https://doi.org/10.1021/acs.est.5b01190
Source apportionment of PAHs in Central European soils with compound-specific triple isotopes (#13C, #14C & #2H)

Carme Bosch, August Andersson, Martin Kruså, Cecilia Bandh, Ivana Hovorkova, Jana Klánová, Timothy David James Knowles, Richard Pancost, Richard Peter Evershed, and Örjan Gustafsson

Environ. Sci. Technol., Just Accepted Manuscript • Publication Date (Web): 08 Jun 2015

Downloaded from http://pubs.acs.org on June 9, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Source apportionment of PAHs in Central European soils with compound-specific triple isotopes (δ13C, Δ14C & δ2H)

Carme Bosch1, August Andersson1, Martin Krusá1, Cecilia Bandh1, Ivana Hovorková2, Jana Klánová2, Tim Knowles3, Richard D. Pancost3, Richard P. Evershed3 and Örjan Gustafsson1,*

1 Department of Environmental Science and Analytical Chemistry (ACES), and the Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden

2 Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic

3 School of Chemistry, University of Bristol, Bristol BS8 1TS, Avon, England

*Corresponding author:

Örjan Gustafsson

Department of Environmental Science and Analytical Chemistry, Stockholm University

106 91 Stockholm, Sweden

Phone: +46 8 674 7317

Fax: +46 8 674 76 38

E-mail: orjan.gustafsson@aces.su.se
ABSTRACT

This paper reports the first study applying a triple-isotope approach for source apportionment of polycyclic aromatic hydrocarbons (PAHs). The 13C/12C, 14C/12C and 2H/1H isotope ratios of PAHs were determined in forest soils from mountainous areas of the Czech Republic, European Union. Statistical modeling applying a Bayesian Markov Chain Monte Carlo (MCMC) framework to the environmental triple isotope PAH data and an end-member PAH isotope database allowed comprehensive accounting of uncertainties and quantitative constraints on the PAH sources between biomass combustion, liquid fossil fuel combustion, and coal combustion at low and high temperatures. The results suggest that PAHs in this central European region had a clear predominance of coal combustion sources (75 ± 6%; uncertainties represent 1 SD), mainly coal pyrolysis at low temperature (~650 ºC) (61 ± 8%). Combustion of liquid fossil fuels and biomass represented 16 ± 3% and 9 ± 3% of the total PAH burden (ΣPAH$_{14}$), respectively. Although some soils were located close to potential PAH point sources, the source distribution was within a narrow range throughout the region. These observation-based top-down constraints on sources of environmental PAHs provides a reference for both improved bottom-up emission inventories and guidance for efforts to mitigate PAH emissions.

Keywords: Bayesian statistics, polycyclic aromatic hydrocarbons, coal combustion, radiocarbon, stable carbon isotope, stable hydrogen isotope
INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, predominantly anthropogenic, organic molecules of environmental concern due to the mutagenic and carcinogenic properties of some congeners (e.g., benzo[a]pyrene). Therefore, owing to their toxicity, they can pose a threat to humans and the environment. Although PAHs are present in uncombusted petroleum (i.e., petrogenic PAHs), the most important sources of PAHs in the environment are from the incomplete combustion of biomass (e.g., wood) and fossil fuels (e.g., petroleum and coal) (i.e., pyrogenic PAHs). In addition to their own negative effects, PAHs have also been extensively used as molecular tracers of combustion-related airborne particles, which cause numerous human health problems (e.g., lung cancer, respiratory and heart diseases). Among atmospheric contaminants, PAHs account for most (35-82%) of the total mutagenic activity of airborne particles and hence, a reduction of PAH emissions is essential to improve air quality.

Potential sources of airborne PAHs are vehicle exhaust, power generation, residential heating/cooking, abrasion of tires and asphalt surfaces, waste incineration, and industrial processes. A better understanding of PAH sources is essential to mitigate air pollution, but unfortunately the relative contributions of different sources to PAHs are still poorly understood. A variety of techniques to apportion sources of PAHs exist in the literature, based on either molecular or isotopic compositions. For instance, numerous studies have used diagnostic ratios of PAH concentrations, usually isomeric ratios, to infer PAH sources. However, the molecular composition of PAHs is affected by differential atmospheric removal and transformation processes. Furthermore, these isomeric ratios are not source specific and show considerable intrasource variability. The intrinsic carbon isotope composition of an individual PAH molecule is a more conservative source tracer. Although δ13C analysis on individual PAHs is a well-established technique, combining both compound-specific...
stable isotope and (natural abundance) radiocarbon analyses (CSIA and CSRA, respectively) offers a potentially far more powerful tool for quantitatively determining the sources of contaminants in the environment. In the literature, combined compound-specific δ^{13}C and Δ^{14}C measurements have been applied to apportion PAH sources in sediments^{13,14}, soils^{18} and air^{15,19-22}. Introducing more isotope systems would naturally offer further improvements in PAH source constraining capacity. As with any mass-balance approach the number of sources that can be differentiated by N markers is N+1. Thus, the advantage of triple-isotope analysis is that we can resolve four sources, rather than two (one marker) or three (two markers). Sun and collaborators^{23} reported the potential use of the stable hydrogen isotope in combination with carbon isotopes for source apportionment of PAHs, but very few δ^{2}H-PAH measurements in both emissions and ambient samples have been published to date. The only δ^{2}H determinations performed in ambient emissions was limited to naphthalene, the simplest PAH, from emissions of a combustion process in an alumina refinery^{24}. Combining both stable carbon and radiocarbon isotopes, with the hydrogen isotope analyses represents a promising approach for elucidating sources of PAHs.

