defined as a cell with only one cell recorded per slice. Data are

reported as means § SEM or medians and were analysed for statistical significance using SPSS

(IBM Software). The normality of the data was assessed using the Shapiro-Wilk test in order to

determine the use of parametric or non-parametric testing. Student’s paired t-test (two-tailed)

was used to examine statistical differences in fluorescence intensities in the different layers of

the hippocampus, kinetics between OLM and SST interneurons, SST interneuron changes in

excitability and associative LTP with interneuron activation. Wilcoxon matched pairs signed

ranks tests (two-tailed) was used on the associative LTP without interneuron activation data.

The Friedman test was used for PPR and input resistance analysis. Further Bonferroni-corrected

Wilcoxon matched pairs signed ranks tests (two-tailed) were performed on the PPR and input

resistance data. Pearson correlation and Spearman’s rank correlation was used to examine

relationships between features in the waveforms recorded and plasticity during the TBP with

and without interneuron activation, respectively.

4.3 Results

4.3.1 Characterisation of Chrna2-cre mouse line

To selectively activate dendrite-targeting interneurons in hippocampal CA1, mouse lines that

expressed genes for this interneuron type were required. Somatostatin (SST) is a common gene

found in cortical interneurons that target the distal apical dendrites of pyramidal cells (Tremblay

et al., 2016; Udakis et al., 2020). Additionally, Chrna2 is a gene for the � subunit of nicotinic

acetylcholine receptors (nAChR) that has been shown to selectively express in a subpopulation

of dendrite-targeting SST interneurons, known as OLM cells, located in the stratum oriens of

the hippocampus (Leão et al., 2012; Freund and Buzsáki, 1996). Therefore, mice expressing

Cre-recombinase under the promoter for the SST (SST-Cre) and Chrna2 (Chrna2-Cre) genes

were bred with homozygous Ai32 mice, which have floxed-ChR2 genetics, to selectively express

EGFP-tagged channelrhodopsin and enable optogenetic control of these interneuron populations.

Subsequent histological analysis of SST and Chrna2 gene expression was performed to investigate

whether there were differences in expression patterns. Immunohistochemistry of hippocampi from

mice with Cre-mediated TdTomato (red fluorescent protein) expression under the control of the

Chrna2 promoter (Chrna2-Cre x TdTomato mice) confirmed that TdTomato-positive somata and

innervations in CA1 almost exclusively resided in stratum oriens (SO) and stratum lacunosum

moleculare (SLM), respectively (Fig. 4.1A). A repeated measures ANOVA with a Greenhouse-

Geisser correction for departure from sphericity revealed that mean normalised fluorescence
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intensity differed significantly between different layers of the hippocampus (F(1.253, 10.023)

= 1259.74, P < 0.001). Simple effects analysis, using the Bonferroni correction for multiple

comparisons, determined that the fluorescence found in the SP (3.18 § 0.85%) and SR (4.03 §

0.81%) were not significantly different (-0.85 (95%, -2.19 to 0.49) %, p = 0.354) and both layers

were significantly lower compared to the SO and SLM (SO-SP: 8.87 (95%, -7.59 to 10.14) %, p <

0.001; SO-SR: 8.02 (95%, 6.23 to 9.81) %, p < 0.001; SP-SLM: -54.16 (95%, -59.18 to -49.15) %, p <

0.001; SR-SLM: -53.32 (95%, -58.08 to -48.55) %, p < 0.001). A very similar result was seen in

Chrna2-Cre mice crossed with Ai32 mice (Chrna2-Cre x Ai32) (Fig. 4.1B). A repeated measures

ANOVA with a Greenhouse-Geisser correction for departure from sphericity, once again, revealed

that mean normalised fluorescence intensity differed significantly between different layers of the

hippocampus (F(2.083, 16.666) = 60.578, P < 0.001). Post hoc pairwise comparisons using the

Bonferroni correction showed that, unlike Chrna2-Cre x TdTomato mice, there was no significant

difference in fluorescence between SO and SP (6.06 (95%, -7.89 to 20.01) %, p = 1.000) but both

had significantly greater fluorescence compared to SR (SO-SR: 22.18 (95%, 13.37 to 30.99) %, p <

0.001; SP-SR: 16.12 (95%, 5.24 to 26.99) %, p = 0.005). The fluorescence measured at the SLM

was significantly the highest compared to the other layers (SLM-SO: 19.90 (95%, 7.61 to 32.19)

%, p = 0.003; SLM-SP: 25.96 (95%, 13.40 to 38.53) %, p < 0.001; SLM-SR: 42.08 (95%, 37.01 to

47.15) %, p < 0.001). Histological analysis of SST expression indicated that these cells and their

innervations, although were predominantly located in the same locations as OLM interneurons,

were also partially found in the stratum pyramidal (SP) and stratum radiatum (SR) (Fig. 4.1A).

A repeated measures ANOVA determined that mean normalised fluorescence intensity differed

significantly between different layers of the hippocampus (F(3, 24) = 787.787, P < 0.001). Post

hoc analysis with Bonferroni adjustment revealed that there was no significance difference in

fluorescence between SO and SR (0.55 (95%, -3.74 to 4.85) %, p = 1.000), and both layers had

significantly higher fluorescence than SP (SO-SP: 7.29 (95%, 3.25 to 11.33) %, p < 0.001; SR-SP:

6.74 (95%, 3.32 to 10.15) %, p < 0.001). Similar to the expression of the Chrna2-Cre dependent

markers, the fluorescence measured at the SLM was significantly the highest compared to the

other layers (SLM-SO: 45.64 (95%, 40.39 to 50.90) %, p = 0.003; SLM-SP: 52.93 (95%, 48.38 to

57.48) %, p < 0.001; SLM-SR: 46.20 (95%, 42.32 to 50.08) %, p < 0.001). Taken together, these

results suggest that Chrna2-expressing cells are highly specific to the OLM interneurons found

in SO but SST-expressing cells, although primarily confined to SO, are also found or innervate

the SR. This is supported by observations from Leão et al. (2012) and Freund and Buzsáki (1996).

Furthermore, SST and Chrna2 cells heavily project to the SLM of CA1 indicating that both cell

populations are suitable for mediating the activity found at the distal apical dendrite of CA1

pyramidal cells.
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FIGURE 4.1: OLM interneurons reside in the stratum oriens and innervate the stratum lacuno-
sum moleculare of the hippocampus. (A; top left) Immunohistochemical staining in hippocampal slice
of Chrna2-Cre x TdTomato animal showing expression of SST (green) and TdTomato in OLM interneurons
(magenta). Sections of CA1 displaying expression patterns of SST (bottom far left) and TdTomato (bottom
middle left) in the different hippocampal layers: stratum oriens (SO), stratum pyramidal (SP), stratum
radiatum (SR) and stratum lacunosum moleculare (SLM). The normalised intensity profiles show the
mean TdTomato (bottom middle right) and SST (bottom far right) fluorescence levels as a function of
distance from the top (SO) to the bottom (SLM) of CA1. Bar plots demonstrate the mean fluorescence
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within each layer for TdTomato (top middle right) and SST (top far right) (N = 9 slices from three animals).
(B) Same as (A) but for Chrna2-Cre x Ai32 animals and the expression of ChR2. Data represented as mean
§ SEM; ** p < 0.01, *** p < 0.001 (repeated measures ANOVA with Bonferroni-corrected simple effects
analysis.

4.3.2 Effect of cholinergic modulation on the inhibitory synaptic
transmission from OLM and SST interneurons

Electrophysiological data has shown that neocortical SST and hippocampal OLM cells are potently

activated by ACh via a muscarinic ACh receptor (mAChR) mediated mechanism but the collective

effect of ACh on the SST/OLM to CA1 pyramidal cell (PC) synapses remains unclear (Muñoz and

Rudy, 2014; Xu et al., 2013; Lawrence et al., 2006; Lawrence, 2008). To investigate the cholinergic

action on SST/OLM-to-PC synapses, whole-cell patch clamp recordings of inhibitory currents

were made from CA1 PCs by photostimulating ChR2-expressing SST or OLM interneurons with

blue (470 nm) light (Fig. 4.2A). In contrast to a previous study by Udakis et al. (2020), optogenetic

activation of these interneurons prior to carbachol (CCh), AChR agonist, demonstrated that

OLM-derived IPSCs expressed significantly slower rise and decay kinetics compared to SST-

derived IPSCs (rise time: 4.60 § 0.37 ms OLM versus 2.20 § 0.58 ms SST, t(12) = 3.453, p =

0.005; decay time: 44.42 § 2.62 ms OLM versus 22.13 § 4.03 ms SST, t(12) = 4.986, p < 0.001)

indicating further differences in the two cell populations (Fig. 4.2B). Inhibitory currents from

both SST and OLM interneurons decreased in a dose-dependent manner after the application of

increasing concentrations of CCh (OLM inhibition with IC50 of 0.859 �M; SST inhibition with

IC50 of 4.52 �M) (Fig. 4.2C-F). To determine the mechanism behind the cholinergic-mediated

inhibition of SST/OLM-to-PC synapses, the paired pulse ratio (PPR), defined as the ratio of the

IPSC evoked by the second pulse of light to the first, and the input resistance were measured.

Friedman tests determined a statistical difference in OLM PPR depending on the concentration

of CCh (�2(5) = 11.987, p = 0.035) but this interaction was not seen with OLM input resistance

and CCh concentration (�2(5) = 3.032, p = 0.695). Dunn-Bonferroni post hoc analysis of OLM

PPR revealed there were no significant differences between any of the concentrations. Repeated

measures ANOVAs with Greenhouse-Geisser corrections for departure from sphericity revealed

no significant interaction between SST PPR or input resistance and the concentration of CCh

(PPR: F(1.994, 5.983) = 2.189, P = 0.193; input resistance: F(1.543, 4.630) = 0.735, P = 0.494).

These data suggest that ACh inhibits SST/OLM-to-PC synapses and the effect is mediated by a

presynaptic mechanism in OLM-to-PC synapses but not in SST-to-PC synapses.
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FIGURE 4.2: CCh causes a dose-dependent decrease in OLM and SST interneuron inhibition.
(A) Schematic of the hippocampal slice recording setup: whole-cell patch-clamp recordings of IPSCs in
CA1 pyramidal cells (dark blue) from photostimulated dendrite-targeting OLM interneurons (green). (B;
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left) Example normalised IPSC traces from OLM (green) and SST (purple) interneurons highlighting
representative differences in synapse kinetics. Summary of IPSC rise (middle) and decay (right) times
for SST and OLM interneurons (unpaired t-test, two-tailed; N = 10, OLM cells; N = 4, SST cells). (C) A
timecourse of the experiment showing a dose-dependent decrease in normalised IPSC responses from
OLM interneurons with increasing concentrations of CCh. (D) Same as (C) but with SST interneurons. (E)
A dose-response curve with the IC50 labelled for a clearer visualisation of this dose-dependent effect in
OLM interneurons. (F) Same as (E) but for SST interneurons. (G; left) The PPR at varying concentrations
of CCh calculated by dividing the amplitude of the first pulse by the second (S2/S1) (Friedman test; N = 11
cells). (right) The input resistance across the different concentrations of CCh (Friedman test; N = 9). (H)
Same as (G) but for SST interneurons (repeated measure ANOVA; N = 4). BL, baseline period prior to
bath application of CCh. Data represented as mean § SEM; * p < 0.05.

4.3.3 Effect of cholinergic modulation on the intrinsic excitability of stratum
oriens SST interneurons

After establishing the profound inhibition of the SST/OLM-to-PC synapses by ACh and an

indication that this effect is potentially via a presynaptic mechanism in OLM-to-PC synapses,

SO SST interneurons were patched to examine whether this inhibition was due to a cholinergic-

mediated reduction in their intrinsic excitability (Fig. 4.3A). Current-clamp recordings were

made from these cells to assess their resting membrane potential (RMP) and firing properties in

response to increasingly more depolarised current steps in the presence of 10 �M CCh (Fig. 4.3B).

After the application of CCh, there was a significant increase in the RMP from -57.16 § 1.87 mV

,during baseline, to -50.65 § 2.74 mV (t(3) = -3.413, p = 0.042); a depolarisation of 6.51 § 1.91 mV.

A repeated measures ANOVA also determined that there was a significant main effect of drug

condition on the average spike firing (F(2, 6) = 9.005, P = 0.016). Despite a mean increase of 8.42 §

1.96 spikes from pre- (8.96 § 4.57 spikes) to post-drug (17.38 § 5.54 spikes) application, post-hoc

simple effect analysis, using a Bonferroni correction for multiple comparisons, revealed that there

were no significant interactions between the different experimental conditions (Baseline-Drug:

-8.42 (95%, -17.93 to 1.10) spikes, p = 0.070; Baseline-Repolarised: -3.54 (95%, -9.74 to 2.65) spikes,

p = 0.208; Drug-Repolarised: 4.88 (95%, -7.44 to 17.19) spikes, p = 0.451) (Fig. 4.3C-D). These

results suggest that ACh increases the intrinsic excitability of stratum oriens SST interneurons

by depolarising their RMPs.
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FIGURE 4.3: CCh increases the excitability of SST interneurons. (A) Schematic of the hippocampal
slice recording setup: whole-cell patch-clamp recordings of action potentials in SST interneurons evoked
by increasingly higher amplitude current steps. (B) Example traces of OLM interneuron activity after
the application of a 10 pA current step during baseline (grey), in the presence of CCh (red) and after
repolarising the resting membrane potential (RMP; pink) of the cell back to the baseline state. (C) Summary
of RMP before and after CCh application (left; Student’s paired t-test, two-tailed; N = 4) and the average
number of spikes, elicited by a current step that evokes half the number of maximum spikes during the
baseline period, in each experiment state (right; repeated measures ANOVA; N = 4). (D) The excitability
profiles of each SST interneuron that contributed to the summary statistics (C). Data represented as mean
§ SEM; * p < 0.05.

4.3.4 OLM interneurons regulate aLTP in CA1

The CA1 region of the hippocampus is crucial for the formation of new memories. This process is

thought to occur through the integration of spatiotemporally coherent inputs from two sources:

91



CHAPTER 4. CHOLINERGIC MODULATION OF OLM INTERNEURONS AND THEIR
REGULATION OF LTP

the entorhinal cortex and the CA3 region of the hippocampus via the temporammonic (TA) and

Schaffer collateral (SC) pathways, respectively. The coincident timing of these two afferent inputs

interact supra-linearly at the distal apical dendrites of CA1 PCs which can initiate dendritic

plateau potentials and complex burst firing that drive associative LTP (aLTP) (Bittner et al.,

2015; Sjöström and Häusser, 2006). OLM interneurons target the distal apical dendritic regions

that mediate this nonlinear dendritic integration, thus they should have the capability to control

synaptic plasticity (Leão et al., 2012; Freund and Buzsáki, 1996). To investigate whether OLM

interneurons can regulate aLTP, whole-cell patch clamp recordings were made from CA1 PCs and

aLTP was assessed using a theta-burst stimulation protocol (TBS) consisting of simultaneous

theta-burst stimulations of the TA and SC pathways. Activity from another independent SC

pathway was also recorded as a negative control (Fig. 4.4A). Wilcoxon signed rank tests showed

that the TBS caused a significant robust expression of aLTP in the SC pathway but not in the TA

pathway (Control-SC: Z = -2.366, p = 0.018; Control-TA: Z = -0.676, p = 0.499) (Fig. 4.4B). After

establishing the ability of the TBS to induce plasticity, these experiments were repeated but with

optogenetic activation of OLM interneurons during the induction protocol (Fig. 4.4C). Student’s

paired t-tests revealed a lack of aLTP in the SC pathway but a significant depression in activity

was seen in the TA pathway (Control-SC: 0.004 § 0.159, t(6) = 0.024, p = 0.982; Control-TA:

0.431 § 0.093, t(6) = 4.626, p = 0.002) (Fig. 4.4D). Together, these results demonstrate that OLM

interneuron activity can regulate the induction of aLTP.
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FIGURE 4.4: OLM interneuron activity prevents theta-burst-induced associative LTP in the SC
pathway. (A; left) Schematic of the hippocampal slice recording setup. Whole-cell patch-clamp recordings
of EPSCs in CA1 pyramidal cells evoked by stimulation of three independent pathways: SC test, TA test
and SC control. (right) A 2 s aLTP theta-burst induction protocol (TBS) illustrating stimulation of the
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SC test and TA test pathways in the absence of somatic depolarisation and photostimulation of OLM
interneurons. (B; left) A timecouse of the TBP-induced aLTP at SC synapses. Summary of the mean
plasticity at the control, SC (middle) and TA (right) pathways in the last 5 min of the experiment with
example traces before (black) and after (coloured) the TBS (Wilcoxon matched pairs signed ranks test,
two-tailed; N = 7). (C; left) Schematic of experimental setup same as (A; left) but with photostimulation of
OLM interneurons during the TBS (right). (D; left) A timecouse of attenuated aLTP at SC synapses and
aLTD at TA synapses. Summary of the mean plasticity at the control, SC (middle) and TA (right) pathways
in the last 5 min of the experiment with example traces before (black) and after (coloured) the TBS with
concurrent OLM interneuron activation (Student’s paired t-test, two-tailed; N = 7). Data represented as
mean § SEM; * p < 0.05, ** p < 0.01.

4.3.5 Effects of spiking, bursting and amount of depolarisation on aLTP

Active mechanisms in dendrites, such as backpropagating action potentials and dendritic calcium

plateau potentials, drive complex bursting activity in the soma of cells resulting in synaptic

plasticity (Xu et al., 2012; Harnett et al., 2013; Larkum et al., 1999; Larkum, 2013; Takahashi and

Magee, 2009; Tsay et al., 2007; Jarsky et al., 2005; Kamondi et al., 1998; Sjöström and Häusser,

2006; Sjostrom et al., 2008; Bittner et al., 2015). Therefore, to gain a better understanding of

how spiking, bursting and depolarisation affects aLTP and how these relationships are altered

by OLM interneuron intervention, exploratory analysis was performed on the induction traces

from the previous plasticity experiments. In induction traces without the optogenetic activation

of OLM interneurons, there were non-significant positive correlations in both the SC and TA

pathways of number of spikes (SC Spearman’s rank correlation: rs(7) = 0.143, p = 0.760; TA

Pearson correlation: r(7) = 0.736, p = 0.059) (Fig. 4.5A-B), bursts (SC Spearman’s rank correlation:

rs(7) = 0.143, p = 0.760; TA Pearson correlation: r(7) = 0.634, p = 0.126) (Fig. 4.5D-E) and total

depolarisation (AUC) (SC Spearman’s rank correlation: rs(7) = 0.312, p = 0.482; TA Pearson

correlation: r(7) = 0.637, p = 0.098) (Fig. 4.5G-H) with strength of aLTP. In contrast, when there

was optogenetically evoked inhibition during the induction, there were non-significant negative

correlations in both the SC and TA pathways of number of spikes (SC Pearson correlation: rs(7) =

-0.297, p = 0.518; TA Pearson correlation: r(7) = -0.007, p = 0.988) (Fig. 4.5C), bursts (SC Pearson

correlation: rs(7) = -0.395, p = 0.380; TA Pearson correlation: r(7) = -0.274, p = 0.552) (Fig. 4.5F)

and total depolarisation (SC Pearson correlation: rs(7) = -0.243, p = 0.600; TA Pearson correlation:

r(7) = -0.046, p = 0.921) (Fig. 4.5I) (Fig. 4.5G-H) with strength of aLTP. These data suggest that

there are no significant relationships of number of spikes, bursts and depolarisation with synaptic

plasticity.
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FIGURE 4.5: The number of spikes, bursts and amount of depolarisation during in-
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duction does not correlate with the expression of plasticity. (A) Example trace of CA1
pyramidal cell activity during TBS with cyan dots indicating the count of a spike. Correlation between
number of spikes, during the TBS in the absence (B) and presence (C) of simultaneous photostimulation of
OLM interneurons, and plasticity in the SC and TA pathways. (D) Example trace of CA1 pyramidal cell
activity during TBS with dashed blue box indicating the count of a burst. Correlation between number
of bursts, during the TBS in the absence (E) and presence (F) of simultaneous photostimulation of OLM
interneurons, and plasticity in the SC and TA pathways. (G) Example trace of CA1 pyramidal cell activity
during TBS with a dashed, pink biexponential curve fitted as the baseline and shaded area representing
amount of depolarisation. Correlation between amount of depolarisation, during the TBS in the absence
(E) and presence (F) of simultaneous photostimulation of OLM interneurons, and plasticity in the SC and
TA pathways. Data represented as values from each experiment, line of best fit and shaded 95% confidence
intervals. Spearman’s rank correlations performed on data correlating to TBS-induced plasticity in SC.
Pearson correlations were performed on the rest of the data (N = 7).

