Real World Parkinson’s Disease Tremor and Score Prediction using Wearable IMU Sensors

James Pope 1, Catherine Morgan1,2, Alessandro Masullo1, Ian Craddock1, Alan Whone1,2

1University of Bristol, UK,
2Bristol Brain Centre, North Bristol NHS Trust, UK

15 December 2023
PRESENTATION OUTLINE

INTRODUCTION

FEATURE EXTRACTION

TREMOR CLASSIFIER ANALYSIS

TREMOR REGRESSION ANALYSIS

CONCLUSION
BACKGROUND

Pervasive Healthcare Monitoring

Significant laboratory experiments detecting tremors using IMUs for Parkinson’s Disease (PD). Less research for long term monitoring and tremor severity (lack of annotations).

Experiments

Previous project (PD SENSORS) 6 PD patients with 6 control participants. ADL instrumented house for 4 days. Two devices, 30 samples per second, 22M samples per participant.

Contributions

First work to continually predict PD upper limb tremor scores using machine learning in a real-world home environment.
ACCELEROMETER FOURIER ANALYSIS

Frequency-Time, $magnitude = \sqrt{x^2 + y^2 + z^2}$
Frequency-Time Feature Extraction

Feature Extraction

FFT-128, 50% overlap, 30x30 bins, 2.2938 sec/bin, 0.2266 Hz/bin. Model input is frequency-time vector of 30 values.
TREMOR CLASSIFIER

Bandwidth Threshold t

$(\text{band}1 < t)$ and $(\text{band}2 > t)$ and $(\text{band}3 < t)$

$$y_{\text{[tremor, not tremor]}} = f_\theta()$$
TREMOR CLASSIFIER RESULTS

Control vs PD Participants, No annotations

Expect PD higher, detection rate approaches 0 as t increases.

![Detection Rate Comparison](image.png)
TREMOR CLASSIFIER RESULTS

Know Control no positives (TP=0, FN=0)

Compute False Positive Rate $FPR_C = \frac{\#\text{positives}_C}{\#\text{instances}_C} = \frac{FPC}{FPC+TN_C}$

Table: Control Participant FPR, Bandwidth 4-5 Hz, Threshold=0.020

<table>
<thead>
<tr>
<th>Participant</th>
<th>FP</th>
<th>FP+TN</th>
<th>FPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>4</td>
<td>36847</td>
<td>0.000109</td>
</tr>
<tr>
<td>C2</td>
<td>30</td>
<td>33471</td>
<td>0.000896</td>
</tr>
<tr>
<td>C3</td>
<td>12</td>
<td>36907</td>
<td>0.000325</td>
</tr>
<tr>
<td>C4</td>
<td>14</td>
<td>49808</td>
<td>0.000281</td>
</tr>
<tr>
<td>C5</td>
<td>5</td>
<td>37287</td>
<td>0.000134</td>
</tr>
<tr>
<td>C6</td>
<td>9</td>
<td>34058</td>
<td>0.000264</td>
</tr>
</tbody>
</table>
Tremor Severity (Self) Annotations

Annotation Examples

Self assessment every 30 minutes, PD taken off medication.

- Figure: Tremor Score
- Self-Annotations: P4

- Figure: Tremor Score
- Self-Annotations: P1

\[y_{[0.0, 3.0]} = f_\theta(\cdot) \]
TREMOR SEVERITY REGRESSION MODELS

Predict Tremor Severity (input 30 features)

Compared against Polynomial Regressors (Degree 2 and 3).

Table: Shallow Neural Network Architecture

<table>
<thead>
<tr>
<th>Layer (type)</th>
<th>Output Shape</th>
<th># Params</th>
</tr>
</thead>
<tbody>
<tr>
<td>dense (Dense, relu)</td>
<td>(None, 64)</td>
<td>1984</td>
</tr>
<tr>
<td>dense_1 (Dense, relu)</td>
<td>(None, 128)</td>
<td>8320</td>
</tr>
<tr>
<td>dense_2 (Dense, relu)</td>
<td>(None, 256)</td>
<td>33024</td>
</tr>
<tr>
<td>dense_3 (Dense, linear)</td>
<td>(None, 1)</td>
<td>257</td>
</tr>
<tr>
<td>Total params:</td>
<td></td>
<td>43,585</td>
</tr>
<tr>
<td>Trainable params:</td>
<td></td>
<td>43,585</td>
</tr>
<tr>
<td>Non-trainable params:</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
TREMOR SEVERITY RESULTS

Mean Absolute Error (MAE) Comparison

Neural Network superior for 5 of 6 patients versus Poly.

Figure: Tremor Score Model Results by Patient
Example Tremor Severity Predictions
CONCLUSION

Future Work

- Multi-modal HAR with camera data
- Compare time-series approaches (RNNs/LSTMs/etc.)

Contributions

- Tremor detection using traditional threshold classifier
- Tremor severity using machine learning regressors

Take Away - Suitable for disease progression

Real world (uncontrolled, long term, minimal annotations) tremor detection and severity inference approaches.
QUESTIONS