The aim of the present study is to demonstrate the triple-isotope approach (δ^{13}C, Δ^{14}C, δ^{2}H) for the source apportionment of different PAHs by application to forest soils from the Czech Republic. The Czech Republic is considered one of the most industrially-developed countries among the new member states of the European Union and is used here as a representative for Central Europe. The reason for studying the soil compartment is that PAHs in soil reflect a longer-term input of pollutants compared to airborne concentrations. To the best of our knowledge, by analyzing simultaneously three isotopes (stable carbon and hydrogen, and radiocarbon), this study represents the first compound-specific application for source apportionment using a triple-isotope approach.

EXPERIMENTAL SECTION
Study Area. Ten forest soil samples from mountainous sites within Czech Republic were collected during September 2009 (Figure 1, Table 1). These mountain soils, which have been repeatedly studied since 199525, mainly reflect atmospheric transport and deposition. Three samples (#1, #2 and #3) were collected in the north-western part of the country. This border region shared by Germany, Poland and Czech Republic and known as the “black triangle”, is characterized by extremely high levels of pollutant emissions26. Sample #1 was taken from the Krušné Mts., relatively close to the town Litvínov, site of the largest oil refinery in the Czech Republic. Three more samples (#4, #5 and #6) were collected in the Moravian Region (NE Czech Republic). Two of them (#5 and #6) in the Beskydy Mts., located at the border with Slovakia and adjacent to the industrial centers of Valasske Mezirici and Ostrava, which contain a coal tar refinery (DEZA Corporation), a black carbon production plant (CABOT CS) and seven hard coal mines (OKD Corp.). Sample #7 was collected near the observatory of Košetice, a regional background station for international and national air monitoring programmes. Samples #8, #9 and #10 were forest soils from the Bohemian Region (SW Czech Republic), the Czech Bavarian forest. Spruce trees were the main vegetation type found in all sampling sites. Details on soil sampling are described in the supplementary material.

Quantification of PAHs. Analyses of PAHs were performed at the Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic. Briefly, an aliquot of ca. 10 g dry soil was extracted using automated warm Soxhlet extraction with dichloromethane (DCM). The extract was cleaned-up using activated silica flash column chromatography and analytes eluted with DCM. The eluate was concentrated using a stream of nitrogen in a concentrator unit, and transferred into a mini vial. Before injection, an internal standard of terphenyl was added. Samples were analyzed by a 6890N GC (Agilent, USA) capillary gas chromatography coupled to a mass spectrometer 5973N MS (Agilent, USA).
using electronic ionization (70 eV). PAHs were analyzed by selective ion recording (SIR). Further details on sample extraction, clean-up, instrumental analysis and quality control procedures are included in the supplementary material.

Extraction of PAHs for Isotope Analysis. Sample extraction for the isotope analysis was performed at RECETOX, Brno, Czech Republic. Based on the concentrations found in the individual soil samples in the previous step, the soil sample size needed to provide a sufficient quantity of selected PAHs was determined. It varied between 500 and 1500 g of soil among the top soil samples. Soxhlet-extracted samples with DCM were pre-cleaned using large volume silica gel columns and concentrated. As the mountain forest soils contain large amounts of organic material, additional clean-up was needed. Gel-permeation chromatography was applied to remove high molecular weight compounds from the samples. Samples were concentrated to a final volume of 1 ml for further isotope analyses. Further information on these clean-up procedures is provided in the supplementary material. It has been showed and reported that these purification procedures do not affect the original molecular isotopic signatures. Results from studies on isotope fractionation during purification procedures are included in the supplementary material.

Isolation of PAHs for Radiocarbon Analysis. Isolation of PAHs from soil extracts was carried out at Stockholm University as previously described. Extracts were repeatedly injected onto a preparative capillary gas chromatography (pcGC) system programmed to trap selected PAHs. The pcGC system consisted of a gas chromatograph coupled to a flame ionization detector 6890N GC (Agilent, Palo Alto, USA) and an autoinjector (7683A, Agilent) integrated with a Gerstel cooled injection system (CIS), a zero-dead volume effluent splitter and a Gerstel preparative trapping device. Since the abundance of the target PAH compounds present in these soil samples was quite low relative to the requirements for measurements (~20-100 µg), individual PAHs were pooled and trapped as follows: 1.
Phenanthrene (PHEN) + anthracene (ANTH); 2: fluoranthene (FLU) + pyrene (PYR); 3: benz[a]anthracene (BaA) + triphenylene (TP) + chrysene (CHRY); 4: benzo[b]fluoranthene (BbF) + benzo[j]fluoranthene (BjF) + benzo[k]fluoranthene (BkF); 5: benzo[e]pyrene (BeP) + benzo[a]pyrene (BaP); 6: indeno[1,2,3-cd]pyrene (IcdP) + benzo[ghi]perylene (BghiP).

Additional details about chromatographic conditions and trapping procedures are included in the Supporting Information.

Analysis of Stable Carbon and Hydrogen Isotopes. Δ₁³C and Δ²H analyses of soil extracts were performed at The University of Bristol, UK. The Δ₁³C and Δ²H isotope ratio determinations were performed by gas chromatography-isotope ratio mass spectrometry (GC-IRMS). Δ₁³C analyses were performed using a ThermoQuest Finnigan DeltaPlusXL IRMS coupled to an Agilent 6890 GC via a ThermoQuest Finnigan GC Combustion III interface. Δ²H determinations were performed using a Thermo DeltaVPlus IRMS coupled to a Trace GC via a GC Isolink and ConfloIV interface. For both Δ₁³C and Δ²H analyses, chromatographic peaks were integrated in groups using the same ‘chromatographic windows’ described above corresponding to those compounds which were isolated by pcGC, so as to accurately represent the content of the samples analyzed by accelerator mass spectrometry (AMS). The reported isotopic results, expressed in the per mil deviation (‰) of the isotope ratio from the standards Peedee belemnite (PDB) and Vienna Standard Mean Ocean Water (VSMOW) for C and H, respectively, represent the arithmetic means of triplicate analyses. Further information on the instrumental analysis and quality procedures is provided in the supplementary material.