4.4 Discussion

In the hippocampus, a substantial portion of the GABAergic interneurons are composed of SST

cells. However, the SST molecular marker is found in a diverse population of interneurons

comprising of Chrna2-positive OLM cells, Chrna2-negative OLM cells, bistratified cells and

radiatum cells (Honoré et al., 2021). Previous behavioural and electrophysiological studies have

shown that the activity of these interneurons is important for memory formation and synaptic

plasticity, and it is thought that they are mediated by the cholinergic projections from the medial

septum (Lovett-Barron et al., 2014; Honoré et al., 2021; Leão et al., 2012). Despite extensive

research on the effects of cholinergic neuromodulation on the intrinsic excitability of these cells,

how ACh affects their eventual inhibitory transmission onto CA1 PCs is not well understood

(Pelkey et al., 2017; Zheng et al., 2011; Lawrence et al., 2006; Lawrence, 2008). This chapter

addresses this question and further investigates the role of the OLM interneurons in synaptic

plasticity. First, the immunohistochemical experiments performed here have confirmed the

variety in the SST interneuron population and the specificity of the Chrna2-positive OLM cells

as a dendrite-targeting interneuron population. Analysis of their synapse kinetics onto CA1 PCs

further highlighted the differences of the SST and OLM interneuron populations. The faster rise

and decay kinetics of light-evoked SST IPSCs in comparison to OLM IPSCs suggested that a

proportion of the SST interneurons, likely constituting the bistratified cells and radiatum cells,

synapse to dendritic regions more proximal to the soma.

In both cell populations, the application of increasing concentrations of CCh caused a dose-

dependent reduction in inhibitory transmission onto CA1 PCs. The differences in the potency of

CCh were likely due to the SST cell population comprising of additional interneuron types. The

mechanism by which CCh acts to cause this depression in inhibitory output remains inconclusive.

Initial PPR analysis indicated that for the OLM cells, this cholinergic-mediated effect was due
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to a presynaptic mechanism as there was a significant main effect of CCh but further post-hoc

analysis did not provide any significant differences between the various CCh concentrations. This

could be due to the Bonferroni correction being too conservative or there being no significant

differences in the PPRs. The lack of a significant difference in the PPRs, as seen with SST

cells, suggested that this could be due to a postsynaptic mechanism, potentially via the down-

regulation of postsynaptic GABA receptors. However, it is important to not exclude the potential

of a presynaptic mechanism as a study by Burke et al. (2018) has shown that there are non-

canonical forms of presynaptic neuromodulation that result in no changes to PPR. As expected,

both SST and OLM cells displayed no changes in input resistance across the CCh concentrations:

the use of a caesium-based internal blocked potassium channels, thus it was not possible to

see the changes in potassium conductance of the cell from the downstream effects of mAChR

activation.

Although CCh hindered the inhibitory output of SST and OLM cells onto CA1 PCs, it was found

to increase the intrinsic excitability of these interneurons by depolarising their resting membrane

potentials. This up-regulatory effect of activity has been previously shown in a number of studies,

suggesting that the cholinergic modulation of inhibitory transmission is functionally decoupled

from changes in membrane excitability (Pelkey et al., 2017; Lawrence et al., 2006; Lawrence,

2008).

In the aLTP experiments, a TBS was optimised to produce sufficient LTP in the SC pathway. The

intervention of the TBS by simultaneous optogenetic activation of OLM interneurons prevented

the induction of LTP in the SC pathway and caused LTD in the TA pathway. This demonstrated

that OLM interneurons are capable of modulating hippocampal synaptic plasticity. It is known

that the coincident activity of SC and TA inputs is important for the generation of plateau

potentials that induce LTP at glutamatergic synapses of CA1 PCs (Takahashi and Magee, 2009;

Dudman et al., 2007). Recent studies have demonstrated that these plateau potentials are

important for the generation and feature selectivity of CA1 place cells (Bittner et al., 2015, 2017).

As the OLM interneurons target the distal dendritic compartments of the CA1 PC, a potential

mechanism to regulate synaptic plasticity is by mediating the pairing of the proximal and distal

CA1 inputs which are required to evoke plateau potentials. OLM-mediated inhibition of the TA

pathway can gate information flow into the hippocampus by disrupting the necessary external

information from the entorhinal cortex (EC) reaching the CA1. This means the CA1 circuit

cannot associate the local contextual information provided by CA3, via the SC pathway, with the

spatial information from the EC to encode context-dependent spatial maps (Bittner et al., 2015).

Cholinergic neuromodulation can therefore be a higher level control of hippocampal synaptic

plasticity by controlling the inhibitory transmission of OLM interneurons. ACh release can act as

a novelty detection signal to facilitate memory formation in the hippocampus by inhibiting the

OLM-to-PC synapse and glutamatergic synapses onto OLM interneurons (Zheng et al., 2011).
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The exploratory analysis of the induction traces from the aLTP experiments determined, contrary

to previous studies, that there were no significant relationships of number of spikes, bursts and

depolarisation with synaptic plasticity (Xu et al., 2012; Harnett et al., 2013; Larkum et al., 1999;

Larkum, 2013; Takahashi and Magee, 2009; Tsay et al., 2007; Jarsky et al., 2005; Kamondi

et al., 1998; Sjöström and Häusser, 2006; Sjostrom et al., 2008; Bittner et al., 2015). However,

the small sample size indicates that the lack of significance could be due to a lack of power in

the statistical analysis. In general, there was a trend showing a positive correlation of these

properties with synaptic plasticity in experiments without OLM interneuron activation which

became anti-correlated when the TBS included optogenetic stimulation of OLM interneurons. The

attenuation of LTP with concomitant OLM interneuron activation, despite similar numbers of

spikes, bursts and depolarisation, could be potentially explained by a theoretical burst-dependent

plasticity rule proposed by Payeur et al. (2021). The plasticity rule suggests that there is a

baseline level of bursting that a cell exhibits and subsequent increases or decreases in burst

activity result in LTP or LTD, respectively. In this case, the TBS is a strong enough stimulus

to guarantee an increase in bursting from the cells’ baseline burst rates, thus inducing LTP.

However, inhibitory transmission from OLM interneurons could be weakening the stimulation

enough to reduce the number of bursts below the cells’ baseline burst rate resulting in LTD.

4.4.1 Limitations

For the SST excitability experiments, SST-Cre x Ai32 mice were used to locate SO dendrite-

targeting interneurons. As previously mentioned, a diverse population of cells constitutes the

SST interneuron population including bistratified and radiatum cells that do not target the

distal dendritic compartments of CA1 PCs (Honoré et al., 2021). This means that the changes

in intrinsic excitability of the cells recorded could include cholinergic effects on cell types that

are not of interest. Additionally, during the experiment, there were no drugs applied to block

the influence of spontaneous network activity on the patched cell. CCh effects on other cells in

the hippocampal circuit could externally be affecting the excitability of the interneuron being

recorded from. Therefore, an ideal experiment would be to use the Chrna2-Cre x Ai32 mouse

line to identify and patch OLM interneurons with the bath application of NBQX, DAPV and

picrotoxin to isolate the cell by blocking potential regenerative dendritic events, glutamatergic

and GABAergic inputs, respectively.

The sample sizes of the dose-response experiments could ideally be larger to distinguish where

the differences in OLM PPR occur and whether the trend that PPR increased with increasing

concentrations of CCh seen in the SST cells is definitively significant. Similarly, a greater sample

size for the aLTP experiments would help to verify whether the trends seen in the correlations

of number of spikes, bursts and depolarisation with synaptic plasticity were real and more

interestingly, if OLM interneuron activation decouples these properties and the induction of

long-term plasticity.
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4.4.2 Future experiments

It is known that coincident timing of activities from the SC and TA pathways evoke plateau

potentials that induce synaptic plasticity (Bittner et al., 2015; Takahashi and Magee, 2009;

Dudman et al., 2007). It would be interesting to see whether the TBS used in these experiments

to induce aLTP is also following a similar mechanism via plateau potential generation. If so, to

understand the mechanism by which OLM interneurons mediate synaptic plasticity, it would

be important to investigate their influence on the generation of plateau potentials. A potential

approach could be to use two-photon calcium imaging: visualising the calcium events at the the

distal apical dendritic regions of CA1 PCs whilst applying the TBS and also with the activation

of the OLM interneurons.

Finally, it would be crucial to test the impact of ACh on OLM-mediated learning and memory in

vivo at the behavioural level. Previous studies have shown that the activity of OLM interneurons

can modulate fear-related memory encoding and learning in spatial memory tasks but none

have investigated the impact of hippocampal cholinergic modulation on OLM interneuron-

dependent learning (Lovett-Barron et al., 2014; Siwani et al., 2018; Haam et al., 2018). In

addition, spatial memory is highly dependent on the hippocampus via the formation of place cells.

If OLM interneurons are important in spatial memory tasks, it is still not clear how these OLM

interneurons affect CA1 place cell generation. Therefore, it would be beneficial to understand

their involvement and whether cholinergic modulation regulates this process.

4.4.3 Closing remarks

In conclusion, the optogenetic activation of OLM interneurons prevents the induction of LTP

and the application of CCh inhibits the OLM-to-PC synapse despite increasing the intrinsic

excitability of the OLM cells. This suggests that the cholinergic modulation of OLM interneuron

transmission could potentially be a gating mechanism for CA1 synaptic plasticity.
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INDEPENDENT OPTICAL EXCITATION OF CHAT- AND

CHRNA2-EXPRESSING NEURAL POPULATIONS

5.1 Introduction

Dual optogenetics involves the use of two different types of opsins (light-sensitive proteins) to

control the activity of specific neurons in the brain. These opsins can be activated by different

wavelengths of light and can be used to either excite or inhibit neurons. However, there is a risk

of cross-talk between the two opsins, which can lead to unintended activation or inhibition of

neurons.

One potential source of cross-talk is spectral overlap between the two opsins. This occurs when

the wavelengths of light used to activate one opsin also activates the other. For example, if one

opsin is activated by blue light and the other opsin is activated by green light, there may be

some overlap in the spectrum of light that activates both opsins. This is quite common with

the earlier developed excitatory opsins such as channelrhodopsin-2 (ChR2) and red-shifted

variants including VChR1 and C1V1, which all have fairly broad action spectra that overlap with

each other (Zhang et al., 2008; Yizhar et al., 2011). This can result in unintended activation or

inhibition of neurons expressing one or both opsins and is one of the main complications when

attempting to optogenetically stimulate individual neural populations.

As the optogenetic toolbox continues to develop and expand its repertoire of available opsin

variants, steps are gradually being taken to address this long-standing issue of spectral cross-talk.

One approach to tackling this problem is by creating long wavelength-sensitive opsins with

narrower action spectra to avoid impeding onto the action spectra of blue light-sensitive opsins.

One recent development is the advent of Chrimson, a red-shifted excitatory opsin that has a
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spectral peak at 590 nm which is 45 nm more red-shifted than many existing red-shifted opsins

(Klapoetke et al., 2014). Another approach is to shift the peak excitation to a shorter wavelength.

The issue that exists for current opsins with this feature is that they either produce weaker

or similar photocurrents compared to ChR2 which, when used in combination with red-shifted

opsins, cannot offer sufficient excitation of neurons without cross-talk (Mattis et al., 2012).

Therefore, efforts have also gone into making more sensitive blue light-sensitive opsins such as

ChRGer which produce photocurrents four times greater than ChR2 and reach their maximum

response with much lower blue light irradiances (Bedbrook et al., 2019).

In the previous chapter it was shown that CCh hinders the inhibitory synaptic transmission of

OLM interneurons onto CA1 PCs. This form of cholinergic modulation could suggest a potential

mechanism for ACh to gate hippocampal synaptic plasticity. However, it remains unclear whether

the concentrations of CCh used are reflective of physiological ACh release. Therefore, a dual

optogenetics approach was undertaken in order to independently stimulate endogenous release

of ACh and examine its effects on the optogenetically evoked IPSCs at the OLM-to-PC synapses.

To validate this dual optogenetic approach, the spectral cross-talk of the ChRger and Chrimson

opsins was evaluated and the optimal blue light irradiance for spectral separability was obtained.

This irradiance proved capable of photostimulating the release of endogenous ACh in hippocampal

slices from mice with ChR2-expressing cholinergic neurons. An attempt was made to measure the

concentration of this physiological ACh with the use of the ACh3.0 sensor (Jing et al., 2020). Two

approaches were examined to selectively express ChRger in the cholinergic fibres and Chrimson in

the OLM interneurons. The Cre and FlpO recombinase gene expression systems are widely used

genetic tools based on site-specific DNA recombinases that facilitate precise DNA modification

in living organisms. Cre and FlpO recombinase recognises specific DNA sequences called loxP

and FRT sites, respectively. Both enzymes catalyse recombination between those sites to enable

precise genetic modification. Therefore, one approach was a pure transgenic approach by creating

a novel mouse line which expressed Cre recombinase in Chrna2-expressing cells such as the

OLM interneurons and FlpO recombinase in the cholinergic cells. Theoretically, subsequent Cre-

and FlpO-dependent viral expression of the desired opsins should be targeted to the chosen

cell types. Another approach involved the use of a recently developed virus that expresses

Cre recombinase under the choline acetyltransferase (ChAT) promoter in Chrna2-Cre mice. To

prevent non-specific viral expression of opsins intended for cholinergic neurons, this approach

was validated to ensure that Chrna2-expressing cells in the medial septum, which all expressed

Cre recombinase, were not projecting to the hippocampus. This approach demonstrated greater

expression specificity and was used to independently excite the OLM interneuron population and

cholinergic fibres in hippocampal CA1. Activation of septo-hippocampal projections was found to

produce a non-significant reduction in OLM inhibitory transmission onto CA1 PCs.
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5.2 Materials and methods

5.2.1 Materials

All reagents were purchased from Fisher Scientific unless otherwise stated.

5.2.2 Animals

Animal care and use was in accordance with the UK Animals (Scientific Procedures) Act of 1986

and were approved by the University of Bristol ethical review committee. Experiments were

performed on male and female mice aged 4 to 15 weeks. C57BL/6J (Charles River) mice were used

as the background strain. Cre and FlpO reporter allele mice (The Jackson Laboratory) were used

to tag specific neuronal populations: oriens-lacunosum moleculare (OLM) interneurons (Chrna2-

Cre, MGI: 5490768), cholinergic neurons (ChAT-Cre, MGI: 3699161; ChAT-FlpO, MGI: 6387001).

The Cre reporter mice were crossed with homozygous Ai32 (MGI: 5577173) to generate litters

of heterozygous offspring expressing channelrhodopsin (ChR2). These experiments employed

a novel mouse line created by crossing Chrna2-Cre mice with ChAT-FlpO mice (Chrna2-Cre

x ChAT-FlpO). Mice were housed under regulated temperature (22 § 2–C) in a normal 12 h

light/dark cycle with ad libitum access to food and water.

5.2.3 Surgical procedures

For stereotaxic injections of adeno-associated viruses (AAVs), mice were acclimatised to the

animal unit for 5 days prior to surgery. Mice were anaesthetised with isoflurane (1.5-4%) and

buprenorphine (Vetergesic) was administered at 0.05 mg/kg for pain relief. The heads of the

mice were shaved and the mice were placed in a stereotaxic frame. Chlorhexidine was applied

to the scalp and a midline skin incision was made over the dorsal surface of the skull to expose

bregma and lambda which acted as landmarks to direct the injection. The connective tissue was

carefully removed and the head was leveled by adjusting the dorsal-ventral (DV) measurement of

bregma to the reference measurement made at lambda. Lacri-lube (ocular ointment to protect

the eyes from drying out) was applied on the eyes of the mice and mice were maintained on a

heat pad throughout surgery. A 1 mm diameter burr hole was made over each site of injection.

The injections for the medial septum (MS) were made at a medial-lateral angulation of 8– and the

coordinates relative to bregma (mm) were anterior-posterior (AP): +0.7 and +0.9, medial-lateral

(ML): §0.6 and DV: -4.5 and 4.0. The bilateral injection coordinates for the dorsal striatum (DS)

were AP: +1.1, medial-lateral (ML): §1.5 and DV: -3.2 and for the hippocampus were AP: -2.0,

medial-lateral (ML): §1.6 and DV: -2.0. A glass micropipette pulled with a horizontal puller (P-87,

Sutter Instrument Co., UK) and bevelled with a 25– tip was primed with double distilled water

(ddH2O), a 200 nL air bubble to monitor volume injected and back filled with the appropriate

AAVs. The The AAVs were infused with a volume of 200 nL per site into the MS and 300 nL per

site into the DS and hippocampus at 50 µL/min. After infusion, the micropipette was left at the
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site for 10 min to allow for the virus to diffuse. Following surgery, the incision was sutured and

mice received a 300 µL subcutaneous injection of saline into the flank. Mice were monitored for

the next 3-4 weeks, to ensure sufficient virus expression, until they were used in experiments.

