
Peer reviewed version

Link to published version (if available): 10.2337/db14-1693

Link to publication record in Explore Bristol Research

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Supplemental figure 1. A flow diagram showing the study design; Analysis of GADA assays participating in the DASP2010 and DASP2009 workshops identified systematic differences in the positivity of control samples according to assay type. Some of these differences were ascribed to altered recognition of epitopes in the N-terminal of GAD$_{65}$. Three laboratories using radiobinding assays therefore tested two N-terminally truncated GAD constructs to determine whether they could improve assay performance. Ten laboratories then evaluated the performance of GADA assays using either 35S-labeled full-length GAD$_{65}$(1-585) or N-terminally truncated GAD$_{65}$(96-585) in the IASP2012 GADA substudy.
Supplemental figure 2. Binding of 35S-labeled GAD$_{65}$(1-585) (blue columns) and GAD$_{65}$(96-585) (red columns) with 10 control sera (panels a and c) and 6 patient sera (panels b and d) included in the DASP2010 workshop following competitive displacement with 5 pmol/well (panels a & b) or 0.05 pmol/well (panels c and d) recombinant GAD$_{65}$. Filled column areas represent displaced binding and open areas represent binding that does not compete. Patient sera show good displacement of binding at both concentrations of unlabeled GAD, and many control sera are displaced at 5 pmol/well unlabeled antigen. Most control sera however, including three reactive with epitopes in the middle region of GAD$_{65}$ (N51532, N56575 and N59932), show limited displacement at 0.05 pmol/well GAD$_{65}$ which indicates that these sera contain antibodies that are mainly of low affinity.
Supplemental figure 3. Adjusted sensitivity at 95% specificity (AS95) of RBAs in three selected laboratories using radiolabel generated from three different GAD$_{65}$ plasmid constructs. The N-terminally truncated GAD$_{65}$(96-585) gave the best performance in all laboratories.