Analysis of Radiocarbon. The extracts for ¹⁴C analysis were shipped to the US National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility (Woods Hole, MA, USA). The pcGC isolates were first purified, then combusted at 850 ºC for its conversion to carbon dioxide and finally reduced to graphite. Targets of graphite were analyzed for ¹⁴C by AMS according to standard procedures. All ¹⁴C determinations are expressed as the per...
mil (‰) deviation from NBS oxalic acid I. Further details about the 14C analysis are included in the Supplementary Information.

Bayesian Markov Chain Monte Carlo method for source apportionment. The three-dimensional isotope signatures of the different PAHs were used in an isotopic mass balance source apportionment model to differentiate four main sources: biomass, liquid fossil (e.g., petroleum and oil), low temperature (~650 °C) coal combustion and high temperature (~900 °C) coal combustion, largely following our earlier dual-isotope (three source) approaches15,33,34. The current study’s four sources were selected based on two criteria: 1) they encompass the majority of PAHs emitted in this region35, 2) they are differentiable by means of δ^{13}C, Δ^{14}C and δ^{2}H isotopic signatures. In particular, we note that PAHs emitted from high temperature coal combustion are more depleted in 13C while more enriched in 2H, compared to coal combustion at lower temperatures17.

The source-specific isotope values (end members) were collected from the literature, and are summarized in Table S1. These end members are associated with significant variability and uncertainties, especially in the δ^{2}H dimension. Such variability has recently been shown to affect not only the precision of the source apportionment calculations, but also the estimated central values (e.g., mean and median) of the source fractions33. To account for this variability a Bayesian Markov Chain Monte Carlo (MCMC) approach was implemented36, in which the end member distributions are modelled as normal distributions with mean and standard deviation defined by the literature values. The source-specific isotope values used in the present study are listed in Table 2 and its calculation is detailed in the Supporting Information. The MCMC approach effectively samples the 4-dimensional fractional source space while satisfying the mass-balance criterion and accounting for the end member variability. The result of the Bayesian approach is a probability density function (pdf) of the relative source contribution for each source (Figure 3A). From this pdf the statistical
parameters of interest (e.g., mean, median, standard deviation or confidence intervals) may be computed. The MCMC computations were run using an in-house written MATLAB version 2014a (The MathWorks, Natick, MA, USA) script, with 200,000 iterations, a burn-in (initial search phase) of 10,000 and a data thinning of 10. The details of the Bayesian calculation is published elsewhere and the MATLAB script is presented in the present paper’s Supporting Information.

RESULTS AND DISCUSSION

PAH Concentrations and Composition. The PAHs input to mountain soils is mainly through dry or wet deposition of aerosol particles or residues of vegetative litter, and by processes of air-soil partitioning. Forest soils are usually rich in organic matter, which favors the accumulation of PAHs. The content of PAHs (sum of 14 PAHs) in the central European forest soils ranged from 0.53 to 9.1 µg·g⁻¹ (4.3 ± 2.8 µg·g⁻¹, µ±σ)(Table 1). These concentrations were in agreement with previously reported concentrations at the same sampling sites (1.7-8.2 µg·g⁻¹). As was expected from their proximity to emission sources, the highest PAH loadings were observed at both northwestern (7.4 and 5.5 µg·g⁻¹ for #1 and #2 respectively) and eastern border regions (9.1 and 5.9 µg·g⁻¹ for #5 and #6, respectively). The lowest concentrations were found at Mt. Sumava, close to the border region shared with Germany-Czech Republic-Austria (#9, 0.53 µg·g⁻¹) and at the regional site of Kosetice (#7, 0.87 µg·g⁻¹). All samples, except for #9, had a PAH content slightly higher than reported for other remote/forest sites in Europe, such as in the Pyrenees (0.77 µg·g⁻¹), Alps (1.3 ± 0.6 µg·g⁻¹) and Tatras (1.6 ± 0.4 µg·g⁻¹). However, these border mountain soils may be also affected by long range transport contamination coming from Poland, Germany, Slovakia or Austria besides Czech Republic.

9
Relative PAH concentrations (Diagnostic Ratios, DR) are typically used for conventional semiquantitative source apportionment through the comparison of the ambient ratios with specific PAH source signatures. However, PAHs are affected by different atmospheric processes and therefore the relative proportions of the PAH species are not conserved between the emission source and the receptor site\(^\text{10}\). It is known that ANTH, BaA and BaP are photochemically less stable in the atmosphere than PHEN, CHRY and BeP\(^\text{43,44}\). In the present study, DRs were used to assess the extent of photochemical degradation of the studied samples. Microbial degradation of PAHs that may change their isomer composition in background surface soils is deemed unlikely to have a substantial effect on the source apportionment results, considering the limited degradation observed in soils with high content of organic matter affected by diffuse PAH pollution\(^\text{45}\). The BaA/(BaA+CHRY) and BaP/(BeP+BaP) ratios ranged from 0.09 to 0.26 and from 0.13 to 0.44, respectively, and correlate positively \((R^2 = 0.90)\) (Table S2). Samples #1, #6 and #7 showed the largest observed DRs \((\text{BaA/(BaP+BeP)}>0.40 \text{ and BaA/(BaA+CHRY)>0.26, Table S2})\), indicating that PAHs had been transported the shortest distance from the source. In contrast sample #10 presented the lowest ratios, thus the largest distance to the source.