5.2.3.1 AAV vectors

A list of the AAV vectors used:

• AAV2.9-CAG-DIO-ChRger2-TS-YFP (titre: 3.49 x 1013 viral genomes/mL, VectorBuilder

with plasmids from Addgene Cat#127239)

• AAV5-Syn-FLEX-rc[ChrimsonR-tdTomato] (titre: 8.50 x 1012 viral genomes/mL, Addgene

Cat#62723-AAV5)

• AAV1-CAG-FLEXFRT-ChR2(H134R)-mCherry (titre: 1.50 x 1013 viral genomes/mL, Ad-

dgene Cat#75470-AAV1)

• AAV9-hSyn-GRAB-ACh3.0 (titre: 2.03 x 1013 viral genomes/mL, WZ Biosciences)

• AAV2.1-EF1a-fDIO-EYFP (titre: 2.10 x 1013 viral genomes/mL, Addgene Cat#55641-AAV1)

• AAV2.9-ChAT-Cre-P2A-EGFP (titre: 2.59 x 1012 viral genomes/mL, BrainVTA Cat#PT-0652)

5.2.4 Hippocampal slice preparation

Following cervical dislocation and decapitation, mouse brains were removed and dissected in

ice-cold cutting solution (in mM: 205 sucrose, 10 glucose, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4,

0.5 CaCl2, 5 MgSO4) saturated with 95% O2 and 5% CO2. 400 µm thick parasagittal slices were

prepared with a Leica VT1200 vibratome (Leica, Germany) and slices were incubated in artificial

cerebrospinal fluid (aCSF; in mM: 124 NaCl, 10 glucose, 24 NaHCO3, 3 KCl, 1.25 NaH2PO4, 2.5

CaCl2, 1.3 MgSO4) at 34–C for 25 min and then stored at room temperature for at least 30 min

before use.

5.2.5 Electrophysiology

In all electrophysiology experiments, slices were transferred to a submerged recording chamber

perfused with aCSF at a flow rate of 2.5 ml/min and kept at 32–C via an inline heating system

(TC-324, Warner Instruments). The constant flow and removal of aCSF was maintained by

a 101U/R peristaltic pump (Watson Marlow) and a Dymax 5 vacuum pump (Charles Austin),

respectively. Target cells were visualised with infrared differential interference contrast optics on

an Olympus BX-50WI microscope. Patch electrodes with a resistance of 3-7 M› were pulled from

borosilicate filamented glass capillaries (1.5 OD x 0.86 ID x 100 L mm, Harvard Apparatus) with

a horizontal puller (P-87, Sutter Instrument Co., UK).
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Recordings from hippocampal neurons were made with a MultiClamp 700A amplifier (Molecular

Devices, USA), filtered at 2.4 kHz and digitised at 10 kHz with a CED Power1401 data acquisition

board and Signal 5.12 acquisition software (CED, Cambridge, UK). Cells were voltage clamped

at 0 (not corrected for junction potential). Series resistance was monitored throughout the

experiments and cells that showed >40% change were discarded from subsequent analysis.

Recordings were also rejected from analysis if the series resistance was greater than 35 M›.

Inhibitory synaptic responses were evoked optogenetically with square light steps applied via

mounted LED illuminators (M395L5, M470L2 and M590L2 with a LEDD1B driver, Thorlabs,

US) through 5x or 10x objective lenses.

5.2.5.1 Independent optical excitation of OLM interneurons

To characterise the kinetics and the optical separability of the opsins (ChR2, ChRger, Chrimson),

Chrna2-Cre mice were either crossed with Ai32 (Chrna2-Cre x Ai32) or virally injected with AAV5-

Syn-FLEX-rc[ChrimsonR-tdTomato] or AAV2.9-CAG-DIO-ChRger2-TS-YFP in the hippocampus.

Whole-cell patch-clamp recordings were made in CA1 pyramidal neurons with patch pipettes

filled with an intracellular solution containing (in mM) 130 CsMeSO3, 4 NaCl, 10 HEPES, 0.5

EGTA, 10 TEA, 1 QX-314 chloride, 2 Mg-ATP, 0.5 Na-GTP. Cells were voltage clamped at 0 mV,

far from the chloride reversal potential, to maximise the amplitude of inhibitory postsynaptic

current (IPSC) recordings.

For the characterisation of channel kinetics, patch-clamped cells were photostimulated with

5 ms light pulses through a 10x objective lens from a 470 nm LED (M470L2, Thorlabs, US) at

irradiance of 14.29 mW/mm2 for ChR2 and ChRger, and by a 590 nm LED (M590L2, Thorlabs,

US) at irradiance of 2.11 mW/mm2 for Chrimson. Channel closing rates (¿of f ) were calculated by

fitting a monoexponential curve to the photocurrent after the max amplitude had been reached.

The time to 90% of the peak of the response was measured after the beginning of light onset.

Optical excitation separability was examined by photostimulating patch-clamped cells with 2 or

5 ms light steps at increasingly higher irradiances and measuring the photocurrents produced

by each opsin. By observing the amplitude of the photocurrents produced by the activation

of opsins under different light wavelengths and irradiances, valuable insights can be gained

regarding the opsins’ sensitivity to specific ranges of light wavelengths and intensities. The

different output light intensities were achieved by sending increasingly larger amplitude voltage

steps from the CED Power1401 data acquisition board, via Signal 5.12 acquisition software, to

the LEDD1B driver whilst on "Modulation (MOD)" mode. Exact voltage outputs from the CED

acquisition board and resultant irradiances recorded using an optical power meter (PM100D

power meter console with a S120C photodiode power sensor, Thorlabs) are presented in (Table

5.1). Experiments were repeated in the presence of 1 �M TTX, 0.1 mM 4-AP and 4 mM Ca2¯ to

isolate terminal release.
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Voltage signals (mV) 395 nm mW/mm2) 470 nm (mW/mm2) 590 nm (mW/mm2)
1 0.085 0.022 0.000
3 0.787 0.309 0.016
5 1.515 0.638 0.040
10 3.345 1.440 0.127
20 6.976 3.038 0.342
30 10.464 4.626 0.575
50 16.703 7.692 1.054
60 19.378 9.170 1.280
80 24.028 11.853 1.714
100 27.710 14.621 2.090
120 27.710 14.289 2.114

TABLE 5.1: The voltage outputs from the CED acquisition board and resultant irradiances for
each LED through a 10x objective lens.

Voltage signals (mV) 470 nm (mW/mm2)
1 0.005
3 0.056
5 0.108
10 0.234
20 0.468
30 0.683
50 1.070
60 1.241
80 1.581
100 1.880
120 1.880

TABLE 5.2: The voltage outputs from the CED acquisition board and resultant irradiances for
a 470 nm LED through a 5x objective lens.

5.2.5.2 Endogenous acetylcholine release in ChAT-cre x Ai32

In ChR2-expressing Chat-Cre animals (ChAT-Cre x Ai32), whole-cell patch-clamp recordings were

made in OLM interneurons with patch pipettes filled with an intracellular solution containing

(in mM) 130 CsMeSO3, 4 NaCl, 10 HEPES, 0.5 EGTA, 10 TEA, 1 QX-314 chloride, 2 Mg-ATP,

0.5 Na-GTP. 5 ms light steps at different irradiances were used to elicit responses in OLM

interneurons mediated by nicotinic receptors (Table 5.2).

5.2.5.3 Effect of endogenous acetylcholine on dendritic inhibition

Chrna2-Cre animals were injected with AAV2.9-ChAT-Cre-P2A-EGFP and AAV2.9-CAG-DIO-

ChRger2-TS-YFP in the MS, and AAV5-Syn-FLEX-rc[ChrimsonR-tdTomato] in the hippocampus.
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Slices were prepared after 3-4 weeks of viral transfection and whole-cell patch-clamp recordings

were made in CA1 pyramidal neurons with patch pipettes filled with an intracellular solution

containing (in mM) 130 CsMeSO3, 4 NaCl, 10 HEPES, 0.5 EGTA, 10 TEA, 1 QX-314 chloride, 2

Mg-ATP, 0.5 Na-GTP. Cells were voltage clamped at 0 mV to obtain inhibitory currents. OLM

interneuron IPSCs were evoked by two 5 ms amber light pulses at 10 Hz every 10 s through a

10x objective lens from a 590 nm LED (M590L2, Thorlabs, US) at irradiance of 2.11 mW/mm2.

After a stable 5 min baseline period was achieved, 5 ms blue light pulses at 2 Hz from a 470 nm

LED (M470L2, Thorlabs, US) at irradiance of 0.64 mW/mm2 were added for 5 min to evoke

physiologically maximal acetylcholine release (Palacios-Filardo et al., 2021; Jing et al., 2018).

Then, the blue light photostimulation was switched off for the remaining 20 min of the experiment.

If the blue light photostimulation affected the inhibitory activity of the OLM interneurons, then

the experiment was repeated in the presence of atropine (25 �M) and mecamylamine (50 �M).

Consecutive traces were averaged to produce a mean response every 30 seconds.

After the experiment, cells were voltage clamped at -70 mV; both amber and blue light pulses

were used to examine off-target expression of the viruses. If there were any responses, first

atropine (25 �M) and mecamylamine (50 �M) were applied to check whether it was cholinergic

and then NBQX (20 �M) and DAPV (25 �M) were applied to check if it was excitatory.

OLM interneurons in the stratum oriens were also patch-clamped and voltage clamped at -70 mV

to obtain excitatory cholinergic responses mediated by nicotinic acetylcholine receptors.

5.2.6 Two-photon imaging characterisation of ACh3.0 sensor

A two-photon microscope (Scientifica) equipped with a tuneable Ti:Sapphire pulsed laser ( 100 fs

pulsewidth, MaiTai HP, SpectraPhysics) and ScanImage MATLAB acquisition software (MBF

Bioscience) was used for these imaging experiments. The laser was tuned to an excitation

wavelength of 920 nm and the power was typically set at 50-65 mW. The hippocampi of C57BL/6J

(Charles River) or ChAT-Cre x Ai32 mice were injected with AAV9-hSyn-GRAB-ACh3.0. After

3-4 weeks time for virus expression, parasagittal hippocampal slices were prepared from these

animals. Slices were transferred to a submerged recording chamber perfused with aCSF at a flow

rate of 2.5 ml/min and kept at 32–C via an inline heating system (TC-324, Warner Instruments).

The constant flow of aCSF was maintained by a MINIPULS 3 peristaltic pump (GILSON). Images

were acquired with a 60x water immersion lens at resolutions of either 256 x 256 pixels or 512 x

512 pixels. A CED Power1401 data acquisition board and Signal 5.12 acquisition software (CED,

Cambridge, UK) was used to trigger the onset of scanning, light stimulation from a 470 nm

laser-diode fibre (light source, Doric lenses LDFLS_473/070; fibre optic cannulae, Thorlabs

CFMLC22L20) and the opening of a shutter to the PMTs. Images were processed in Python 3.9

and ¢F/F0 was calculated by subtracting and dividing by the mean baseline image for all images.

The mean baseline image was generated by averaging per pixel across the baseline period. Each
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datapoint in the time course traces represent an average of 5 consecutive images. The datapoints

on the bar plots and example raw and normalised images at each experiment state are an average

of 60 images within each period.

5.2.6.1 Carbachol dose-response

Once a location with expression of the ACh3.0 sensor in CA1 of slices prepared from C57BL/6J

mice was identified, 256 x 256 pixels or 512 x 512 pixels images were acquired at 3.42 Hz or

0.86 Hz, respectively. After the acquisition of 60 images for the baseline period, 100 �M carbachol

(CCh) was bath applied for a further 600 images before being washed out of the system. The

numbers stated relate to the acquisition of 256 x 256 pixels images; half the number of images

were acquired at each experiment state for 512 x 512 pixels images.

To examine the fluorescence of the ACh3.0 sensor with different concentrations of CCh, 512 x 512

pixels images were acquired at 3.42 Hz. After the acquisition of 30 images for the baseline period,

increasingly higher concentrations of CCh were bath applied: 0.3, 1, 3, 10 and 100 �M for 300

images each.

5.2.6.2 Detecting photostimulated release of endogenous acetylcholine

After locating ACh3.0 expression in CA1 of slices prepared from ChAT-Cre x Ai32 animals, 256

x 256 pixels images were acquired at 1 Hz. A baseline period of 60 images was acquired before

the onset of 5 ms light pulses at 1 Hz to optogenetically stimulate the release of endogenous

acetylcholine (Jing et al., 2018). During these light pulses, the shutter to the PMTs was closed to

prevent the light emitted by the laser-diode fibre burning the PMTs. Image acquisition resumed

40 ms post-photostimulation. The photostimulation period lasted 20 s (29 images) before a

quiescent period of 40 s. This pattern was repeated two more times to make a total of three

photostimulation periods. Once the photostimulation period was over, 100 �M CCh was applied

as a reference to compare the change in fluorescence from the endogenous release of acetylcholine.

These images were acquired at 0.1 Hz for 10 min followed by an additional 10 min wash out

period. The same protocol, without the drug application period, was performed in slices prepared

from C57BL/6J mice and also in the absence of a slice in the recording chamber to act as controls.

5.2.7 Retrograde tracing of septo-hippocampal innervations

Cholera Toxin Subunit B (CTB) with Alexa Fluor 594 Conjugate (Invitrogen C34777) was injected

into the hippocampus of Chrna2-Cre x Ai32 mice. Animals were left for 3-4 weeks to allow

sufficient time for the tracer to retrogradely transport from the hippocampal terminals to the

cells in the MS and then animals were sacrificed for immunohistochemistry.
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5.2.8 Characterisation of Chrna2-Cre x ChAT-FlpO mouse line

AAV1-CAG-FLEXFRT-ChR2(H134R)-mCherry was injected into the MS of Chrna2-Cre x ChAT-

FlpO animals. AAV1-CAG-FLEXFRT-ChR2(H134R)-mCherry and AAV2.1-EF1a-fDIO-EYFP

were also separately injected into the DS of these animals. After 3-4 weeks of virus expression,

animals were sacrificed for immunohistochemistry.

5.2.9 Characterisation of AAV2.9-ChAT-Cre-P2A-EGFP

AAV2.9-ChAT-Cre-P2A-EGFP was injected into the MS of C57BL/6J mice animals. After 3-4

weeks of virus expression, animals were sacrificed for immunohistochemistry.

5.2.10 Immunohistochemistry

Prior to immunohistochemical staining of target neurons, mice brains were fixed via perfusion

fixation. First, mice received an intraperitoneal injection of sodium pentobarbital at a lethal

dose of 100 mg/kg. After the cessation of breathing and reflexive responses from foot pinching,

the abdomen was opened and the rib cage was separated to expose the heart. A small incision

was made in the right atrium to allow blood and old solution to drain whilst 20 ml of 0.01 M

phosphate-buffered saline (PBS) was being injected into the left ventricle followed by another

20 ml of 4% paraformaldehyde in 0.01 M PBS (PFA). The mice were then decapitated, the skulls

were cut open following the midline sutures (sagittal and interfrontal sutures) and the brains

were extracted. Before slicing, the brains were submerged in 4% PFA for 24 hours and then

transferred to 30% sucrose in 0.01 M PBS until they sank to the bottom of the container which

took approximately 48 hours. 40 µm thick parasagittal slices were obtained using a freezing

microtome and stored in 0.01 M PBS with 0.01% sodium azide.

For immunohistochemistry, free-floating slices were washed with gentle agitation in 0.01 M PBS

for 10 min and three additional times (10 min each) in 0.01 M PBS with 0.2% Triton X-100 (0.2%

PBST). Slices were then incubated in a blocking solution containing 5% donkey serum (Sigma-

Aldrich D9663-10ML) in 0.3% PBST for 1 hour at room temperature. Slices were subsequently

incubated at 4–C for 24 hours in blocking solution containing primary antibodies for visualising

target neurons. After 24 hours, slices were brought up to room temperature for 1 hour. Following

three washes with 0.2% PBST (10 min each), slices were incubated in blocking solution containing

secondary antibodies for 2.5 hours at room temperature. Primary and secondary antibodies used

are listed below. Finally, slices were washed twice in 0.2% PBST and once in 0.01 M PBS (10 min

each), before being stained with DAPI (1:10000, Invitrogen D1306), mounted on microscope slides

and covered with rectangular glass cover slips using Fluorsave (Merck Millipore).

A different protocol was used for visualising Chrimson expression of virally injected Chrna2-Cre

animals. Free-floating slices were washed three times with gentle agitation in 0.01 M PBS (10 min
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each). Afterwards, slices were incubated for 10 min in 1% H2O2 in PBS followed by three 10 min

washes in PBST. Slices were then incubated in a blocking solution containing 5% normal goat

serum and 2.5% bovine serum albumin in 0.2% PBST for 1 hour at room temperature. Slices

were subsequently incubated at 4–C for 48 hours in blocking solution containing anti-mCherry

(1:1000 Abcam ab205402) and anti-SST (1:1000 Abcam ab111912) for visualising Chrimson and

SST interneurons, respectively. After 48 hours, slices were brought up to room temperature for

1 hour. Following three washes with 0.2% PBST (10 min each), slices were incubated in blocking

solution containing anti-chicken Alexa Fluor 594 (1:500 Abcam ab150172) and anti-rabbit Alexa

Fluor 488 (1:250 Vector Laboratories DI-1488-1.5) for 24 hours at 4–C. Finally, slices were washed

four times in 0.2% PBST, before being stained with DAPI (1:10000, Invitrogen D1306), mounted

on microscope slides and covered with rectangular glass cover slips using Fluorsave (Merck

Millipore).

A list of the primary antibodies used:

• Anti-SST (1:1000 Santa Cruz SC-7819) for visualising SST interneurons.

• Anti-SST (1:1000 Abcam ab111912) for visualising SST interneurons.

• Anti-mCherry (1:1000 Abcam ab205402) for visualising Chrimson.

• Anti-mCherry (1:1000 Abcam ab167453) for visualising FlpO-dependent ChR2.

• Anti-GFP (1:1000 Abcam ab13970) for visualising FlpO-dependent GFP and ChR2 (Ai32).

• Anti-CTB (1:1000 Sigma-Aldrich C3062) for visualising CTB.

• Anti-ChAT (1:250 Merck Millipore AB144P) for visualising ChAT neurons.

A list of the secondary antibodies used:

• Anti-rabbit Alexa Fluor 488 (1:250 Vector Laboratories DI-1488-1.5)

• Anti-chicken Alexa Fluor 594 (1:500 Abcam ab150172)

• Anti-rabbit Alexa Fluor 594 (1:500 Invitrogen A-21207)

• Anti-goat Alexa Fluor 488 (1:500 Invitrogen A-11055)

• Anti-goat Alexa Fluor 594 (1:500 Invitrogen A-11058)

• Anti-goat Alexa Fluor 647 (1:400 Invitrogen A-21447)

• Anti-chicken Alexa Fluor 488 (1:500 Jackson ImmunoResearch 703-545-15)
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5.2.11 Microscopy

Hippocampal slice sections containing ChRger and Chrimson were examined using a Leica

DMI6000B microscope with a HC PL FLUOTAR 10x/0.30 DRY objective lens. The DAPI (excita-

tion 350/50 nm, dichroic 400 nm, emission 460/50 nm), GFP (excitation 480/40 nm, dichroic 505

nm, emission 527/30 nm) and Tx Red (excitation 560/40 nm, dichroic 595 nm, emission 645/76 nm)

filter cubes were used. Images were captured using a Photometrics Prime 95B sCMOS camera

and processed using Leica Application Suite X (Leica, Germany).