Carbon Isotope Composition of PAHs in Soils. Compound-specific stable carbon isotope is used to apportion sources. Polycyclic aromatic hydrocarbon (PAH) extracts from all samples were analyzed for their stable carbon isotope composition \((\delta^{13}\text{C})\). The \(\delta^{13}\text{C}\) values ranged between -25.3‰ and -23.0‰ \((-24.0 \pm 0.1\%\text{, }\mu\pm\sigma)\) (Table 1 and Table S3). No substantial variation was observed among sampling sites, which suggests a relatively homogenous source. However, there was a consistent \(\delta^{13}\text{C}\) variability between the different PAH compounds, with the PAH group BaA + TP + CHRY \((\text{m/z 228})\) having the highest \(\delta^{13}\text{C}\) values \((-23.4 \pm 0.3\%\)\) and the PAH group IcdP+BghiP \((\text{m/z 276})\) having the lowest \(\delta^{13}\text{C}\)
values (-24.6 ± 0.3‰) (Figure 2A). This suggests that generation processes differed for the
different PAH molecules. During polyaromatization reactions, ^{13}C is preferentially lost during
C=C bond formation leading to a relative depletion in $\delta^{13}\text{C}$ values46. However, no positive
correlation was observed between molecular weight and $\delta^{13}\text{C}$ values. Overall the $\delta^{13}\text{C}$ values
of the PAHs in the present study were comparable to those observed in aerosols from Chinese
cities47 (-26.3 to -24.4‰ in Chongqing and Hangzhou and -25.5 to -23.5‰ in Beijing) and
soils from a domestic coal-burning village near Glasgow, UK48 (-25‰). $\delta^{13}\text{C}$ were, however,
generally more enriched in ^{13}C relative to ambient samples from other European countries
such as Sweden15 (-28.9‰), Croatia20 (-29.2‰) or Greece20 (-29.0‰) and from archipelago
sediments in Stockholm, Sweden14 (-27.0 to -24.8‰).

The radiocarbon content was determined for only those samples with sufficient analyte
concentrations (n = 7 sites). The determined $\Delta^{14}\text{C}$ values ranged between -960‰ and -768‰
(-892 ± 37‰) (Table 1 and Table S4). The radiocarbon composition exhibited very low
variability between different sampling sites and PAH compounds (Figure 2B), suggesting a
relatively homogenous source, which is consistent with the ^{13}C data. These highly depleted
^{14}C signatures confirm that PAHs in these Czech forest soils are of a mainly fossil fuel origin.

Although the soil sample from Kosetice (#7) had slightly more modern carbon (less negative
signal) (-819‰, Table 1), those samples with the highest concentrations of PAHs had $\Delta^{14}\text{C}$
values reflecting the largest fossil fuel contribution (#1, #2, #5 and #6 with $\Delta^{14}\text{C}$ ~ -942 and -
897‰, Table 1). Whereas the Czech border sites are mostly affected by long-range transport
of pollutants from industrial regions, more local impact is expected in Kosetice (#7). This
regional site belongs to an agricultural region with several small villages within 5-10 km in all
directions where wood is usually burned for domestic heating. PAHs in Czech Republic had
generally very high fossil contributions compared to PAHs from many other worldwide sites,
e.g., rural and background sites in Sweden15,20 (-138 to +58‰ and -388 to -381‰,
respectively), western Balkans22 (-568 to -288‰) and even a residential area in Tokyo19 (-514 to -787‰). However, the Δ^{14}C-PAH values were similar to airborne PAHs from Croatia20 (-888‰), Greece20 (-914‰), Alabama, US21 (-980‰) and sediments from Stockholm, Sweden14 (-891 to -709‰).

Hydrogen Isotope Composition of PAHs in Soils. This is the first study complementing the earlier reported dual compound-specific carbon isotope system of PAHs14,15,22 with hydrogen stable isotopic analyses. The PAH extracts exhibited δ^2H values between -263‰ and -53‰ (-129 ± 44‰) (Table 1 and Table S5). In contrast to both carbon isotope systems (δ^{13}C and Δ^{14}C), the deuterium system showed a higher variability among sampling sites. The western border soil (#1) had a relatively much more 2H-depleted value (-226‰) compared to #5 (δ^2H ~ 135‰) or the remaining studied soils (#2, #6, #7, #8 and #10, δ^2H ~ -109‰). Other studies have suggested that deuterium enrichment takes place simultaneously with 13C depletion during PAH generation23. However, in the present study no correlation was found between PAH δ^{13}C and δ^2H values. Furthermore, no significant variability was observed between the δ^2H values and the different PAHs (Figure 2A). Therefore, these data suggest that the relatively more 2H-depleted signature at site #1 reveals a PAH source different from the other soils. To date, there have been no other studies on δ^2H values of PAHs in modern soils.

Monte Carlo Simulations for Source Apportionment. The compound-specific triple-isotope approach allowed elucidation of up to four different sources. In the present study three isotope signatures were analyzed, δ^{13}C, Δ^{14}C and δ^2H, for PAHs in forest soils from the Czech Republic. The stable carbon isotope (δ^{13}C) is a priori informative for source apportionment but it also has been shown that atmospheric photochemical processes can lead to 13C shifts49,50. However, O’Malley and collaborators evaluated the effects of evaporation, photodecomposition and microbial degradation on the δ^{13}C values of individual PAHs and no significant alterations were observed12. Furthermore, in the present study, no correlation was
found between the diagnostic ratios for photochemical degradation (BaA to BaA + CHRY and BaP to BaP + BeP) and their respective $\delta^{13}C$ values (Figure S1). Based on this analysis, carbon isotopic fractionation of PAHs during atmospheric transport was therefore likely insignificant and $\delta^{13}C$ values were used to apportion PAH sources.

The natural abundance of radiocarbon ($\Delta^{14}C$) was utilized to differentiate between fossil fuel (-1000‰) versus combustion of contemporary sources (+137.5 ± 21.9‰) for PAHs. Stable carbon isotope ratio determinations of individual PAHs showed different $\delta^{13}C$ values for the combustion of C$_3$ terrestrial vegetation$^{51-53}$ (e.g., wood, ~ -28.7‰) and liquid fossil fuels23,52,54 (e.g., gasoline, ~ -24.1‰, diesel, ~ -26.5‰). Regarding the individual PAHs derived from coal combustion sources, $\delta^{13}C$ values have been shown to vary over a wide range by ca. 8‰$^{17,23,52,55-57}$ (-31 to -23‰) and overlapping with C$_3$ wood and liquid fossil fuel sources. The $\delta^{13}C$ values of coal-derived PAHs are normally dictated by both the isotopic signature of the parent fuels and the temperature of combustion. In general, PAHs derived from carbonization processes at low temperatures (~650 °C) have isotopic values similar to those of the parent coals$^{17,52,58-60}$ (-25.4 to -21‰), because they are mainly primary devolatilisation products from mild combustion processes17. Instead, $\delta^{13}C$ values of PAHs became lighter when the temperature of carbonization is higher (~900 °C) because they are then products of condensation reactions, which result in a kinetic isotope effect with ^{12}C-^{12}C bonds forming more easily than ^{13}C-^{12}C bonds17,23,52,55 (-29.4 to -24.2‰).

In contrast to their $\delta^{13}C$ values, the $\delta^{2}H$ values of PAHs generated by coal, biomass and liquid fuel pyrolysis differ substantially (e.g., liquid fossil fuels23,53, -76 to -47‰; C$_3$ wood53 ~ -94‰; high coal pyrolysis23, -81 to -65‰; bulk coals58,60, -170 to -87‰; and bulk peat$^{61-63}$, -240 to -79‰). However, only few source-specific $\delta^{2}H$ values have been reported in the scientific literature to date. Therefore, in the future there is the need to better characterize the hydrogen isotopic signature of primary sources. Although $\delta^{2}H$ literature values are currently
limited, the simultaneous use of $\delta^{13}C$, $\Delta^{14}C$ and δ^2H provide a greater differentiation and allowed quantitatively to apportion the relative contribution of four different combustion source classes to the PAH. Source-specific $\delta^{13}C$ and δ^2H values reported in literature are summarized in the Supporting Information (Table S1).

The choice of sources to perform the Bayesian-based method (see Experimental Section) was based on existing bottom-up emission inventories and past PAH fingerprinting studies indicating the major sources of PAHs in the Czech Republic$^{35,64-66}$. By combining the isotopic signatures of sample data and primary PAH sources in two-dimensional plots (Figures 2A+B), the following four sources were chosen: combustion of liquid fuels, C_3 wood combustion, as well as coal combustion at low (\sim650 °C) and high (\sim900 °C) temperatures. The isotopic signatures used for the primary PAHs sources are detailed in Table 2.

Natural peat fires in the border mountainous Czech areas were a priori a potential source of PAHs in Czech Republic. However, the present PAH-isotope data did not support this hypothesis (Figure 2A+B). Furthermore, the soil from the northwestern part of the country (#1) had a hydrogen stable-isotope composition which was more depleted in 2H than the other samples and moreover, did not match any of the primary sources explored for δ^2H values of PAHs in the literature to date (Figure 2A+B). Shifts in the δ^2H values of organic molecules have been observed as a result of many degradation processes with potentially quite large enrichment factors67. However, such deuterium fractionation is generally accompanied with a shift also in the $\delta^{13}C$ values, which was not observed in the case of sample #1. It is worth noting here that the lack of reported source-specific data for the hydrogen isotope composition makes it difficult to draw other interpretations of sample #1. As a result, sample #1 was not considered for the Bayesian-based data analysis due to the inability to associate its δ^2H values to either a primary source or a degradation process. Nevertheless, the results of the radiocarbon analyses of site #1 enabled the calculation of the relative contributions of the
combined fossil fuel sources versus contemporary biomass using a simple isotopic mass balance equation as described elsewhere14 (Table 3 and Figure 3B).

The compound-specific isotope ratios for every site were combined with literature values for source end members in a mass balance-based source-apportionment scheme. The variability of the isotopic source signatures were accounted for within a Bayesian Markov Chain Monte Carlo framework. Four probability density functions, one for every source, were obtained for every group of PAHs and site (#2, #5, #6, #7, #8 and #10), as is shown at Figure 3A for the group BbF+BjF+BkF and site #7. All samples showed a similar source pattern with the highest contribution coming from the coal combustion at low temperature, ranging from 53 to 75% (61±8%, Table 3 and Figure 3B). Practically equal contributions from liquid fossil fuels and coal combustion at high temperature were also observed for all samples (16 ± 3% and 13 ± 2%, respectively). Biomass combustion was the least important source of PAHs in Czech Republic soils, with contributions ranging between 5 to 16% (9 ± 3%). Only small differences were observed between samples, but those soils with the highest PAH concentrations from the northwestern (#1 and #2) and the eastern border (#5 and #6) regions had slightly higher coal-related contributions (Figure 3B, high + low temperatures coal combustion ~ 74-85% and biomass ~ < 9%). Correspondingly, soils from Kosetice and the southern region had slightly higher biomass contributions (#7, #8 and #10, biomass ~ 10-16% and coal ~ 66-74%). Although some soil sites were placed relatively close to potential PAH point sources and showed higher PAH concentrations, the triple-isotope-based apportionment demonstrated that the contribution from the four different source classes were rather homogeneous for mountainous forest soils across the country. The low observed biomass contributions (9 ± 3%) in Czech background soils are similar to those observed in South Europe, such as in background air from Croatia and Greece20 (9% and 7%, respectively), but lower than those in North Europe (i.e. Sweden20, 50%)
Coal combustion at low and high temperatures may be associated to domestic and industrial emissions, respectively. Additionally, combustion of fuels at low temperature has the potential to result in higher PAH emissions than high-temperature combustion sources (i.e. the lower is the combustion temperature, higher are the PAHs emission factors\(^4\)). These high emission factors might explain the high contribution coming from low-temperature coal combustion sources in Czech Republic. However, the household coal usage represents only the 3% of the total coal production in the Czech Republic\(^68\). Furthermore, the residential coal burning represents one of the most toxic sources of PAHs due to both high emission rates and proximity to population\(^35\). Emission inventories show a reduction of PAH emissions in recent years in almost all European countries, being the residential sector the most important source of PAHs nowadays\(^35\). In 2007, residential emissions (including fossil and non-fossil sources) accounted for the 47.5% of the total PAH emissions in Europe\(^35\). The present study shows like the residential sector in Czech Republic, in particular the residential coal burning, may be more important than the European average. Taken together, PAHs in Czech soils are heavily influenced by coal combustion practices (75%), mainly coming from household emissions (61%).