MS and DS sections were examined using a Leica SP8 AOBS confocal laser scanning microscope

with a HC PL APO CS2 20x/0.75 DRY objective lens. A 65 mW Ar laser, 20 mW DPSS yellow laser

(561 nm), 10 mW Red He/Ne (633 nm) and 50 mW 405 nm diode laser were used to visualise GFP,

mCherry, Alexa Fluor 647 and DAPI, respectively. Hybrid detectors were tuned to the emission

spectrum of each fluorophore and ensured no overlap between spectra. Images were processed

using Leica Application Suite X (Leica, Germany).

5.2.12 Imaging analysis

All hippocampal images were taken in slices typically used for ex vivo electrophysiological

recordings. Hippocampal layers within the CA1 were identified based on density of DAPI-stained

nuclei, 250 x 600 µm sections of CA1 (covering all layers) were processed using ImageJ software

and fluorescence intensity analysis of each channel (fluorophore of interest) was performed using

MATLAB (R2022b). The normalised intensity profile was calculated by averaging the fluorescence

intensity across the width of the image to provide representative intensities from the top to the

bottom of the CA1. The maximum fluorescence intensity was used to normalise the trace and

the normalised trace was averaged across slices. The fluorescence contribution per layer was

calculated as an average across the layer.

400 x 400 µm representative sections of the MS and DS were processed in ImageJ software for

cell counting. Cell counting was performed using the ModularImageAnalysis (MIA) plugin in

ImageJ software with a custom workflow developed by Stephen Cross (Wolfson Imaging Facility,

University of Bristol).

5.2.13 Statistical analysis

The experimental unit was defined as a slice or a cell with only one cell recorded per slice. Data

are reported as means § SEM or medians and were analysed for statistical significance using

SPSS (IBM Software). The normality of the data was assessed using the Shapiro-Wilk test in

order to determine the appropriate parametric or non-parametric test.
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5.3 Results

5.3.1 Characterisation of ChRger and Chrimson expression in OLM
interneurons

To investigate the viability of ChRger and Chrimson as opsins for the optical excitation of

independent neural populations, the expression selectivities of the viral constructs were first

examined to determine the likelihood of non-specific activation. The hippocampi of Chrna2-Cre

mice were stereotaxically injected with the Cre-dependent AAV2.9-CAG-DIO-ChRger2-TS-YFP

or AAV5-Syn-FLEX-rc[ChrimsonR-tdTomato] vectors to selectively express ChRger or Chrimson

in OLM interneurons. Subsequent histological analysis of Chrimson-injected mice (Chrna2-

Cre x Chrimson) showed Chrimson-positive somata and innervations were almost exclusively

located in the stratum oriens (SO) and stratum lacunosum moleculare (SLM), respectively (Fig.

5.1A). A repeated measures ANOVA determined a main effect of hippocampal layer on the

expression of Chrimson fluorescence intensity (F(3, 12) = 368.663, P < 0.001). Post hoc pairwise

comparisons using the Bonferroni correction revealed that there were no significant differences

in fluorescence intensity between the stratum pyramidale (SP; 11.85 § 2.62%) and stratum

radiatum (SR; 14.59 § 2.19%) layers (-2.74 (95%, -6.29 to 0.81) %, p = 0.120), and both layers

had significantly lower fluorescences compared to the SO and SLM (SO-SP: 15.86 (95%, 9.87

to 21.84) %, p = 0.001; SO-SR: 13.11 (95%, 7.38 to 18.84) %, p = 0.002; SP-SLM: -53.71 (95%,

-66.22 to -41.20) %, p < 0.001; SR-SLM: -50.97 (95%, -63.28 to -38.65) %, p < 0.001). The SLM

displayed significantly the highest fluorescence amongst all layers (SLM-SO: 37.85 (95%, 28.94 to

46.77) %, p < 0.001). Immunohistochemistry of hippocampi from mice injected with the ChRger

adeno-associated virus (AAV) demonstrated a similar expression profile (Fig. 5.1B). A repeated

measures ANOVA with a Greenhouse-Geisser correction for departure from sphericity revealed

that mean normalised fluorescence intensity differed significantly across the hippocampal layers

(F(1.256, 10.050) = 48.685, P < 0.001). Simple effects analysis, using the Bonferroni correction

for multiple comparisons, revealed the same significant differences as seen with the Chrimson

expression (SO-SP: 11.03 (95%, 1.04 to 21.02) %, p = 0.030; SO-SR: 12.42 (95%, 0.69 to 24.15) %, p

= 0.037; SO-SLM: -29.72 (95%, 0.01 to -7.50) %, p = 0.010; SP-SR: 1.39 (95%, -2.94 to 5.72) %, p =

1.000; SP-SLM: -40.75 (95%, -56.00 to -25.50) %, p < 0.001; SR-SLM: -42.14 (95%, -54.80 to -29.48)

%, p < 0.001). Immunohistochemical staining for somatostatin (SST) also showed a large overlap

of Chrimson and ChRger expression with SST which further supports the specificity of these

AAVs as the OLM interneurons are a subpopulation of SST interneurons (Fig. 5.1). Together,

these results suggest that both viral constructs are highly selective for Cre-expressing cells as

the expression profiles of the opsins heavily reflect the distribution of OLM interneurons and

their innervations in hippocampal CA1.
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FIGURE 5.1: Chrimson and ChRger selectively express in stratum oriens OLM interneurons. (A;
top left) Immunohistochemical staining in hippocampal slice of Chrna2-Cre animals with viral expression of
Chrimson (Chrna2-Cre x Chrimson) showing expression of SST (green) and Chrimson in OLM interneurons
(magenta). Sections of CA1 displaying expression patterns of SST (bottom left) and Chrimson (bottom
middle) in the different hippocampal layers: stratum oriens (SO), stratum pyramidal (SP), stratum
radiatum (SR) and stratum lacunosum moleculare (SLM). The normalised intensity profile shows the
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mean Chrimson (bottom right) fluorescence level as a function of distance from the top (SO) to the bottom
(SLM) of CA1. Bar plot demonstrates the mean fluorescence within each layer for Chrimson (top right) (N =
9 slices from three animals). (B) Same as (A) but looking at the expression of ChRger in virally-transfected
Chrna2-Cre animals (Chrna2-Cre x ChRger). Data represented as mean § SEM; * p < 0.05, ** p < 0.01,
*** p < 0.001 (repeated measures ANOVA with Bonferroni-corrected simple effects analysis.

5.3.2 Independent optical excitation of OLM interneurons

Strong efforts have been made to develop opsins with red-shifted excitation spectra (e.g. VChR1,

C1V1, ReaChR and Chrimson) to avoid spectral overlap with blue light-sensitive opsins when

they are used in combination to optically excite different neural populations (Zhang et al., 2008;

Yizhar et al., 2011; Klapoetke et al., 2014; Lin et al., 2013). However, action spectra data collated

from Klapoetke et al. (2014) and Bedbrook et al. (2019) highlights that residual absorption of

blue light remains a fundamental issue with these red-shifted opsins (Fig. 5.2A). Therefore,

after establishing the expression selectivity of ChRger and Chrimson, it was critical to examine

the spectral overlap of the opsins to determine if there was significant cross-talk between the

opsins that would violate independent optical stimulation of specific neural populations. To

assess the wavelength sensitivity, photocurrent amplitude and channel kinetics of Chrimson,

ChRger and ChR2 (the control blue light-sensitive opsin), voltage-clamp recordings at 0 mV were

made from CA1 PCs after photostimulating OLM interneurons independently expressing each

opsin with 5 ms pulses of violet (395 nm), blue (470 nm) and amber (590 nm) light (Fig. 5.2B).

Channel kinetics were measured from IPSCs optogenetically evoked at each opsins’ respective

peak wavelengths: amber 590 nm light (irradiance of 2.114 mW/mm2) for Chrimson and blue

470 nm light for ChR2 and ChRger (irradiance of 14.289 mW/mm2). A Kruskal-Wallis H test

determined a statistically significant difference in off-kinetics between the different opsins (´2(2)

= 8.549, p = 0.014) with a mean decay time of 8.22 ms for ChR2, 14.44 ms for ChRger and 3.00 ms

for Chrimson. Simple effects analysis, using the Bonferroni correction for multiple comparisons,

revealed that the difference was between Chrimson and ChRger (11.44 § 4.63 ms, p = 0.040)

(Fig. 5.2C-D). There were no statistically significant differences between the off-kinetics of ChR2

and ChRger (-6.22 § 2.79 ms, p = 0.077), as well as Chrimson and ChR2 (5.22 § 1.13 ms, p =

0.776). A one-way ANOVA also showed that there was a significant differences in on-kinetics

between the different opsins (F(2,17) = 7.274, p = 0.005) with a mean rise time of 11.70 ms for

ChR2, 8.92 ms for ChRger and 15.45 ms for Chrimson. A Tukey HSD post hoc test revealed

that the difference was between Chrimson and ChRger (6.53 § 1.86 ms, p = 0.007) (Fig. 5.2E).

There were no statistically significant differences between the off-kinetics of ChR2 and ChRger

(2.78 § 1.12 ms, p = 0.059), as well as Chrimson and ChR2 (3.75 § 1.86 ms, p = 0.138). This data

suggests that there are no significant differences in channel kinetics between ChR2 and ChRger

but ChRger has significantly slower off-kinetics and faster on-kinetics compared to Chrimson.
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FIGURE 5.2: The channel kinetic properties of ChR2, ChRger and Chrimson. (A) Action
spectra of each opsin (data collated from Klapoetke et al. (2014) and Bedbrook et al. (2019)) and the
light intensity spectra of the LEDs used in the experiments. (B) Schematic of the hippocampal slice
recording setup: whole-cell patch-clamp recordings of IPSCs in CA1 pyramidal cells (dark blue) from
photostimulated dendrite-targeting OLM interneurons (green) with different wavelength LEDs. (C-E)
Channel kinetic properties measured from 5 ms light pulses. All opsins were illuminated near their
respective peak wavelength: amber 590 nm light for Chrimson and blue 470 nm light for ChR2 and ChRger.
(C) Example normalised IPSC traces of each opsin highlighting representative differences in synapse
kinetics. Summary of channel off-kinetics (¿of f ) (D) calculated from a monoexponential fit of the IPSC
decay (independent-samples Kruskal-Wallis test with Bonferroni-corrected simple effects analysis; N =
9, ChR2; N = 9, ChRger; N = 2, Chrimson) and on-kinetics (E) as the time taken to reach 90% of the
peak response post-illumination (one-way ANOVA with Tukey HSD post-hoc multiple comparisons; N = 9,
ChR2; N = 9, ChRger; N = 2, Chrimson). Data represented as mean § SEM; * p < 0.05, ** p < 0.01.

Next, the wavelength sensitivity and photocurrent amplitudes of each opsin were measured

via photostimulation using 5 ms pulses of violet (395 nm), blue (470 nm) and amber (590 nm)

light with increasingly higher light intensities. Under amber light conditions, Chrimson began to

produce responses of 30.14 § 8.60 pA at an irradiance of 0.575 mW/mm2 and at the maximum
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irradiance of 2.114 mW/mm2 it produced an IPSC amplitude of 86.45 § 22.44 pA. ChR2 and

ChRger displayed no responses across all amber light irradiances. Under blue light conditions,

ChRger produced the largest photocurrents (182.61 § 28.93 pA) at the maximum irradiance of

14.289 mW/mm2, 37% and 171% greater than responses produced by ChR2 (133.18 § 14.39 pA)

and Chrimson (67.46 § 15.06 pA), respectively. At a blue light irradiance of 1.440 mW/mm2,

Chrimson did not produce any responses (photocurrents started at 3.038 mW/mm2) but ChRger

was already producing IPSCs of 139.89 § 32.98 pA which were over 3.9 times larger than ChR2

currents (35.73 § 13.37 pA). Even with 2 ms blue light pulses, ChRger was producing similar

responses to those seen at 5 ms (163.11 § 26.55 pA). Under violet light conditions, Chrimson was

unresponsive until after an irradiance of 16.703 mW/mm2 but at 16.703 mW/mm2, ChRger was

producing responses of 138.54 § 43.12 pA (Fig. 5.3A-B). To directly examine the terminal release

evoked by the opsins, these experiments were repeated in the presence of 1 �M TTX, 0.1 mM 4-AP

and 4 mM Ca2¯. Responses recorded under these conditions were used as an underestimation of

how excitable opsin-expressing fibres would be to photostimulation. Under blue light conditions,

ChR2 produced no responses whereas ChRger at an irradiance of 1.440 mW/mm2, a blue light

intensity that did not activate Chrimson, produced IPSCs of 114.50 § 24.40 pA. At a violet light

irradiance (16.703 mW/mm2) that did not evoke Chrimson activity in the drug-free state, ChRger

currents were 173.02 § 54.50 pA (Fig. 5.3C). Together, these results indicate that ChRger is

considerable more sensitive than ChR2: ChRger produces larger photocurrents and also at much

lower light intensities. It also suggests that with the combination of the Chrimson and Chrger

opsins, under certain light conditions (blue light irradiance of 1.440 mW/mm2 or below), it is

possible to achieve optical activation of distinct neural populations without cross-talk.
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FIGURE 5.3: Characterisation of opsin violet (395 nm), blue (470 nm) and amber (590 nm) light
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sensitivities for two-colour excitation in acute hippocampal slices. (A; left) Representative voltage-
clamp traces of photocurrents produced by each opsin under 5 ms violet, blue and amber light pulses at
irradiances of 10.5 mW/mm2, 0.638 mW/mm2 and 2.11 mW/mm2, respectively. (right) The photocurrent
amplitudes of each opsin evoked with different optical wavelengths and irradiances. (B) Comparison of
IPSC amplitudes across different opsins obtained under the same illumination conditions. (C) Same as (B)
but cells were in the presence of 1 �M TTX, 0.1 mM 4-AP and 4 mM Ca2¯. Dashed red line is a reference
of Chrimson responses without the presence of drug. Data represented as mean § SEM.

5.3.3 Photostimulating endogenous release of ACh in ChAT-Cre x Ai32 mice

After demonstrating that it is possible to achieve optical excitation of Chrimson and Chrger

without spectral cross-talk, it was important to examine whether the light conditions required

would be suitable for the optogenetic stimulation of ACh release from cholinergic fibres. To

test this, OLM interneurons, identified by their morphology and location in the stratum oriens,

were patched in voltage clamp mode at -70 mV in hippocampal slices prepared from mice with

Cre-mediated ChR2 expression under the control of the ChAT promoter (ChAT-Cre x Ai32) (Fig.

5.4A). Nicotinic ACh receptor (nAChR) mediated EPSC recordings were made from these cells

during photostimulation of ACh release with increasing blue light irradiances. Photostimulated

responses began appearing with blue light irradiances of at least 0.683 mW/mm2 which is much

lower than the irradiance required to elicit Chrimson photocurrents (3.038 mW/mm2). At an

irradiance of 1.241 mW/mm2, the EPSC amplitude produced was 25.47 pA. A Wilcoxon signed-

rank test showed that there was no significant difference in EPSC amplitude when comparing

resting state responses with no light stimulation (2.05 § 1.88 pA) and responses produced by

the optogenetic stimulation (33.29 § 25.51 pA) of ACh release (Z = 1.342, p = 0.180) (Fig. 5.4B).

However, a statistical test performed with such low sample size numbers (N = 2) is unreliable.

Despite demonstrating that a blue light irradiance of 1.440 mW/mm2 is capable of activating

cholinergic fibres expressing a much less sensitive blue light-sensitive opsin (ChR2), there is not

a sufficiently large enough sample size to draw definitive conclusions.

FIGURE 5.4: Photostimulation of cholinergic innervations onto OLM interneurons. (A)
Schematic of the hippocampal slice recording setup: whole-cell patch-clamp recordings of EPSCs in
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OLM interneurons evoked by 2 ms blue (470 nm) light pulses. (B; left) Example voltage-clamp traces of
EPSCs evoked from optogenetic stimulation of cholinergic fibres and (right) the amplitude of responses at
different irradiances. (C) Summary of mean EPSC amplitudes with (blue) and without (grey) photostimu-
lation at maximum irradiance of 1.88 mW/mm2.

5.3.4 Characterisation of ACh3.0 sensor

While nAChRs are present on OLM interneurons and can modulate their activity, successfully

evoking nAChR-mediated responses in these interneurons is not guaranteed and these responses

can vary depending on various factors such as the specific subtype of nAChR involved, the

level of cholinergic innervations preserved in the hippocampal slice, thus the concentration

of ACh available, and their proximity to the OLM interneurons (Leão et al., 2012; Son and

Winzer-Serhan, 2008). Additionally, ACh is rapidly metabolised and reuptaken once released so

using nAChR-mediated excitatory currents seen in OLM interneurons as a proxy for endogenous

ACh release and quantifying its physiological concentration is quite unreliable. The ACh3.0

sensor is a biosensor used to detect physiological concentrations of ACh: it combines the type

3 muscarinic ACh receptor with a circularly permutated GFP so that upon ACh binding, a

conformational change on the muscarinic receptor induces a sensitive fluorescence response (Jing

et al., 2020). Therefore, this biosensor was expressed in CA1 neurons via stereotaxic hippocampal

injections with AAV9-hSyn-GRAB-ACh3.0 to determine whether it was an effective tool for

precise spatio-temporal detection of cholinergic transmission (Fig. 5.5A). Two-photon imaging of

acute hippocampal slices showed that bath application of 100 �M CCh evoked a robust increase

in fluorescence which decreased as the drug was removed from the system (Fig. 5.5B). To measure

the sensitivity of the ACh3.0 sensor, progressively higher concentrations of CCh, from 0.3 �M to

100 �M, were bath-applied. When examining the fluorescence of the entire image, there was an

initial increase in fluorescence in response to the first drug application of 0.3 �M but this rapidly

decayed and further increases in CCh concentration up to 10 �M did not produce visible increases

in fluorescence. However, at the peak concentration of 100 �M, there was fluorescence change

similar to that of 0.3 �M (Fig. 5.6A-B). A repeated measures ANOVA with a Greenhouse-Geisser

correction for departure from sphericity revealed that fluorescence did not differ significantly

across the CCh concentrations (F(1.269, 2.539) = 4.122, P < 0.155) (Fig. 5.6C). This indicates that

the biosensor is not very sensitive to varying concentrations of CCh but the large number of pixels

with fluorescence intensities lower than baseline suggests that photobleaching has occurred. As

an attempt to mitigate the impact of photobleaching, this analysis was repeated but on a smaller

region of interest, within each slice, that displayed minimal photobleaching. Unlike analysis

performed on the entire image, application of CCh caused an initial increase in fluorescence

that was maintained up to a concentration of 10 �M. Subsequent bath application of 100 �M

CCh induced a near two-fold increase in fluorescence from 10 �M CCh (Fig. 5.6D-E). However,

a Friedman test determined that there was no significant main effect of CCh concentration on
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fluorescence (�2(6) = 8.286, p = 0.218) (Fig. 5.6F). These results demonstrate that the ACh3.0

sensor is capable of detecting the presence of CCh, thus ACh, at concentrations as low as 0.3 �M

but its sensitivity to concentrations between 0.3 �M and 10 �M is inseparable.

FIGURE 5.5: Fluorescence response of ACh3.0-expressing cells in acute hippocampal brain
slices to the bath application of 100 �M CCh. (A) Schematic illustration of the experimental design
used to measure the effects of bath applied CCh (100 �M) on fluorescence responses in ACh3.0-expressing
CA1 hippocampal neurons of acute hippocampal brain slices (green). (B; left) Images display raw (top
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left; grey) and ¢F/F0 (bottom left; pseudocoloured) ACh3.0 sensor fluorescence responses in CA1 to before
(Baseline), during (CCh (100 �M)) and after (Wash) application of 100 �M CCh. (top right) Fluorescence
responses over the course of the experiment. (bottom right) A timecourse of the ¢F/F0 showing the rise
in fluorescence after CCh application. Top and bottom rows are regions of interest from different acute
hippocampal slices.
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FIGURE 5.6: Fluorescence response of ACh3.0-expressing cells in acute hippocampal brain
slices to different concentrations of bath applied CCh. (A) Images display raw (top; grey) and
¢F/F0 (bottom; pseudocoloured) ACh3.0 sensor fluorescence responses in CA1 across increasingly higher
bath applied concentrations of CCh. (B; top) Fluorescence responses in different hippocampal slices over
the course of the experiment. (bottom) The ¢F/F0 profile over time across increasing concentrations
of bath applied CCh. (C) Summary of mean ¢F/F0 during each period of drug application (repeated
measures ANOVA; N = 3). (D-F) Same as (A-C) but for a selected region within each hippocampal slice
that expresses low levels of fluorophore photobleaching (Friedman test; N = 3). BL, baseline period prior to
bath application of CCh; Wash, post-application of 100 �M CCh. Data represented as mean § SEM.

After establishing the ability of the ACh3.0 sensor at detecting CCh, it was crucial to validate

its behaviour to optogenetically evoked endogenous release of ACh. To evaluate the feasibil-

ity of combining optogenetic stimulation with optical imaging for simultaneous monitoring of

cholinergic signals, CA1 neurons of ChAT-Cre x Ai32 mice were expressed with the ACh3.0

sensor. Cholinergic transmission was activated using single photon 5 ms LED pulses (470 nm) to

optogenetically stimulate ChR2-expressing cholinergic fibres in acute hippocampal slices. Bath

application of 100 �M CCh was used after to confirm ACh3.0 sensor expression in the slice. Light

activation of cholinergic fibres produced an increase in fluorescence that was spatially different

to the fluorescence change seen with 100 �M CCh (Fig. 5.7A). The fluorescence increase observed

during the photostimulation period (0.00333 § 0.00045) mirrored the duration of light being ON

and was greater than the signal seen during CCh application (0.00230 § 0.00110). A repeated

measures ANOVA determined a main effect of experiment state on the fluorescence intensity

captured (F(3, 15) = 10.908, P < 0.001). Post hoc pairwise comparisons using the Bonferroni

correction revealed that during light stimulation there was a significant increase in fluorescence

compared to BL and Wash (Light-BL: 0.003 (95%, 0.001 to 0.005) %, p = 0.004; Light-Wash: 0.004

(95%, 0.001 to 0.006) %, p = 0.006). There were no significant differences between the fluorescence

signals captured during the optogenetic stimulation of ACh release (Light) and 100 �M CCh

(0.001 (95%, -0.003 to 0.005) %, p = 1.000), baseline (BL) and post-application of 100 �M CCh

(Wash) (0.000 (95%, -0.001 to 0.002) %, p = 1.000), as well as CCh and Wash (0.003 (95%, -0.001 to

0.007) %, p = 0.215) (Fig. 5.7B). However, a similar increase in fluorescence signal from baseline

was observed in hippocampal slices from wildtype C57BL/6J mice without ACh3.0 expression

during the same light stimulating protocol (Baseline-Light: -0.00704 § 0.00049, t(7) = -14.348,

p < 0.001) (Fig. 5.8A). There was no significant increase in fluorescence when light stimulation

was triggered without a hippocampal slice in the recording chamber (Baseline-Light: -0.00092 §

0.00052, t(6) = -1.741, p = 0.132) (Fig. 5.8B). These data suggests that the fluorescence signals

detected during photostimulation could be an artefact from the biological tissue rather than

ACh3.0 sensor fluorescence from binding endogenous ACh.
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FIGURE 5.7: Detecting optogenetically evoked endogenous ACh release with ACh3.0 sensor
in ChAT-Cre x Ai32 acute hippocampal brain slices. (A) Images display raw (top; grey) and ¢F/F0

(bottom; pseudocoloured) fluorescence detection in the absence (Baseline) and presence of (Light) 1 Hz blue
light (470 nm) stimulation, and during (CCh (100 �M)) and after (Wash) bath application of 100 �M CCh
in acute hippocampal brain slices containing ACh3.0-expressing neurons. (B; top left, upper) Fluorescence
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responses in different hippocampal slices over the course of the experiment. (top left, lower) The ¢F/F0

profile over time in response to photostimulation of endogenous ACh release and bath application of
100 �M CCh. (top right) Summary of mean ¢F/F0 during each period the experiment (repeated measures
ANOVA with Bonferroni-corrected simple effects analysis; N = 6). (bottom) Inset displaying a part of the
experiment timecourse containing the fluorescence response to 1 Hz optogenetic stimulation. BL, baseline
period prior to photostimulation; Wash, post-application of 100 �M CCh. Data represented as mean §
SEM; ; ** p < 0.01.
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FIGURE 5.8: Fluorescence detection of 1 Hz blue light (470 nm) photostimulation in wildtype
C57BL/6J acute hippocampal brain slices. (A; top left) Images display raw (upper; grey) and ¢F/F0

(lower; pseudocoloured) fluorescence detection in the absence (Baseline) and presence of (Light) 1 Hz blue
light (470 nm) stimulation in acute hippocampal brain slices without expression of ACh3.0 sensor. (top
right, upper) Fluorescence responses in different hippocampal slices over the course of the experiment.
(bottom right) Inset displaying a part of the experiment timecourse containing the fluorescence response
to 1 Hz light stimulation. (bottom left) Summary of mean ¢F/F0 before (BL) and during (Light) light
stimulation (Student’s paired t-test, two-tailed; N = 8). (B) Same as ((A) but without a hippocampal slice
(empty recording chamber) (Student’s paired t-test, two-tailed; N = 7). Data represented as mean § SEM; ;
*** p < 0.001.

5.3.5 Characterisation of viral channelrhodopsin expression in Chrna2-Cre x
FlpO mice

To explore the effect of cholinergic modulation on OLM interneuron inhibition of CA1 PCs, an

intersectional approach employing the Cre and FlpO recombinase systems was initially examined.

This involved breeding a mouse line in which Cre recombinase was targeted to the locus for the

� subunit of nAChRs (Chrna2-Cre) with another mouse line in which FlpO recombinase was

targeted to the locus for choline acetyltransferase (ChAT-FlpO). This generated a novel mouse line

in which Cre and FlpO were selectively expressed in OLM interneurons and cholinergic neurons,

respectively (Chrna2-Cre x ChAT-FlpO). To determine whether FlpO recombinase expression

exhibited cholinergic neuron specificity in Chrna2-Cre x ChAT-FlpO mice, FlpO-dependent viruses

for ChR2 and GFP were injected into the medial septum (MS) and dorsal striatum (DS) of these

animals (Fig. 5.9A & Fig. 5.10A). Subsequent immunohistochemical staining with ChAT revealed

that, in the MS, 1.75 § 1.11% of ChAT-positive neurons were ChR2-expressing cells and 2.33 §

1.57% of ChR2-expressing cells were ChAT-positive neurons (Fig. 5.9B-C). In the DS, 23.42 §

5.14% of ChAT-positive neurons were ChR2-expressing cells and 5.27 § 1.18% of ChR2-expressing

cells were ChAT-positive neurons (Fig. 5.5B-C). Similar levels of specificity were observed with

the FlpO-dependent GFP virus: 0.23 § 0.21% of GFP-labelled cells were ChAT-positive neurons

and 1.19 § 1.09% of ChAT-positive neurons were GFP-labelled cells (Fig. 5.5D-E). These results

suggest that there are large amounts of off-target expression with FlpO-dependent viruses in the

novel Chrna2-Cre x ChAT-FlpO mouse line.
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FIGURE 5.9: AAV1-CAG-FLEXFRT-ChR2(H134R)-mCherry transfection of ChAT-expressing
cells in the MS of ChAT-flp x Chrna2-cre mice. (A) Schematic of AAV injection in MS to visualise
expression of ChR2 in ChAT-expressing cells. (B; left) Representative image of ChR2 expression in MS.
(right) Magnified image of target region (orange, dashed box) from representative image and associated
labelling separated. (C) Percentage of cells coexpressing ChAT and ChR2 relative to total ChAT-labelled
(green bar) and ChR2-labelled cells (magenta bar). Data represented as mean § SEM.
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FIGURE 5.10: FlpO-dependent ChR2 and GFP of ChAT-expressing cells in the dorsal striatum
of ChAT-flp x Chrna2-cre mice. (A) Schematic of AAV injection in the dorsal striatum (CPu/DS) to
visualise expression of ChR2 or GFP in ChAT-expressing cells. (B; left) Representative image of ChR2
expression in DS. (right) Magnified image of target region (orange, dashed box) from representative image
and associated labelling separated. (C) Percentage of cells coexpressing ChAT and ChR2 relative to total
ChAT-labelled (green bar) and ChR2-labelled cells (magenta bar). (D-E) Same as (A-B). Data represented
as mean § SEM.
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5.3.6 Characterisation of ChAT-cre virus

As the Cre/FlpO dual recombinase intersectional approach demonstrated poor specificity for

cholinergic neurons, a double Cre recombinase approach using the AAV2.9-ChAT-Cre-P2A-EGFP

vector in the MS of Chrna2-Cre x Ai32 mice was evaluated. First, the selectivity of this virus

was examined by stereotaxically injecting it into the MS of wildtype C57BL/6J mice to express

Cre-recombinase under the control of the promoter for ChAT (Fig. 5.11A). Immunohistochemistry

showed that, in the MS, 8.04 § 1.73% of EGFP-labelled cells were ChAT-positive neurons and

41.11 § 5.99% of ChAT-positive neurons were EGFP-labelled cells (Fig. 5.11B-C). Additionally,

dense networks of septo-hippocampal projections were observed in the hippocampus (Fig. 5.11D).

These results suggest that the virus has low specificity in the MS but has robust expression in

long range fibres.

5.3.7 Examining septo-hippocampal projections of Chrna2-expressing cells

It was necessary to further validate the double Cre recombinase approach by examining whether

Chrna2-expressing cells in the MS also projected to the hippocampus in order to avoid non-specific

opsin expression. To investigate this, the CTB retrograde tracer was stereotaxically injected into

the hippocampi of Chrna2-Cre x Ai32 mice to track septo-hippocampal projecting neurons in the

MS (Fig. 5.12A). The ChR2 of Chrna2-Cre x Ai32 mice was tagged with EYFP which enabled the

visualisation of Chrna2-expressing cells. Histological analysis of the MS revealed that 0.01 §

0.01% of ChAT-negative, EYFP-labelled cells were ChAT-negative, CTB-positive neurons and 0.04

§ 0.04% of ChAT-negative, CTB-positive neurons were ChAT-negative, EYFP-labelled cells (Fig.

5.12B-C). This indicates that a negligible proportion of septo-hippocampal projecting neurons

express the Chrna2 gene.
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FIGURE 5.11: AAV2.9-ChAT-Cre-P2A-EGFP transfection of ChAT-expressing cells in the MS
of C57BL/6J mice. (A) Schematic of AAV injection in MS to characterise transfected cells and their
projections to the hippocampus. (B; left) Representative image of ChAT-Cre viral expression in MS. (right)
Magnified image of target regions (white, dashed box) from representative image and associated labelling
separated. Percentage of cells coexpressing EGFP and ChAT relative to total EGFP-labelled (green bar)
and ChAT-labelled cells (magenta bar). (D; left) Representative image of ChAT-Cre viral expression in
septal projections to the hippocampus. (right) Inset, magnification of EGFP-labelled septo-hippocampal
projections. Data represented as mean § SEM.
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FIGURE 5.12: Chrna2-expressing neurons in MS do not project to dorsal hippocampus. (A)
Schematic of CTB retrograde tracer injection into dorsal hippocampus of Chrna2-Cre x Ai32 mice to
visualise septo-hippocampal projecting neurons in MS. (B; left) Representative image of CTB expression in
MS. (right) Magnified image of target region (orange, dashed box) from representative image and associated
labelling separated. (C) Percentage of cells coexpressing EYFP and CTB relative to total EYFP-labelled
(Chrna2-Cre expressing; green bar) and CTB-labelled cells (yellow bar). Data represented as mean § SEM.

5.3.8 The effect of endogenous acetylcholine on OLM inhibitory transmission

It has been shown that bath-applied CCh attenuates the inhibitory transmission of OLM in-

terneurons onto CA1 PCs but whether endogenous ACh release would amount to the same

effect remains unclear (Sec. 4.3.2). To investigate the effects of endogenous ACh on the OLM-

to-PC synapse, a dual optogenetics strategy was undertaken to enable independent optical

excitation of the cholinergic fibres and OLM interneurons. Despite the low selectivity of the

AAV2.9-ChAT-Cre-P2A-EGFP vector, the double Cre recombinase approach remained the bet-

ter option due to its higher transfection rate of ChAT-positive neurons in the MS compared to

the FlpO-dependent ChR2 virus in Chrna2-Cre x ChAT-FlpO mice. Therefore, the AAV5-Syn-

FLEX-rc[ChrimsonR-tdTomato] vector was injected into the hippocampi of Chrna2-Cre mice to

selectively express Chrimson in OLM interneurons. Additionally, the AAV2.9-CAG-DIO-ChRger2-
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TS-YFP and AAV2.9-ChAT-Cre-P2A-EGFP vectors were concurrently injected into the MS of

these mice to express ChRger in cholinergic neurons (Fig. 5.13A). Voltage-clamp recordings

at 0 mV were made from CA1 PCs during photostimulation of OLM interneurons with two

5 ms pulses of amber (590 nm) light. 2 Hz blue (470 nm) light stimulation at an irradiance of

0.64 mW/mm2 (to prevent opsin cross-talk) was applied for 5 min to evoke physiologically maxi-

mal acetylcholine release (Palacios-Filardo et al., 2021; Jing et al., 2018) (Fig. 5.13B). Although

optogenetic stimulation of cholinergic fibres caused a general reduction in OLM inhibition from

baseline (baseline-opto: 0.102 § 0.075 normalised IPSC amplitude), a Student’s paired t-test

determined that this was not a significant difference (t(12) = 1.367, p = 0.197). Immunohisto-

chemistry confirmed that there was some coexpression of green fluorescence, the marker for

both AAV2.9-CAG-DIO-ChRger2-TS-YFP and AAV2.9-ChAT-Cre-P2A-EGFP vectors, with ChAT

staining in these mice (Fig. 5.13C). nAChR-mediated currents recorded from SO interneurons

further supported the immunohistochemical characterisation of ChRger expression in cholinergic

neurons (Fig. 5.13D). Photostimulation of the cholinergic fibres with blue light produced a fast

current response in the OLM interneurons that was not seen with amber light (No light: 19.89

§ 1.35 pA; 470 nm light: 244.54 § 156.94 pA; 590 nm light: 15.25 § 8.20 pA). A Friedman test

determined that light stimulation had no significant effect on the current response (�2(2) = 3.000,

p = 0.223). However, a statistical test performed with such low sample size numbers (N = 2) is

unreliable. These results suggest that endogenous acetylcholine does not affect OLM interneuron

inhibition in the same manner as bath application of CCh.

After taking a closer examination of the traces during the initial onset of blue light stimulation,

large blue light-evoked inhibitory currents were observed in an subset of the experiments. This

subset of experiments displayed a greater general suppression of OLM inhibition from baseline

(baseline-opto: 0.220 § 0.118 normalised IPSC amplitude) but a Student’s paired t-test also

deemed this a non-significant difference (t(5) = 1.854, p = 0.123) (Fig. 5.14A). Furthermore, in an

experiment that showed a reduction in OLM inhibition during blue light optogenetic stimulation,

atropine (25 �M) and mecamylamine (50 �M) was bath-applied afterwards to assess whether

it was an ACh-dependent effect. Light stimulation in the presence of these cholinergic receptor

antagonists did not prevent the attenuation of OLM inhibition (Fig. 5.14B). To determine whether

there was off-target expression of ChRger and Chrimson on excitatory inputs of CA1 PCs, -70 mV

recordings of voltage-clamped CA1 PCs, that demonstrated photostimulated depression in OLM-

to-PC activity, were made in response to blue and amber light stimulation. Both blue and amber

light evoked EPSCs that were prevented with NBQX (20 �M) and DAPV (25 �M) but not with

atropine and mecamylamine (Fig. 5.14C). A repeated measures ANOVA determined that there

was a significant main effect of drug on the normalised amplitude of blue light-evoked EPSCs

(F(2, 4) = 53.179, P < 0.001). Simple effects analysis, using the Bonferroni correction, revealed

that the main effect was due to a significant difference in amplitude between bath-applied

atropine (Atro) with mecamylamine (Meca) and NBQX with DAPV (Atro & Meca - NBQX &
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DAPV: 0.911 (95%, 0.140 to 1.682), p = 0.036). Despite a large reduction in the amplitude of amber

light-evoked EPSCs, a Friedman test determined there was no significant main effect of drug

on the excitatory currents (�2(2) = 5.600, p = 0.061). Together, these results indicate there was

off-target expression of ChRger in long-range excitatory and inhibitory connections from the MS,

and potential off-target expression of Chrimson in excitatory inputs onto CA1 PCs. Additionally,

these data suggests that septo-hippocampal innervations are capable of regulating OLM inhibiton

on CA1 PCs via a cholinergic-independent mechanism but it is inconclusive whether endogenous

ACh also has an effect.

FIGURE 5.13: The effect of optogenetically evoked ACh release on OLM interneuron inhibition.
(A) Schematic of AAV injection into MS and hippocampus (HPC) to enable independent optical activation
of cholinergic fibres and OLM interneurons. (B) Schematic of the hippocampal slice recording setup: whole-
cell patch-clamp recordings of IPSCs in CA1 pyramidal cells (dark blue) from photostimulated dendrite-
targeting OLM interneurons (red) and blue light activated cholinergic fibres (purple). (C) Representative
image of ChAT-Cre + ChRger coexpression (green) with ChAT (purple) in the MS. Inset, magnification
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of target region (orange, dashed box). (D; left) Example traces of fast synaptic photocurrents recorded in
OLM interneurons at -70 mV after blue and amber light stimulation of cholinergic fibres. (right) Summary
of mean EPSC response under different light conditions (Friedman test; N = 2). (E; left) Example traces
before (grey) and during (red) 2 Hz blue light photostimulation of cholinergic fibres. (middle) A timecourse
of the OLM interneuron output with and without optogenetic activation of cholinergic fibres. (right)
Summary of mean OLM interneuron output during baseline (BL) and photostimulation (LED) periods
(Student’s paired t-test, two-tailed; N = 13). Data represented as mean § SEM.