The present study demonstrates firstly that triple isotope characterization of PAHs is possible and secondly, that this information is useful for source characterization. However, the existing literature on isotope characterization of PAHs is currently limited. We think and hope that the current contribution may encourage researchers to expand the existing source database. Such work should seek to both improve the statistics for the currently investigated sources, but also expand the number of source categories in terms of their geographical prevalence.
REFERENCES

(2) Gustafsson, Ö.; Buesseler, K. O.; Gschwend, P. M. Using 234Th disequilibria to estimate the vertical removal rates of polycyclic aromatic hydrocarbons from the surface ocean. Mar. Chem. 1997, 57, 11-23.

(16) McRae, C.; Snape, C. E.; Sun, C.; Fabbri, D.; Tartari, D.; Trombini, C.; Fallick, A. E. Use of compound-specific stable isotope analysis to source anthropogenic natural gas-derived...

(68) OTE, a.s. Czech electricity and gas market operator. Website; http://www.ote-cr.cz/
ACKNOWLEDGMENTS

This study received funding from the European Community’s Seventh Framework Programme (FP7 2009-2012) isoSoil project, under Grant agreement No. 212781. CB acknowledges additional financial support from EU Marie Curie Programme (PIEF-GA-2011-198507). ÖG acknowledges financial support from the Knut and Alice Wallenberg Foundation. This study also benefitted from the research environments provided by the Bolin Centre for Climate Research and the Delta Facility (a core facility for compound-specific isotope analysis), both at the Stockholm University and School of Natural Sciences, and the RECETOX Research Infrastructure (supported by the projects of the Czech Ministry of Education LM2011028 and LO1214).

SUPPORTING INFORMATION AVAILABLE

Table S1. Compilation of literature values for isotopic signatures of primary sources

Table S2. Individual PAH concentrations (μg·g$^{-1}$ dry weight) in forest soils from Czech Republic

Table S3. δ^{13}C values of PAHs in forest soils from Czech Republic

Table S4. Δ^{14}C values of PAHs in forest soils from Czech Republic

Table S5. δ^2H values of PAHs in forest soils from Czech Republic

Figure S1. Relation between the ratio BaA to BaA + CHRY and the δ^{13}C values of the “chromatographic window”: BaA + CHRY (Panel A) and the ratio BaP to BaP + BeP and the δ^{13}C values of the “chromatographic window”: BaP + BeP (Panel B)

Figure S2. GC/MS chromatograms depicting the different PAH traps from Sample #1 isolated by pcGC
Supplemental Text S1. Experimental section

Supplemental Text S2. Calculation of the isotopic signatures (end members) for the primary PAHs sources

Supplemental Text S3. MATLAB script for the Bayesian calculation

This information is available free of charge via the Internet at http://pubs.acs.org.
Table 1. PAH concentrations and average carbon (Δ^{14}C and δ^{13}C) and hydrogen (δ^{2}H) values of PAHs in forest soils

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Site</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Altitude (m a.s.l.)</th>
<th>\sumPAH<sub>b</sub> (µg·g<sup>-1</sup> d.w.)</th>
<th>δ^{2}H (‰)</th>
<th>δ^{13}C (‰)</th>
<th>Δ^{14}C (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Krušné hory-Červená jáma</td>
<td>13° 27.702'</td>
<td>50° 33.804'</td>
<td>840</td>
<td>7.35 ± 4.9</td>
<td>-225.8 ± 4.9</td>
<td>-24.18 ± 0.10</td>
<td>-911 ± 87</td>
</tr>
<tr>
<td>#2</td>
<td>Lužické hory-Jedlová</td>
<td>14° 33.035'</td>
<td>50° 51.939'</td>
<td>520</td>
<td>5.52 ± 3.4</td>
<td>-116.6 ± 3.4</td>
<td>-24.04 ± 0.17</td>
<td>-897 ± 19</td>
</tr>
<tr>
<td>#3</td>
<td>Krkonoše-Pašerácký chodník</td>
<td>15° 45.933'</td>
<td>50° 44.416'</td>
<td>1320</td>
<td>2.61 ± 2.4</td>
<td>-24.13 ± 0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>Jeseníky-Jelení loučky</td>
<td>17° 15.544'</td>
<td>50° 8.867'</td>
<td>1120</td>
<td>2.49 ± 2.2</td>
<td>-23.81 ± 0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>Beskydy-Kykulka</td>
<td>18° 26.447'</td>
<td>49° 34.523'</td>
<td>930</td>
<td>9.11 ± 5.9</td>
<td>-135.5 ± 23.9</td>
<td>-23.94 ± 0.09</td>
<td>-942 ± 24</td>
</tr>
<tr>
<td>#6</td>
<td>Javorníky-Kohútka</td>
<td>18° 12.756'</td>
<td>49° 17.713'</td>
<td>811</td>
<td>5.88 ± 3.1</td>
<td>-108.6 ± 3.1</td>
<td>-24.04 ± 0.14</td>
<td>-905 ± 18</td>
</tr>
<tr>
<td>#7</td>
<td>Košetice</td>
<td>15° 05.476'</td>
<td>49° 34.231'</td>
<td>495</td>
<td>0.872 ± 0.5</td>
<td>-99.3 ± 10.6</td>
<td>-24.13 ± 0.17</td>
<td>-819 ± 14</td>
</tr>
<tr>
<td>#8</td>
<td>Novohradské hory-Vysoká</td>
<td>14° 44.141'</td>
<td>48° 42.808'</td>
<td>971</td>
<td>3.81 ± 2.3</td>
<td>-112.8 ± 3.1</td>
<td>-24.05 ± 0.26</td>
<td>-884 ± 17</td>
</tr>
<tr>
<td>#9</td>
<td>Šumava-Boubín</td>
<td>13° 49.018'</td>
<td>49° 0.026'</td>
<td>1120</td>
<td>0.532 ± 0.3</td>
<td>-107.0 ± 3.8</td>
<td>-24.19 ± 0.22</td>
<td>-886 ± 14</td>
</tr>
<tr>
<td>#10</td>
<td>Český les-Čerchov</td>
<td>12° 46.813'</td>
<td>49° 22.946'</td>
<td>985</td>
<td>4.80 ± 2.5</td>
<td>-24.05 ± 0.12</td>
<td>-892 ± 37</td>
<td></td>
</tr>
</tbody>
</table>