FIGURE 5.14: Long-range inhibitory septo-hippocampal projections could potentially inhibit
OLM interneurons. (A; left) Example traces, recorded at 0 mV, before (grey) and during the onset of
(peach) 2 Hz blue light photostimulation of septo-hippocampal projections. (middle) A timecourse from
experiments expressing large inhibitory currents at the onset of light stimulation shows OLM interneuron
output is inhibited by optogenetic activation of septo-hippocampal fibres. (right) Summary of mean OLM
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interneuron output during baseline (BL) and photostimulation (LED) periods (Student’s paired t-test, two-
tailed; N = 6). (B) A repetition of an experiment in (A) that expressed inhibition from light stimulation but
in the presence of atropine (25 �M) and mecamylamine (50 �M). (C; left) Representative traces of EPSCs
recorded at 0 mV from experiments that expressed large inhibitory photocurrents during the onset of blue
light stimulation. (middle) Summary of mean EPSC responses evoked by blue light at baseline (No drug),
in the presence of atropine (25 �M) and mecamylamine (50 �M) (+ Atro / Meca), and also NBQX (20 �M)
and DAPV (25 �M) (+ NBQX / DAPV) (repeated measures ANOVA with Bonferroni-corrected simple effects
analysis; N = 3). (right) Same as (middle) but responses were evoked by amber light (Friedman test with
posthoc Bonferroni-corrected Wilcoxon signed ranks tests; N = 3). Data represented as mean § SEM.

5.4 Discussion

The experiments performed here have demonstrated that by using ChRger and Chrimson, there

is a blue light irradiance range that can reliably evoke large ChRger-induced photocurrents

without any Chrimson-induced photocurrents. At the blue light irradiance immediately before

the onset of spectral cross-talk, ChRger-induced photocurrents were over three-fold greater than

that of ChR2-induced photocurrents, highlighting the sensitivity of ChRger. The validation of

these two opsins has presented a potential approach at optogenetically controlling distinct neural

populations which has been an ongoing endeavour in neuroscience.

In ChAT-Cre x Ai32 mice, the blue light irradiance range used to avoid spectral cross-talk,

obtained in the opsin validation experiments, was capable of stimulating endogenous ACh release.

The ability to evoke cholinergic transmission with a much less sensitive opsin (ChR2) provided

confidence that these light intensities would be sufficient at exciting cholinergic fibres expressing

ChRger.

The ACh3.0 sensor was used to attempt to measure the physiological concentration of the

optogenetically evoked release of ACh. These experiments showed that the biosensor was able to

reliably detect fluorescence changes induced by the application of 100 �M CCh but it was less

sensitive at distinguishing differences in fluorescence between lower concentrations ranging from

0.3-10 �M. Although non-significant, the ACh3.0 sensor seemed to be able to detect fluorescence

changes at the initial 0.3 �M concentration which then either plateaued or decreased below

baseline fluorescence until the application of 100 �M CCh. This inability to produce a dose-

response curve is in contrast to the original study performed by (Jing et al., 2020). However, the

experimental conditions were different as they measured the sensitivity of the biosensor by locally

puffing ACh onto ACh3.0-expressing cultured HEK293T cells. This method of localised application

enabled cells to rapidly experience the intended ACh concentrations which resulted in a much

shorter experiment. In the case of bath application, the experiments here took much longer as time

was required to ensure the recording chamber equilibrated to the new CCh concentration. This

extra exposure to CCh could potentially result in desensitisation and internalisation of the M3
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mAChRs that constitute the ACh3.0. In addition, the increased laser scanning could potentially

cause photobleaching. Together, this could be a possible explanation for the lack of significant

differences in fluorescence between the different CCh concentrations. When the biosensor was

expressed in hippocampal CA1 cells of ChAT-Cre x Ai32 mice, photostimulation of cholinergic

fibres caused a change in fluorescence similar in amplitude to the application of 100 �M CCh.

However, a similar spatial and amplitude fluorescence change was found when light stimulation

was applied to acute hippocampal slices without ACh3.0 expression and this fluorescence was not

present when the hippocampal slice was removed. Therefore, it remains inconclusive whether

the change in fluorescence is solely due to an artefact of the interaction between the light and

the biological tissue or whether there was also a contribution from endogenous ACh-induced

fluorescence of the ACh3.0 sensor.

It was found that the use of the AAV2.9-ChAT-Cre-P2A-EGF vector in Chrna2-Cre mice was

a better system than the novel Chrna2-Cre x ChAT-FlpO mouse line to selectively express

ChRger and Chrimson in cholinergic neurons and OLM interneurons, respectively. Therefore, this

approach was undertaken to investigate the effects of endogenous ACh release on the OLM-to-PC

synapse in CA1. Photostimulation of cholinergic fibres did not cause a significant reduction in

OLM inhibitory transmission as previously seen with bath application of CCh in Chapter 4.

However, there was a strong trend to suggest that activation of septo-hippocampal projections

inhibits OLM inhibitory transmission. This was not a cholinergic neuromodulatory effect as

the application of both nAChR and mAChR blockers did not attenuate this optogenetically

evoked inhibitory effect. The presence of large inhibitory currents at the onset of blue light

stimulation and the light-evoked excitatory currents indicated that the optogenetic inhibition of

the OLM-to-PC synapse could potentially be via direct long-range inhibitory projections, long-

range excitation of feedforward inhibition or both. This implies that there is a non-cholinergic but

septo-hippocampal dependent mechanism to mediating the activity of CA1 OLM interneurons

which could provide a different or complementary pathway for potentially gating hippocampal

synaptic plasticity. This is supported by a study from Pang and Nocera (1999) which showed

that selective cholinergic lesions of the medial septum with scopolamine did not impair spatial

memory encoding as much as complete medial septal lesions with the addition of muscimol, a

GABAA receptor agonist.

5.4.1 Limitations

In relation to the ChAT-Cre x Ai32 mice and the dual optogenetics experiments measuring the

light-evoked EPSCs, it would be beneficial to increase their sample sizes for a more confident

statistical conclusion. This would help determine whether the blue light irradiances used are

truly capable of stimulating endogenous ACh release.

In the dose-response experiments for the characterisation of the ACh3.0 sensor, the inability to
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detect changes in fluorescence for the increasing concentrations of CCh, as mentioned previously,

could be due to photobleaching or desensitisation of the biosensor. The effect of photobleaching on

the data can be mitigated by detrending the data with the rate of photobleaching measured under

the current experimental conditions. This could be done by scanning at the current sample rate

once a supramaximal concentration of CCh has been bath applied and equilibrated to activate

all ACh3.0 receptors. Additionally, to reduce the risks of desensitisation and photobleaching,

localised application of CCh with a Picospritzer, similar to Jing et al. (2020), can be used instead

of bath application.

Despite the use of the AAV2.9-ChAT-Cre-P2A-EGF vector in Chrna2-Cre mice being the best

approach for the selective expression of the two opsins in independent neural populations,

AAV2.9-ChAT-Cre-P2A-EGF characterisation displayed significant off-target expression in the

MS and less than 50% expression in cholinergic neurons. Therefore, in the dual optogenetics

experiments, the photostimulation in hippocampal CA1 could be of ChRger-expressing fibres

from non-cholinergic neurons or there is insufficient cholinergic fibre activation. This could

explain why there is no overall attenuation of OLM inhibitory transmission and when there is

optogenetically evoked inhibition of the OLM-to-PC synapse, cholinergic blockers have no effect.

Simultaneous two-photon imaging of ACh3.0 sensor fluorescence in these experiments during

blue light stimulation would provide the best insight into whether there is ACh release. Also,

post hoc immunohistochemistry of the used hippocampal slices could reveal if there was any

ChRger expression in the cholinergic fibres. Whole-cell patch clamp experiments of light-induced

nAChR-mediated EPSCs in mice stereotaxically injected with only the ChRger virus into the

MS would further validate the ability to stimulate ACh release. To improve the selectivity of

the AAV2.9-ChAT-Cre-P2A-EGF vector, different viral titres can be tested. Another approach

would be to breed Chrna2-Cre mice with ChAT-Cre mice to produce a novel mouse line expressing

Cre recombinase in both the cholinergic neurons and the OLM interneurons. The retrograde

tracer experiments of the septo-hippocampal projections have shown that there is a negligible

proportion of septo-hippocampal projecting neurons that express the Chrna2 gene. In addition,

the ChAT-Cre mouse line has been heavily characterised to specifically target the ChAT-positive

neurons, thus removing the issue of off-target expression in the MS. The issue that exists with

this approach is that there are some ChAT-positive cells in the hippocampus that could potentially

cause off-target expression of Chrimson (Granger et al., 2020). To test the suitability of this dual

Cre recombinase approach, control experiments would need to be performed to examine the effect

of these hippocampal ChAT-positive cells on OLM inhibitory transmission.

As cholinergic neurons in the MS are believed to fire at low frequencies, in the dual optogenetics

experiments, cholinergic fibres were optogenetically stimulated at a frequency of 2 Hz to represent

a typical high firing rate during wakefulness seen in rats (Simon et al., 2006; Zhang et al., 2010).

This frequency has also been previously used in ex vivo whole-cell patch clamping experiments,

to investigate cholinergic neuromodulation of information flow in CA1, to mimic a maximal

137



CHAPTER 5. INDEPENDENT OPTICAL EXCITATION OF CHAT- AND CHRNA2-EXPRESSING
NEURAL POPULATIONS

physiological concentration of ACh in the hippocampus (Palacios-Filardo et al., 2021; Jing et al.,

2018). However, a recent study by Ma et al. (2020) has shown that these cholinergic neurons

exhibit higher firing rates during active exploration, ranging from 7.5-15 Hz, indicating that

2 Hz may not accurately reflect in vivo firing patterns corresponding with high ACh release in

the hippocampus. This suggests that the stimulation frequency used in the dual optogenetics

experiments may not have been high enough to release an amount of ACh representative of

active animal behaviours which provides another explanation for the lack of cholinergic effect.

Therefore, to help determine an appropriate stimulation frequency for a physiologically relevant

concentration of ACh release, it would be beneficial to measure the amount of ACh released in

vivo during active exploration using a cholinergic biosensor (Jing et al., 2020). This can then be

compared with the concentration of ACh during ex vivo optogenetic stimulation of cholinergic

fibres at varying frequencies.

5.4.2 Future experiments

The two-colour opsin validation experiments performed here have demonstrated a promising

dual optogenetics approach. Since the current slice demonstration will not be identical to most

experimental setups, it would be interesting to further validate this combination of opsins in

other pathways and cell types. Whole-cell current clamp recordings of cells expressing these

opsins during photostimulation with different wavelengths of light would determine whether

there is unintended subthreshold depolarisation. In addition, short interval pairs of non-peak

wavelength followed by peak wavelength light stimulation, e.g. blue light followed by amber light

for Chrimson, would reveal whether the non-peak wavelength light stimulation alters synaptic

transmission.

Despite slow off-kinetics from ChRger, it has been shown that it retains close to 100% spike

fidelity in acute brain slices at stimulation frequencies up to 10 Hz which is within the range of

physiological firing rates of cholinergic neurons in the MS (Bedbrook et al., 2019). However, it

would be important to measure the spike fidelity of ChRger expressed specifically in cholinergic

neurons as different experimental setups can yield different results.

5.4.3 Closing remarks

In conclusion, validation of two recently developed opsins, ChRger and Chrimson, has provided a

promising dual optogenetics approach to controlling the activity of distinct neural populations.

These opsins were expressed independently in the cholinergic neurons and OLM interneurons via

the use of the AAV2.9-ChAT-Cre-P2A-EGF vector in Chrna2-Cre mice. Overall, photostimulation

of the cholinergic fibres did not affect OLM inhibitory transmission onto CA1 PCs but the off-

target expression of ChRger in the MS means that we cannot guarantee interference from the

activity of other cell types.
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6
GENERAL DISCUSSION

How the brain accomplishes the process of credit assignment during learning is a longstanding

debate in the field of neuroscience. In machine learning, this process is most commonly performed

by the backprop algorithm and it produces results comparable to learning in humans. However,

there are several biological inconsistencies in the direct translation of this algorithm into the

brain. Although some of these concerns have been addressed in current models, there are still

considerable biological implausibilities, and these models also ignore important factors that influ-

ence plasticity such as neuromodulation. Chapter 2 explored how cholinergic neuromodulation

could be facilitating the process of learning with an implementation of plausible backprop-like

learning in the brain using a typical cortical microcircuit network, consisting of pyramidal cells

(PCs) and feedback SST interneurons. A framework of cholinergic neuromodulation was intro-

duced whereby the cholinergic system integrates error information and releases acetylcholine to

modulate synaptic plasticity across the brain. The cortical microcircuit model was specifically

incorporated into this framework to examine the effects of cholinergic modulation on learning

when coupled with a plausible credit assignment mechanism. Cholinergic modulation in this

model was found to enhance learning in image classification tasks and excluding modulation

of the SST interneurons in the microcircuit impaired learning. Consistent with experimental

observations, the model of the cholinergic system is involved in promoting learning and the

modulation of SST interneurons is important for this process (Hasselmo, 2006; Lovett-Barron

et al., 2014).

Although the cholinergic system is widely assumed to be a global modulator, recent evidence of

variability in the spatiotemporal dynamics of acetylcholine fluctuations across the brain brings

this into question (Disney and Higley, 2020; Lohani et al., 2020). Testing neuromodulation at

varying degrees of diffuseness in the model revealed that both homogeneous and heterogeneous
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cholinergic signals are beneficial for learning and that the advantages of each differ depending on

the task. This implies that the cholinergic system may switch between distinct forms of signalling

in order to perform a context-dependent function.

In this model, cholinergic modulation of the learning rate is interpreted as occurring via changes

in dendritic excitability mediated by acetylcholine (Williams and Fletcher, 2019). However, these

changes would alter the error signals that are propagated back through the network resulting in

updates to synapses that would not approximate backprop gradients and thus impair learning.

Therefore, a correction for the modulation is required on the outgoing signals which predicts that

there needs to be a depression, proportional to the modulation factor, in the synaptic strength

of the feedback pyramidal-pyramidal and lateral interneuron-pyramidal connections. Palacios-

Filardo et al. (2021) demonstrated that acetylcholine reduces excitatory responses from the

temporammonic (TA) feedback pathway onto CA1 pyramidal cells. In Chapter 4, ex vivo whole-

cell patch clamp experiments showed that the application of carbachol, an acetylcholine receptor

agonist, suppressed inhibitory synaptic transmission of OLM interneurons onto CA1 pyramidal

cells. Furthermore, this cholinergic modulation of the OLM interneuron output was found to be

functionally decoupled from its potentiating effects on membrane excitability. The likely locus of

action is presynaptic although this is difficult to determine using PPR of optogenetically-evoked

inhibitory transmission.

Additionally, in Chapter 4, the importance of OLM interneuron activity for synaptic plasticity

was examined. Ex vivo whole-cell patch clamp recordings of CA1 pyramidal cells showed that

simultaneous theta-burst stimulation of the Schaffer (SC) collateral and TA feedback pathways

is capable of inducing SC LTP. When the OLM interneurons were optogenetically activated

at the same time as the theta-burst stimulation of the two pathways, SC LTP was abolished

and the TA pathway experienced LTD. This validates the EDN model used in Chapter 2 as it

demonstrates that local feedback, dendrite-targeting interneurons are capable of modulating

synaptic plasticity. When this is combined with the neuromodulatory effect of acetylcholine on

the inhibitory output of these interneurons and its ability to control the formation of plateau

potentials, it provides a potential mechanism for cholinergic regulation of synaptic plasticity

(Williams and Fletcher, 2019; Griesius et al., 2022). As the OLM interneurons target the distal

dendritic compartments of the CA1 PC, one possible mechanism for regulating synaptic plasticity

is through mediating the coupling of the proximal and distal CA1 inputs required to elicit plateau

potentials. Plateau potentials are important for the generation and feature selectivity of CA1

place cells (Bittner et al., 2015, 2017). Cholinergic neuromodulation, through modulating the

inhibitory transmission of OLM interneurons, can thus represent a higher level regulation

of hippocampus synaptic plasticity. Acetylcholine release can operate as a novelty detection

signal in the hippocampus, facilitating memory formation by inhibiting the OLM-to-PC and

glutamatergic synapses onto OLM interneurons (Zheng et al., 2011). Similar to the cholinergic

framework in Chapter 2, cholinergic modulation is gating synaptic plasticity. This generates new
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testable hypotheses to investigate whether OLM interneurons and cholinergic neuromodulation

contributes to the production of plateau potentials, place cell formation and remapping (Udakis

et al., 2020; Hasselmo, 2006).

In Chapter 5, a dual optogenetic approach was undertaken to investigate whether the pharma-

cological effect of carbachol on the OLM-to-PC synapse seen in Chapter 4 remained consistent

with endogenous acetylcholine. Validation of the ChRger and Chrimson opsins indicated that the

combination of these two opsins could enable independent optical control of distinct neural popu-

lations. The ChRger and Chrimson opsins were expressed under the control of Cre-recombinase

in Chrna-Cre mice stereotaxically injected in the medial septum (MS) with the AAV2.9-ChAT-Cre-

P2A-EGFP vector as an attempt to provide selective expression localised to ChAT-positive MS

neurons and Chrna2-expressing hippocampal OLM interneurons. Whole cell recordings of OLM

interneuron transmission from CA1 pyramidal cells revealed that optogenetic stimulation of

cholinergic fibres produced inconsistent effects on the inhibitory output of OLM interneurons onto

CA1 pyramidal cells. This was likely due to non-specific optogenetic activation of non-cholinergic

fibres from the MS, as the the AAV2.9-ChAT-Cre-P2A-EGFP vector displayed significant off-

target expression of Cre-recombinase in ChAT-negative MS neurons. Therefore, a more selective

approach to expressing the two opsins in the desired neural populations is required to determine

more conclusively whether endogenous acetylcholine release has any effects on OLM inhibitory

transmission.

In Chapter 2’s framework of cholinergic neuromodulation, the error information must be com-

municated to the cholinergic system but there is no apparent mechanism in the error-encoding

dendritic network (EDN) model used in Chapter 2. In Chapter 3, a novel model of credit assign-

ment called the BurstCCN was proposed that was built upon the EDN and Burstprop models and

employs the concept of burst ensemble multiplexing, which provides a means for communicating

error information without interference from inference signals (Sacramento et al., 2018; Payeur

et al., 2021; Naud and Sprekeler, 2018). By combining the biological mechanisms of bursting, STP,

and dendrite-targeting inhibition, this model has been shown to effectively learn in a continuous,

online setting reminiscent of learning in the brain. The BurstCCN has demonstrated its capability

to learn complex image classification tasks from machine learning, which many current models

of approximate backprop find difficult to solve. Furthermore, by including the model within a

reinforcement learning framework, it has been demonstrated that it does not require explicit

supervised learning signals. Additionally, even when architectural constraints are imposed to

conform with Dale’s law, the BurstCCN is still capable of learning to perform well on MNIST.

The model also makes a prediction that the variance in bursting activity in the network would

correlate with the the severity of the errors made during learning. Together, this new model

improves on earlier biologically plausible backprop-like learning models and offers a mechanism

to convey error information to the cholinergic system. Future research could explore the effects of

applying the cholinergic neuromodulatory framework to this model.
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To conclude, this research has shown that the cholinergic system as an adaptive learning module,

when coupled with plausible backprop-like credit assignment, is capable of modulating synaptic

plasticity and facilitating learning in the brain. Ex vivo slice electrophysiology experiments

have demonstrated that dendrite-targeting interneurons, specifically the OLM interneurons

of the hippocampus, can regulate synaptic plasticity and that cholinergic modulation of these

interneurons have profound effects on their inhibitory output. These key findings suggest a

potential mechanism for plateau potential generation and memory formation via the gating of

synaptic plasticity through the cholinergic modulation of OLM inhibitory transmission.

142



BIBLIOGRAPHY

N. Ahmad, M. A. van Gerven, and L. Ambrogioni.

Gait-prop: A biologically plausible learning rule derived from backpropagation of error.

Advances in Neural Information Processing Systems, 33:10913–10923, 2020.

M. Akrout, C. Wilson, P. C. Humphreys, T. Lillicrap, and D. Tweed.

Using weight mirrors to improve feedback alignment.

arXiv preprint arXiv:1904.05391, 2019.

E. X. Albuquerque, E. F. Pereira, M. Alkondon, and S. W. Rogers.

Mammalian nicotinic acetylcholine receptors: from structure to function.

Physiological reviews, 2009.

J. Aljadeff, J. D’amour, R. E. Field, R. C. Froemke, and C. Clopath.

Cortical credit assignment by hebbian, neuromodulatory and inhibitory plasticity, 2019.

M. Alkondon and E. X. Albuquerque.

The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and

cerebral cortex.

Progress in brain research, 145:109–120, 2004.

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, and

N. De Freitas.

Learning to learn by gradient descent by gradient descent.

In Advances in neural information processing systems, pages 3981–3989, 2016.

R. Anil, V. Gupta, T. Koren, and Y. Singer.

Memory-Efficient Adaptive Optimization.

arXiv:1901.11150 [cs, math, stat], Sept. 2019.

URL http://arxiv.org/abs/1901.11150 .

arXiv: 1901.11150.

S. D. Antic, W.-L. Zhou, A. R. Moore, S. M. Short, and K. D. Ikonomu.

The decade of the dendritic nmda spike.

Journal of neuroscience research, 88(14):2991–3001, 2010.

143

http://arxiv.org/abs/1901.11150


BIBLIOGRAPHY

A. Asok, E. R. Kandel, and J. B. Rayman.

The neurobiology of fear generalization, 2019.

ISSN 16625153.

E. Augusto and F. Gambino.

Can nmda spikes dictate computations of local networks and behavior?

Frontiers in Molecular Neuroscience, 12:238, 2019.

J. L. Ba, J. R. Kiros, and G. E. Hinton.

Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

E. C. Ballinger, M. Ananth, D. A. Talmage, and L. W. Role.

Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline.

Neuron, 91(6):1199–1218, 2016.

J. Basu and S. A. Siegelbaum.

The corticohippocampal circuit, synaptic plasticity, and memory.

Cold Spring Harbor perspectives in biology, 7(11):a021733, 2015.

S. Beaulieu, L. Frati, T. Miconi, J. Lehman, K. O. Stanley, J. Clune, and N. Cheney.

Learning to continually learn.

arXiv preprint arXiv:2002.09571, 2020.

C. N. Bedbrook, K. K. Yang, J. E. Robinson, E. D. Mackey, V. Gradinaru, and F. H. Arnold.

Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenet-

ics.

Nature methods, 16(11):1176–1184, 2019.

L. Benardo and D. Prince.

Cholinergic pharmacology of mammalian hippocampal pyramidal cells.

Neuroscience, 7(7):1703–1712, 1982.

G.-q. Bi and M.-m. Poo.

Synaptic modification by correlated activity: Hebb’s postulate revisited.

Annual review of neuroscience, 24(1):139–166, 2001.

E. L. Bienenstock, L. N. Cooper, and P. W. Munro.

Theory for the development of neuron selectivity: orientation specificity and binocular interac-

tion in visual cortex.

Journal of Neuroscience, 2(1):32–48, 1982.

L. Biewald.

144



BIBLIOGRAPHY

Experiment tracking with weights and biases, 2020.

URL https://www.wandb.com/ .

Software available from wandb.com.

K. C. Bittner, C. Grienberger, S. P. Vaidya, A. D. Milstein, J. J. Macklin, J. Suh, S. Tonegawa, and

J. C. Magee.

Conjunctive input processing drives feature selectivity in hippocampal ca1 neurons.

Nature neuroscience, 18(8):1133–1142, 2015.

K. C. Bittner, A. D. Milstein, C. Grienberger, S. Romani, and J. C. Magee.

Behavioral time scale synaptic plasticity underlies CA1 place fields.

Science, 2017.

ISSN 10959203.

doi: 10.1126/science.aan3846.

T. Bliss, G. Collingridge, and R. Morris.

Synaptic plasticity in health and disease: introduction and overview, 2014.

T. V. Bliss and G. L. Collingridge.

A synaptic model of memory: long-term potentiation in the hippocampus.

Nature, 361(6407):31–39, 1993.

T. V. Bliss and T. Lømo.

Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized

rabbit following stimulation of the perforant path.

The Journal of physiology, 232(2):331–356, 1973.

A. Blokland, W. Honig, and W. G. Raaijmakers.

Effects of intra-hippocampal scopolamine injections in a repeated spatial acquisition task in

the rat.

Psychopharmacology, 109:373–376, 1992.

T. Branco and M. Häusser.

Synaptic integration gradients in single cortical pyramidal cell dendrites.

Neuron, 69(5):885–892, 2011.

E. Brazhnik, R. Muller, and S. Fox.

Muscarinic blockade slows and degrades the location-specific firing of hippocampal pyramidal

cells.

Journal of Neuroscience, 23(2):611–621, 2003.

A. M. Brickman, Y. Stern, and S. A. Small.

Hippocampal subregions differentially associate with standardized memory tests.

145

https://www.wandb.com/


BIBLIOGRAPHY

Hippocampus, 21(9):923–928, 2011.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.

Openai gym.

arXiv preprint arXiv:1606.01540, 2016.

Z. Brzosko, S. Zannone, W. Schultz, C. Clopath, and O. Paulsen.

Sequential neuromodulation of hebbian plasticity offers mechanism for effective reward-based

navigation.

Elife, 6:e27756, 2017.

K. A. Buchanan, M. M. Petrovic, S. E. Chamberlain, N. V. Marrion, and J. R. Mellor.

Facilitation of long-term potentiation by muscarinic m1 receptors is mediated by inhibition of

sk channels.

Neuron, 68(5):948–963, 2010.

J. Bures, A. A. Fenton, Y. Kaminsky, and L. Zinyuk.

Place cells and place navigation.

Proceedings of the National Academy of Sciences, 94(1):343–350, 1997.

T. S. Burger, M. E. Rule, and T. O’Leary.

Active dendrites enable robust spiking computations despite timing jitter.

bioRxiv, pages 2023–03, 2023.

K. J. Burke, C. M. Keeshen, and K. J. Bender.

Two forms of synaptic depression produced by differential neuromodulation of presynaptic

calcium channels.

neuron, 99(5):969–984, 2018.

C. F. Cadieu, H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A. Solomon, N. J. Majaj, and J. J.

DiCarlo.

Deep neural networks rival the representation of primate it cortex for core visual object

recognition.

PLoS computational biology, 10(12):e1003963, 2014.

L. Cai, R. B. Gibbs, and D. A. Johnson.

Recognition of novel objects and their location in rats with selective cholinergic lesion of the

medial septum.

Neuroscience letters, 506(2):261–265, 2012.

N. A. Cayco-Gajic, C. Clopath, and R. A. Silver.

Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward

networks.

146



BIBLIOGRAPHY

Nature Communications, 8(1), 2017.

ISSN 20411723.

doi: 10.1038/s41467-017-01109-y.

C. A. Cea-del Rio, J. J. Lawrence, L. Tricoire, F. Erdelyi, G. Szabo, and C. J. McBain.

M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to

neurochemically distinct hippocampal basket cell subtypes.

Journal of Neuroscience, 30(17):6011–6024, 2010.

C. A. Cea-del Rio, J. J. Lawrence, F. Erdelyi, G. Szabo, and C. J. McBain.

Cholinergic modulation amplifies the intrinsic oscillatory properties of ca1 hippocampal

cholecystokinin-positive interneurons.

The Journal of physiology, 589(3):609–627, 2011.

C. Q. Chiu, J. S. Martenson, M. Yamazaki, R. Natsume, K. Sakimura, S. Tomita, S. J. Tavalin,

and M. J. Higley.

Input-specific nmdar-dependent potentiation of dendritic gabaergic inhibition.

Neuron, 97(2):368–377, 2018.

A. Citri and R. C. Malenka.

Synaptic plasticity: multiple forms, functions, and mechanisms.

Neuropsychopharmacology, 33(1):18–41, 2008.

R. E. Clark and L. R. Squire.

Similarity in form and function of the hippocampus in rodents, monkeys, and humans.

Proceedings of the National Academy of Sciences, 110(supplement_2):10365–10370, 2013.

J. S. Cohen, J. P. LaROCHE, and E. Beharry.

Response perseveration in the hippocampal lesioned rat.

Psychonomic Science, 23(3):221–223, 1971.

A. E. Cole and R. Nicoll.

Characterization of a slow cholinergic post-synaptic potential recorded in vitro from rat hip-

pocampal pyramidal cells.

The Journal of physiology, 352(1):173–188, 1984.

M. W. Cole, P. Laurent, and A. Stocco.

Rapid instructed task learning: A new window into the human brain’s unique capacity for

flexible cognitive control.

Cognitive, affective & behavioral neuroscience, 13(1):1–22, Mar. 2013.

ISSN 1530-7026.

doi: 10.3758/s13415-012-0125-7.

URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557598/ .

147

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557598/


BIBLIOGRAPHY

L. L. Colgin, E. I. Moser, and M.-B. Moser.

Understanding memory through hippocampal remapping.

Trends in neurosciences, 31(9):469–477, 2008.

S. H. Collin, B. Milivojevic, and C. F. Doeller.

Hippocampal hierarchical networks for space, time, and memory.

Current opinion in behavioral sciences, 17:71–76, 2017.

G. L. Collingridge, S. Peineau, J. G. Howland, and Y. T. Wang.

Long-term depression in the cns.

Nature reviews neuroscience, 11(7):459–473, 2010.

J. Cornford, D. Kalajdzievski, M. Leite, A. Lamarquette, D. M. Kullmann, and B. Richards.

Learning to live with dale’s principle: Anns with separate excitatory and inhibitory units.

bioRxiv, pages 2020–11, 2020.

F. Crick.

The recent excitement about neural networks.

Nature, 337(6203):129–132, 1989.

H. Dannenberg, K. Young, and M. Hasselmo.

Modulation of hippocampal circuits by muscarinic and nicotinic receptors.

Frontiers in neural circuits, 11:102, 2017.

S. Dasari and A. T. Gulledge.

M1 and m4 receptors modulate hippocampal pyramidal neurons.

Journal of neurophysiology, 105(2):779–792, 2011.

N. D. Daw and P. N. Tobler.

Value learning through reinforcement: the basics of dopamine and reinforcement learning.

In Neuroeconomics, pages 283–298. Elsevier, 2014.

S. H. Dennis, F. Pasqui, E. M. Colvin, H. Sanger, A. J. Mogg, C. C. Felder, L. M. Broad, S. M.

Fitzjohn, J. T. Isaac, and J. R. Mellor.

Activation of muscarinic m1 acetylcholine receptors induces long-term potentiation in the

hippocampus.

Cerebral cortex, 26(1):414–426, 2016.

L. Descarries.

The hypothesis of an ambient level of acetylcholine in the central nervous system.

Journal of Physiology-Paris, 92(3-4):215–220, 1998.

A. A. Disney and M. J. Higley.

148



BIBLIOGRAPHY

Diverse Spatiotemporal Scales of Cholinergic Signaling in the Neocortex.

The Journal of neuroscience : the official journal of the Society for Neuroscience, 40(4), 2020.

ISSN 15292401.

doi: 10.1523/JNEUROSCI.1306-19.2019.

K. Doya.

Metalearning and neuromodulation.

Neural Networks, 15(4-6), 2002.

ISSN 08936080.

doi: 10.1016/S0893-6080(02)00044-8.

J. Duchi, E. Hazan, and Y. Singer.

Adaptive subgradient methods for online learning and stochastic optimization.

Journal of machine learning research, 12(Jul):2121–2159, 2011.

J. T. Dudman, D. Tsay, and S. A. Siegelbaum.

A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term

plasticity.

Neuron, 56(5):866–879, 2007.

R. Eglen.

Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function.

Autonomic and Autacoid Pharmacology, 26(3):219–233, 2006.

E. Elvander, P. Schött, J. Sandin, B. Bjelke, J. Kehr, T. Yoshitake, and S. Ögren.

Intraseptal muscarinic ligands and galanin: influence on hippocampal acetylcholine and cogni-

tion.

Neuroscience, 126(3):541–557, 2004.

C. J. Frazier, Y. D. Rollins, C. R. Breese, S. Leonard, R. Freedman, and T. V. Dunwiddie.

Acetylcholine activates an fi-bungarotoxin-sensitive nicotinic current in rat hippocampal

interneurons, but not pyramidal cells.

Journal of Neuroscience, 18(4):1187–1195, 1998.

T. F. Freund and G. Buzsáki.

Interneurons of the hippocampus.

Hippocampus, 6(4):347–470, 1996.

F. Gambino, S. Pagès, V. Kehayas, D. Baptista, R. Tatti, A. Carleton, and A. Holtmaat.

Sensory-evoked ltp driven by dendritic plateau potentials in vivo.

Nature, 515(7525):116–119, 2014.

149



BIBLIOGRAPHY

S. Ge and J. A. Dani.

Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or

potentiation.

Journal of Neuroscience, 25(26):6084–6091, 2005.

W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea.

Eligibility traces and plasticity on behavioral time scales: experimental support of neohebbian

three-factor learning rules.

Frontiers in neural circuits, 12:53, 2018.

K. P. Giese, N. B. Fedorov, R. K. Filipkowski, and A. J. Silva.

Autophosphorylation at thr286 of the fi calcium-calmodulin kinase ii in ltp and learning.

Science, 279(5352):870–873, 1998.

L. M. Giocomo and M. E. Hasselmo.

Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating

the relative influence of afferent input and excitatory feedback.

Molecular neurobiology, 36:184–200, 2007.

P. W. Glimcher.

Understanding dopamine and reinforcement learning: the dopamine reward prediction error

hypothesis.

Proceedings of the National Academy of Sciences, 108(supplement_3):15647–15654, 2011.

M. Goard and Y. Dan.

Basal forebrain activation enhances cortical coding of natural scenes.

Nature neuroscience, 12(11):1444–1449, 2009.

I. Goodfellow, Y. Bengio, and A. Courville.

Deep learning.

MIT press, 2016.

A. J. Granger, W. Wang, K. Robertson, M. El-Rifai, A. F. Zanello, K. Bistrong, A. Saunders, B. W.

Chow, V. Nuñez, M. Turrero García, et al.

Cortical chat+ neurons co-transmit acetylcholine and gaba in a target-and brain-region-specific

manner.

Elife, 9:e57749, 2020.

R. Gray, A. S. Rajan, K. A. Radcliffe, M. Yakehiro, and J. A. Dani.

Hippocampal synaptic transmission enhanced by low concentrations of nicotine.

Nature, 383(6602):713–716, 1996.

150



BIBLIOGRAPHY

W. Greedy, H. W. Zhu, J. Pemberton, J. Mellor, and R. P. Costa.

Single-phase deep learning in cortico-cortical networks.

arXiv preprint arXiv:2206.11769, 2022.

C. Grienberger, X. Chen, and A. Konnerth.

Nmda receptor-dependent multidendrite ca2+ spikes required for hippocampal burst firing in

vivo.

Neuron, 81(6):1274–1281, 2014.

S. Griesius, C. O’Donnell, S. Waldron, K. L. Thomas, D. M. Dwyer, L. S. Wilkinson, J. Hall, E. S.

Robinson, and J. R. Mellor.

Reduced expression of the psychiatric risk gene dlg2 (psd93) impairs hippocampal synaptic

integration and plasticity.

Neuropsychopharmacology, 47(7):1367–1378, 2022.

U. Güçlü and M. A. van Gerven.

Deep neural networks reveal a gradient in the complexity of neural representations across the

ventral stream.

Journal of Neuroscience, 35(27):10005–10014, 2015.

J. Guerguiev, T. P. Lillicrap, and B. A. Richards.

Towards deep learning with segregated dendrites.

ELife, 6:e22901, 2017.

A. T. Gulledge and Y. Kawaguchi.

Phasic cholinergic signaling in the hippocampus: functional homology with the neocortex?

Hippocampus, 17(5):327–332, 2007.

J. Haam and J. L. Yakel.

Cholinergic modulation of the hippocampal region and memory function.

Journal of neurochemistry, 142:111–121, 2017.

J. Haam, J. Zhou, G. Cui, and J. L. Yakel.

Septal cholinergic neurons gate hippocampal output to entorhinal cortex via oriens lacunosum

moleculare interneurons.

Proceedings of the National Academy of Sciences, 115(8):E1886–E1895, 2018.

B. Hangya, S. P. Ranade, M. Lorenc, and A. Kepecs.

Central cholinergic neurons are rapidly recruited by reinforcement feedback.

Cell, 162(5):1155–1168, 2015.

M. T. Harnett, N.-L. Xu, J. C. Magee, and S. R. Williams.

151



BIBLIOGRAPHY

Potassium channels control the interaction between active dendritic integration compartments

in layer 5 cortical pyramidal neurons.

Neuron, 79(3):516–529, 2013.

M. E. Hasselmo.

The role of acetylcholine in learning and memory, 2006.

ISSN 09594388.

H. Hayashi, J. Koushik, and G. Neubig.

Eve: A gradient based optimization method with locally and globally adaptive learning rates.

arXiv preprint arXiv:1611.01505, 2016.

N. Hiratani, Y. Mehta, T. Lillicrap, and P. E. Latham.

On the stability and scalability of node perturbation learning.

Advances in Neural Information Processing Systems, 35:31929–31941, 2022.

E. Honoré, A. Khlaifia, A. Bosson, and J.-C. Lacaille.

Hippocampal somatostatin interneurons, long-term synaptic plasticity and memory.

Frontiers in Neural Circuits, 15:687558, 2021.

C. Hull.

Prediction signals in the cerebellum: beyond supervised motor learning.

elife, 9:e54073, 2020.

S. Ikonen, R. McMahan, M. Gallagher, H. Eichenbaum, and H. Tanila.

Cholinergic system regulation of spatial representation by the hippocampus.

Hippocampus, 12(3):386–397, 2002.