Average±stdev: 4.30 ± 2.77, -129.4 ± 44, -24.05 ± 0.12, -892 ± 37

^a above sea level

^c dry weight
Table 2. Isotopic signatures (end members) for the primary PAHs sources

<table>
<thead>
<tr>
<th>Primary Source/ Isotope (mean±stddev, ‰)</th>
<th>δ(^{13})C</th>
<th>δ(^{2})H</th>
<th>∆(^{14})C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3 plant combustion(^b)</td>
<td>-28.7 ± 1.4</td>
<td>-94 ± 3</td>
<td>+137.5 ± 21.9</td>
</tr>
<tr>
<td>Liquid fossil fuel combustion(^c)</td>
<td>-25.3 ± 1.6</td>
<td>-62 ± 7.3</td>
<td>-1000 ± 0</td>
</tr>
<tr>
<td>Coal pyrolysis at low temperature (¬650 °C)(^d)</td>
<td>-23.2 ± 1.1</td>
<td>-129 ± 20.8</td>
<td>-1000 ± 0</td>
</tr>
<tr>
<td>Coal pyrolysis at high temperature (¬900 °C)(^e)</td>
<td>-26.8 ± 1.3</td>
<td>-73.2 ± 4.0</td>
<td>-1000 ± 0</td>
</tr>
</tbody>
</table>

\(^a\) See Table S1 and Text S2 with a literature compilation of isotopic signatures and calculation of the primary PAH sources end members, respectively

\(^b\) δ\(^{13}\)C and δ\(^{2}\)H values for biomass were calculated as the average between PAH-specific and bulk signatures found in the literature. Three and one literature sources were used for δ\(^{13}\)C and δ\(^{2}\)H, respectively. ∆\(^{14}\)C for biomass was calculated assuming equal contributions of fresh biomass (+50‰) and wood (+225‰).

\(^c\) δ\(^{13}\)C and δ\(^{2}\)H values were calculated assuming equal contributions from diesel and gasoline sources. Five and two literature sources were used for δ\(^{13}\)C and δ\(^{2}\)H, respectively.

\(^d\) δ\(^{2}\)H and δ\(^{13}\)C values reported for bulk coal were used as δ\(^{2}\)H-PAH and δ\(^{13}\)C-PAH signatures for coal combustion at low temperature assuming that the PAHs derived from carbonization processes at low temperatures have isotopic values similar to those of the parent coals. Seven and three literature sources were used for δ\(^{13}\)C and δ\(^{2}\)H, respectively.

\(^e\) Four and one literature sources were used for δ\(^{13}\)C and δ\(^{2}\)H, respectively.
Table 3. Source contributions of liquid fossil fuel combustion, coal combustion at low and high temperature and biomass combustion for the ΣPAH$_{14}$ in forest soils based on a four-source Bayesian Markov Chain Monte Carlo statistical mass-balance model (mean ± stdev)

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>$f_{\text{liquid fossil fuel}}$ (%)</th>
<th>$f_{\text{low T coal}}$ (%)</th>
<th>$f_{\text{high T coal}}$ (%)</th>
<th>f_{biomass} (%)</th>
<th>f_{coal} ($f_{\text{low T coal}} + f_{\text{high T coal}}$) (%)</th>
<th>f_{fossil} ($f_{\text{low T coal}} + f_{\text{high T coal}} + f_{\text{liquid fossil fuel}}$) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>15.4 ± 10.3</td>
<td>62.3 ± 10.4</td>
<td>13.2 ± 9.6</td>
<td>9.1 ± 0.2</td>
<td>75.6 ± 10.3</td>
<td>90.9 ± 17.5</td>
</tr>
<tr>
<td>#2</td>
<td>9.6 ± 7.3</td>
<td>75.2 ± 8.8</td>
<td>10.1 ± 7.6</td>
<td>5.1 ± 0.1</td>
<td>85.3 ± 7.3</td>
<td>94.9 ± 13.8</td>
</tr>
<tr>
<td>#5</td>
<td>17.4 ± 11.6</td>
<td>59.7 ± 11.2</td>
<td>14.5 ± 11.0</td>
<td>8.4 ± 0.2</td>
<td>74.2 ± 11.6</td>
<td>91.6 ± 19.5</td>
</tr>
<tr>
<td>#6</td>
<td>17.9 ± 12.3</td>
<td>53.1 ± 12.1</td>
<td>13.2 ± 10.6</td>
<td>15.9 ± 0.3</td>
<td>66.2 ± 12.5</td>
<td>84.1 ± 20.4</td>
</tr>
<tr>
<td>#7</td>
<td>15.3 ± 10.6</td>
<td>61.3 ± 10.5</td>
<td>13.2 ± 9.6</td>
<td>10.2 ± 0.2</td>
<td>74.5 ± 10.6</td>
<td>89.8 ± 17.7</td>
</tr>
<tr>
<td>#8</td>
<td>17.7 ± 11.9</td>
<td>56.7 ± 11.4</td>
<td>15.6 ± 11.0</td>
<td>10.0 ± 0.2</td>
<td>72.3 ± 11.9</td>
<td>90.0 ± 19.8</td>
</tr>
<tr>
<td>#10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>15.6 ± 3.1</td>
<td>61.4 ± 7.6</td>
<td>13.3 ± 1.8</td>
<td>9.5 ± 3.3</td>
<td>74.7 ± 6.2</td>
<td>90.2 ± 3.5</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Figure 1. Map depicting bottom-up emission inventory of total 16 PAHs in 2007 (grid 0.1° x 0.1°). The sampling sites are indicated with white triangles.

Figure 2. Two-dimensional dual-isotope presentation of PAH in forest soils from sites #1 (circles), #5 (diamonds), #6 (triangles) and average of #2, #7, #8 and #10 (squares). Panel (A): $\delta^{2}\text{H} \text{ versus } \delta^{13}\text{C}$, where symbol colors are based on PAH molecular weight: m/z 178 (dark blue), m/z 202 (light blue), m/z 228 (green), m/z 252 (yellow and orange), m/z 276 (red); Panel (B): $\delta^{2}\text{H} \text{ versus } \Delta^{14}\text{C}$, where symbol colors are based on PAH concentrations. Isotopic signatures of primary sources of PAH are shown: biomass combustion (green), peat (light grey), liquid fossil fuel combustion (black), high temperature coal combustion (“high-T coal”, brown) and low temperature coal combustion (“low-T coal”, dark grey). Isotopic signatures on primary sources are based on reported literature values (Tables 2 and S1). Abbreviations: phenanthrene (PHEN), anthracene (ANTH), fluoranthen (FLU), pyrene (PYR), benz[a]anthracene (BaA), chrysene (CHRY), benzo[b]fluoranthene (BbF), benzo[j]fluoranthene (BjF), benzo[k]fluoranthene (BkF), benzo[e]pyrene (BeP), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcdP), benzo[ghi]perylen (BghiP).

Figure 3. Probability density functions (pdf) of the relative source contribution of PAHs benzo[b+j+k]fluoranthene for Sample #7 (Panel A) and source contributions of fossil (liquid fuel + coal), liquid fossil fuel, coal combustion at low and high temperature and biomass combustion for the sum of PAHs in forest soils from Czech Republic (Panel B).
Coal pyrolysis at high temperature (~900 °C)?
Coal pyrolysis at low temperature (~650 °C)?

Liquid fossil fuel combustion?
Biomass combustion?
Figure 1. Map depicting bottom-up emission inventory of total 16 PAHs in 2007 (grid 0.1° x 0.1°). The sampling sites are indicated with white triangles.

292x164mm (96 x 96 DPI)
Figure 2. Two-dimensional dual-isotope presentation of PAH in forest soils from sites #1 (circles), #5 (diamonds), #6 (triangles) and average of #2, #7, #8 and #10 (squares). Panel (A): δ2H versus δ13C, where symbol colors are based on PAH molecular weight: m/z 178 (dark blue), m/z 202 (light blue), m/z 228 (green), m/z 252 (yellow and orange), m/z 276 (red); Panel (B): δ2H versus Δ14C, where symbol colors are based on PAH concentrations. Isotopic signatures of primary sources of PAH are shown: biomass combustion (green), peat (light grey), liquid fossil fuel combustion (black), high temperature coal combustion ("high-T coal", brown) and low temperature coal combustion ("low-T coal", dark grey). Isotopic signatures on primary sources are based on reported literature values (Tables 2 and S1). Abbreviations: phenanthrene (PHEN), anthracene (ANTH), fluoranthene (FLU), pyrene (PYR), benz[a]anthracene (BaA), chrysene (CHRY), benzo[b]fluoranthene (BbF), benzo[j]fluoranthene (BjF), benzo[k]fluoranthene (BkF), benzo[e]pyrene (BeP), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcdP), benzo[ghi]perylene (BghiP).
Figure 2. Two-dimensional dual-isotope presentation of PAH in forest soils from sites #1 (circles), #5 (diamonds), #6 (triangles) and average of #2, #7, #8 and #10 (squares). Panel (A): δ2H versus δ13C, where symbol colors are based on PAH molecular weight: m/z 178 (dark blue), m/z 202 (light blue), m/z 228 (green), m/z 252 (yellow and orange), m/z 276 (red); Panel (B): δ2H versus Δ14C, where symbol colors are based on PAH concentrations. Isotopic signatures of primary sources of PAH are shown: biomass combustion (green), peat (light grey), liquid fossil fuel combustion (black), high temperature coal combustion (“high-T coal”, brown) and low temperature coal combustion (“low-T coal”, dark grey). Isotopic signatures on primary sources are based on reported literature values (Tables 2 and S1). Abbreviations: phenanthrene (PHEN), anthracene (ANTH), fluoranthene (FLU), pyrene (PYR), benzo[a]anthracene (BaA), chrysene (CHRY), benzo[b]fluoranthene (BbF), benzo[j]fluoranthene (BjF), benzo[k]fluoranthene (BkF), benzo[e]pyrene (BeP), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcdP), benzo[ghi]perylene (BghiP).
Figure 3. Probability density functions (pdf) of the relative source contribution of PAHs benzo[b+j+k]fluoranthene for Sample #7 (Panel A) and source contributions of fossil (liquid fuel + coal), liquid fossil fuel, coal combustion at low and high temperature and biomass combustion for the sum of PAHs in forest soils from Czech Republic (Panel B).

148x111mm (96 x 96 DPI)
Figure 3. Probability density functions (pdf) of the relative source contribution of PAHs benzo[b+j+k]fluoranthene for Sample #7 (Panel A) and source contributions of fossil (liquid fuel + coal), liquid fossil fuel, coal combustion at low and high temperature and biomass combustion for the sum of PAHs in forest soils from Czech Republic (Panel B).

152x114mm (300 x 300 DPI)