T. Jarsky, A. Roxin, W. L. Kath, and N. Spruston.

Conditional dendritic spike propagation following distal synaptic activation of hippocampal

ca1 pyramidal neurons.

Nature neuroscience, 8(12):1667–1676, 2005.

P. Jarzebowski, C. S. Tang, O. Paulsen, and Y. A. Hay.

Impaired spatial learning and suppression of sharp wave ripples by cholinergic activation at

the goal location.

Elife, 10:e65998, 2021.

K. J. Jeffery, M. I. Anderson, R. Hayman, and S. Chakraborty.

A proposed architecture for the neural representation of spatial context.

Neuroscience & Biobehavioral Reviews, 28(2):201–218, 2004.

152



BIBLIOGRAPHY

M. Jepma, S. B. Brown, P. R. Murphy, S. C. Koelewijn, B. De Vries, A. M. van den Maagdenberg,

and S. Nieuwenhuis.

Noradrenergic and cholinergic modulation of belief updating.

Journal of Cognitive Neuroscience, 30(12), 2018.

ISSN 15308898.

doi: 10.1162/jocn_a_01317.

D. Ji, R. Lape, and J. A. Dani.

Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity.

Neuron, 31(1):131–141, 2001.

M. Jing, P. Zhang, G. Wang, J. Feng, L. Mesik, J. Zeng, H. Jiang, S. Wang, J. C. Looby, N. A.

Guagliardo, et al.

A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies.

Nature biotechnology, 36(8):726–737, 2018.

M. Jing, Y. Li, J. Zeng, P. Huang, M. Skirzewski, O. Kljakic, W. Peng, T. Qian, K. Tan, J. Zou, et al.

An optimized acetylcholine sensor for monitoring in vivo cholinergic activity.

Nature methods, 17(11):1139–1146, 2020.

A. Kamondi, L. Acsady, and G. Buzsáki.

Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus.

Journal of Neuroscience, 18(10):3919–3928, 1998.

A. M. Kaufman, T. Geiller, and A. Losonczy.

A role for the locus coeruleus in hippocampal ca1 place cell reorganization during spatial

reward learning.

Neuron, 105(6):1018–1026, 2020.

R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan.

Measuring catastrophic forgetting in neural networks, 2017.

N. S. Keskar and R. Socher.

Improving generalization performance by switching from adam to sgd.

arXiv preprint arXiv:1712.07628, 2017.

H. Kim, M. Beierlein, and B. W. Connors.

Inhibitory control of excitable dendrites in neocortex.

Journal of Neurophysiology, 74(4):1810–1814, 1995.

W. B. Kim and J.-H. Cho.

Encoding of contextual fear memory in hippocampal–amygdala circuit.

Nature communications, 11(1):1382, 2020.

153



BIBLIOGRAPHY

D. P. Kingma and J. Ba.

Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

A. K. Kinnischtzke, D. J. Simons, and E. E. Fanselow.

Motor cortex broadly engages excitatory and inhibitory neurons in somatosensory barrel cortex.

Cerebral cortex, 24(8):2237–2248, 2014.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto,

A. S. Chuong, E. J. Carpenter, Z. Tian, et al.

Independent optical excitation of distinct neural populations.

Nature methods, 11(3):338–346, 2014.

T. Klausberger and P. Somogyi.

Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations, 2008.

ISSN 00368075.

V. R. Konda and J. N. Tsitsiklis.

Onactor-critic algorithms.

SIAM journal on Control and Optimization, 42(4):1143–1166, 2003.

M. d. C. Krawczyk, J. Millán, M. G. Blake, and M. M. Boccia.

Role of prediction error and the cholinergic system on memory reconsolidation processes in

mice.

Neurobiology of Learning and Memory, 185:107534, 2021.

A. Krizhevsky, V. Nair, and G. Hinton.

Cifar-10 (canadian institute for advanced research).

2014.

URL http://www.cs.toronto.edu/~kriz/cifar.html .

D. Kunin, A. Nayebi, J. Sagastuy-Brena, S. Ganguli, J. Bloom, and D. Yamins.

Two routes to scalable credit assignment without weight symmetry.

In International Conference on Machine Learning, pages 5511–5521. PMLR, 2020.

M. Larkum.

A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex.

Trends in neurosciences, 36(3):141–151, 2013.

M. E. Larkum and J. J. Zhu.

Signaling of layer 1 and whisker-evoked ca2+ and na+ action potentials in distal and terminal

dendrites of rat neocortical pyramidal neurons in vitro and in vivo.

Journal of neuroscience, 22(16):6991–7005, 2002.

154

http://www.cs.toronto.edu/~kriz/cifar.html


BIBLIOGRAPHY

M. E. Larkum, J. J. Zhu, and B. Sakmann.

A new cellular mechanism for coupling inputs arriving at different cortical layers.

Nature, 398(6725):338–341, 1999.

M. E. Larkum, T. Nevian, M. Sandler, A. Polsky, and J. Schiller.

Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle.

Science, 325(5941):756–760, 2009.

M. E. Larkum, J. Wu, S. A. Duverdin, and A. Gidon.

The guide to dendritic spikes of the mammalian cortex in vitro and in vivo.

Neuroscience, 2022.

J. Larson and E. Munkácsy.

Theta-burst ltp.

Brain research, 1621:38–50, 2015.

J. Larson, D. Wong, and G. Lynch.

Patterned stimulation at the theta frequency is optimal for the induction of hippocampal

long-term potentiation.

Brain research, 368(2):347–350, 1986.

J. J. Lawrence.

Cholinergic control of gaba release: emerging parallels between neocortex and hippocampus.

Trends in neurosciences, 31(7):317–327, 2008.

J. J. Lawrence, J. M. Statland, Z. M. Grinspan, and C. J. McBain.

Cell type-specific dependence of muscarinic signalling in mouse hippocampal stratum oriens

interneurones.

The Journal of physiology, 570(3):595–610, 2006.

R. N. Leão, S. Mikulovic, K. E. Leão, H. Munguba, H. Gezelius, A. Enjin, K. Patra, A. Eriksson,

L. M. Loew, A. B. Tort, et al.

Olm interneurons differentially modulate ca3 and entorhinal inputs to hippocampal ca1 neu-

rons.

Nature neuroscience, 15(11):1524–1530, 2012.

Y. LeCun and C. Cortes.

MNIST handwritten digit database.

2010.

URL http://yann.lecun.com/exdb/mnist/ .

D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio.

Difference target propagation.

155

http://yann.lecun.com/exdb/mnist/


BIBLIOGRAPHY

In Joint european conference on machine learning and knowledge discovery in databases, pages

498–515. Springer, 2015.

S. Lee, I. Kruglikov, Z. J. Huang, G. Fishell, and B. Rudy.

A disinhibitory circuit mediates motor integration in the somatosensory cortex.

Nature neuroscience, 16(11):1662–1670, 2013.

S. Leutgeb, J. K. Leutgeb, C. A. Barnes, E. I. Moser, B. L. McNaughton, and M.-B. Moser.

Independent codes for spatial and episodic memory in hippocampal neuronal ensembles.

Science, 309(5734):619–623, 2005.

A. I. Levey, S. M. Edmunds, V. Koliatsos, R. G. Wiley, and C. J. Heilman.

Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and

regulation by cholinergic innervation.

Journal of Neuroscience, 15(5):4077–4092, 1995.

T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman.

Random synaptic feedback weights support error backpropagation for deep learning.

Nature communications, 7(1):1–10, 2016.

T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton.

Backpropagation and the brain.

Nature Reviews Neuroscience, 21(6):335–346, 2020.

J. Y. Lin, P. M. Knutsen, A. Muller, D. Kleinfeld, and R. Y. Tsien.

Reachr: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excita-

tion.

Nature neuroscience, 16(10):1499–1508, 2013.

L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han.

On the variance of the adaptive learning rate and beyond.

arXiv preprint arXiv:1908.03265, 2019.

S. Lohani, A. H. Moberly, H. Benisty, B. Landa, M. Jing, Y. Li, M. J. Higley, and J. A. Cardin.

Dual color mesoscopic imaging reveals spatiotemporally heterogeneous coordination of cholin-

ergic and neocortical activity.

BioRXiv, pages 2020–12, 2020.

A. Losonczy, J. K. Makara, and J. C. Magee.

Compartmentalized dendritic plasticity and input feature storage in neurons.

Nature, 452(7186):436–441, 2008.

156



BIBLIOGRAPHY

M. Lovett-Barron, G. F. Turi, P. Kaifosh, P. H. Lee, F. Bolze, X. H. Sun, J. F. Nicoud, B. V.

Zemelman, S. M. Sternson, and A. Losonczy.

Regulation of neuronal input transformations by tunable dendritic inhibition.

Nature Neuroscience, 15(3), 2012.

ISSN 10976256.

doi: 10.1038/nn.3024.

M. Lovett-Barron, P. Kaifosh, M. A. Kheirbek, N. Danielson, J. D. Zaremba, T. R. Reardon, G. F.

Turi, R. Hen, B. V. Zemelman, and A. Losonczy.

Dendritic inhibition in the hippocampus supports fear learning.

Science, 343(6173):857–863, 2014.

X. Ma, Y. Zhang, L. Wang, N. Li, E. Barkai, X. Zhang, L. Lin, and J. Xu.

The firing of theta state-related septal cholinergic neurons disrupt hippocampal ripple oscilla-

tions via muscarinic receptors.

Journal of Neuroscience, 40(18):3591–3603, 2020.

G. Major, M. E. Larkum, and J. Schiller.

Active properties of neocortical pyramidal neuron dendrites.

Annual review of neuroscience, 36:1–24, 2013.

R. C. Malenka and M. F. Bear.

Ltp and ltd: an embarrassment of riches.

Neuron, 44(1):5–21, 2004.

L. E. Martinetti, K. E. Bonekamp, D. M. Autio, H.-H. Kim, and S. R. Crandall.

Short-term facilitation of long-range corticocortical synapses revealed by selective optical

stimulation.

Cerebral cortex, 32(9):1932–1949, 2022.

C. O. Martinez, V. H. Do, J. Martinez Jr, and B. E. Derrick.

Associative long-term potentiation (ltp) among extrinsic afferents of the hippocampal ca3 region

in vivo.

Brain research, 940(1-2):86–94, 2002.

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’shea, R. Prakash, L. A. Gunaydin,

M. Hyun, L. E. Fenno, V. Gradinaru, et al.

Principles for applying optogenetic tools derived from direct comparative analysis of microbial

opsins.

Nature methods, 9(2):159–172, 2012.

J. McGaughy, R. A. Koene, H. Eichenbaum, and M. E. Hasselmo.

157



BIBLIOGRAPHY

Cholinergic deafferentation of the entorhinal cortex in rats impairs encoding of novel but not

familiar stimuli in a delayed nonmatch-to-sample task.

Journal of Neuroscience, 25(44):10273–10281, 2005.

S. McKenzie, A. J. Frank, N. R. Kinsky, B. Porter, P. D. Rivière, and H. Eichenbaum.

Hippocampal representation of related and opposing memories develop within distinct, hierar-

chically organized neural schemas.

Neuron, 83(1):202–215, 2014.

T. Miconi, A. Rawal, J. Clune, and K. O. Stanley.

Backpropamine: training self-modifying neural networks with differentiable neuromodulated

plasticity, 2020.

S. Mikulovic, C. E. Restrepo, M. M. Hilscher, K. Kullander, and R. N. Leão.

Novel markers for olm interneurons in the hippocampus, 2015.

M. Minsky.

Steps Toward Artificial Intelligence, 1961.

ISSN 00968390.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.

Playing atari with deep reinforcement learning.

arXiv preprint arXiv:1312.5602, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-

miller, A. K. Fidjeland, G. Ostrovski, et al.

Human-level control through deep reinforcement learning.

nature, 518(7540):529–533, 2015.

A. S. Morcos, D. G. T. Barrett, N. C. Rabinowitz, and M. Botvinick.

On the importance of single directions for generalization, 2018.

R. Morris, E. Anderson, G. a. Lynch, and M. Baudry.

Selective impairment of learning and blockade of long-term potentiation by an n-methyl-d-

aspartate receptor antagonist, ap5.

Nature, 319(6056):774–776, 1986.

R. G. Morris, P. Garrud, J. a. Rawlins, and J. O’Keefe.

Place navigation impaired in rats with hippocampal lesions.

Nature, 297(5868):681–683, 1982.

E. I. Moser, K. A. Krobert, M.-B. Moser, and R. G. Morris.

Impaired spatial learning after saturation of long-term potentiation.

Science, 281(5385):2038–2042, 1998.

158



BIBLIOGRAPHY

M.-B. Moser, D. C. Rowland, and E. I. Moser.

Place cells, grid cells, and memory.

Cold Spring Harbor perspectives in biology, 7(2):a021808, 2015.

W. Muñoz and B. Rudy.

Spatiotemporal specificity in cholinergic control of neocortical function.

Current opinion in neurobiology, 26:149–160, 2014.

J. M. Murre.

Learning and categorization in modular neural networks.

Psychology Press, 2014.

S. Naskar, J. Qi, F. Pereira, C. R. Gerfen, and S. Lee.

Cell-type-specific recruitment of gabaergic interneurons in the primary somatosensory cortex

by long-range inputs.

Cell reports, 34(8):108774, 2021.

R. Naud and H. Sprekeler.

Sparse bursts optimize information transmission in a multiplexed neural code.

Proceedings of the National Academy of Sciences, 115(27):E6329–E6338, 2018.

E. L. Newman, K. Gupta, J. R. Climer, C. K. Monaghan, and M. E. Hasselmo.

Cholinergic modulation of cognitive processing: insights drawn from computational models.

Frontiers in behavioral neuroscience, page 24, 2012.

R. A. Nicoll.

A brief history of long-term potentiation.

Neuron, 93(2):281–290, 2017.

J. Obermayer, M. B. Verhoog, A. Luchicchi, and H. D. Mansvelder.

Cholinergic modulation of cortical microcircuits is layer-specific: Evidence from rodent, monkey

and human brain, 2017.

ISSN 16625110.

Y. Ohmura, T. Izumi, T. Yamaguchi, I. Tsutsui-Kimura, T. Yoshida, and M. Yoshioka.

The serotonergic projection from the median raphe nucleus to the ventral hippocampus is

involved in the retrieval of fear memory through the corticotropin-releasing factor type 2

receptor.

Neuropsychopharmacology, 35(6):1271–1278, 2010.

J. O’Keefe.

Place units in the hippocampus of the freely moving rat.

Experimental neurology, 51(1):78–109, 1976.

159



BIBLIOGRAPHY

J. O’Keefe and N. Burgess.

Geometric determinants of the place fields of hippocampal neurons.

Nature, 381(6581):425–428, 1996.

J. O’Keefe and J. Dostrovsky.

The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving

rat.

Brain research, 1971.

J. O’Keefe and L. Nadel.

Précis of o’keefe & nadel’s the hippocampus as a cognitive map.

Behavioral and Brain Sciences, 2(4):487–494, 1979.

J. O’Keefe, N. Burgess, J. G. Donnett, K. J. Jeffery, and E. A. Maguire.

Place cells, navigational accuracy, and the human hippocampus.

Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353

(1373):1333–1340, 1998.

S. V. Ovsepian, R. Anwyl, and M. J. Rowan.

Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1

area through muscarinic receptor activation: In vivo study.

European Journal of Neuroscience, 2004.

ISSN 0953816X.

doi: 10.1111/j.1460-9568.2004.03582.x.

J. Palacios-Filardo and J. R. Mellor.

Neuromodulation of hippocampal long-term synaptic plasticity.

Current opinion in neurobiology, 54:37–43, 2019.

J. Palacios-Filardo, M. Udakis, G. A. Brown, B. G. Tehan, M. S. Congreve, P. J. Nathan, A. J.

Brown, and J. R. Mellor.

Acetylcholine prioritises direct synaptic inputs from entorhinal cortex to ca1 by differential

modulation of feedforward inhibitory circuits.

Nature communications, 12(1):5475, 2021.

K. C. Pang and R. Nocera.

Interactions between 192-igg saporin and intraseptal cholinergic and gabaergic drugs: role of

cholinergic medial septal neurons in spatial working memory.

Behavioral neuroscience, 113(2):265, 1999.

A. Payeur, J. Guerguiev, F. Zenke, B. Richards, and R. Naud.

Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits.

bioRxiv, 2020.

160



BIBLIOGRAPHY

A. Payeur, J. Guerguiev, F. Zenke, B. A. Richards, and R. Naud.

Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits.

Nature neuroscience, 24(7):1010–1019, 2021.

V. Pedrosa and C. Clopath.

The interplay between somatic and dendritic inhibition promotes the emergence and stabiliza-

tion of place fields.

PLoS computational biology, 16(7):e1007955, 2020.

K. A. Pelkey, R. Chittajallu, M. T. Craig, L. Tricoire, J. C. Wester, and C. J. McBain.

Hippocampal gabaergic inhibitory interneurons.

Physiological reviews, 97(4):1619–1747, 2017.

I. Petrof, A. N. Viaene, and S. M. Sherman.

Properties of the primary somatosensory cortex projection to the primary motor cortex in the

mouse.

Journal of neurophysiology, 113(7):2400–2407, 2015.

M. M. Petrovic, J. Nowacki, V. Olivo, K. Tsaneva-Atanasova, A. D. Randall, and J. R. Mellor.

Inhibition of post-synaptic kv7/kcnq/m channels facilitates long-term potentiation in the hip-

pocampus.

PLoS One, 7(2):e30402, 2012.

M. R. Picciotto, M. J. Higley, and Y. S. Mineur.

Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and

behavior.

Neuron, 76(1):116–129, 2012.

F. G. Pike, R. M. Meredith, A. W. Olding, and O. Paulsen.

Postsynaptic bursting is essential for ‘hebbian’induction of associative long-term potentiation

at excitatory synapses in rat hippocampus.

The Journal of physiology, 518(2):571–576, 1999.

L. Pinto, M. J. Goard, D. Estandian, M. Xu, A. C. Kwan, S.-H. Lee, T. C. Harrison, G. Feng, and

Y. Dan.

Fast modulation of visual perception by basal forebrain cholinergic neurons.

Nature neuroscience, 16(12):1857–1863, 2013.

T. Pitler and B. Alger.

Cholinergic excitation of gabaergic interneurons in the rat hippocampal slice.

The Journal of Physiology, 450(1):127–142, 1992.

161



BIBLIOGRAPHY

F. Pouille and M. Scanziani.

Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition.

Science, 293(5532):1159–1163, 2001.

F. Pouille, O. Watkinson, M. Scanziani, and A. J. Trevelyan.

The contribution of synaptic location to inhibitory gain control in pyramidal cells.

Physiological reports, 1(5), 2013.

L. Y. Prince, T. Bacon, R. Humphries, K. Tsaneva-Atanasova, C. Clopath, and J. R. Mellor.

Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in

hippocampal ca3 circuits.

PLoS Computational Biology, 17(10):e1009435, 2021.

D. D. Rasmusson.

The role of acetylcholine in cortical synaptic plasticity.

Behavioural Brain Research, 115(2), 2000.

ISSN 01664328.

doi: 10.1016/S0166-4328(00)00259-X.
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