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Abstract

Oscillations are a ubiquitous dynamic state in living systems that arise at all biological scales,
from gene regulatory networks to animal behaviours, and across disparate timescales, from
milliseconds to years. The coordination between many oscillators is a fundamental process that
generates complex and emergent dynamics and endows rhythms with a biological function. This
thesis examines a number of oscillating neural circuits from the brainstem to the hypothalamus
and studies how oscillatory function arises and how it is coordinated.

The first system investigated is a collection of three circadian oscillators in the dorsal
vagal complex (DVC) in the mouse brainstem. This network presents an accessible setting for
investigating the fundamental principles via which multiple circadian oscillators communicate
and synchronise with one another. Time-frequency analysis and phenomenological modelling
of circadian gene expression data in the DVC are used to understand how a spatiotemporal
wave emerges among the three oscillators. Furthermore, a network topology of circadian phase
communication in the DVC is proposed and is used to show how the coupling between clocks
may be tuned to a subcritical state.

In the hypothalamus, the tuberoinfundibular dopaminergic (TIDA) neurones that regulate
the release of the reproductive hormone prolactin, are the site of multiple oscillatory phenomena.
The dopamine output of the population follows a circadian cycle, and TIDA neurones regularly
burst on the scale of seconds. A novel algorithm to detect extracellular TIDA activity is
developed to assess TIDA electrical activity in multielectrode array recordings. It is found that
TIDA cells are excited and burst with a shorter period during the night, compared to the day.
Furthermore, the neuropeptides vasoactive-intestinal polypeptide (VIP) and gastrin-releasing
peptide, which potentially signals the internal time of an organism, excite TIDA neurones. In
the case of VIP, this excitation only occurs during the night. The results suggest that both
intrinsic TIDA timekeeping and signalling from the master biological clock coordinate the daily
changes in this network.

The bursting activity rhythm of the TIDA population occurs on the scale of seconds and
is relevant for prolactin regulation, yet its generation remains elusive. A minimal model of
the ionic mechanisms hypothesised to cause TIDA bursting is constructed and fitted to data.
A slow oscillation driven by persistent Na+ and Ca2+-activated K+ currents is proposed to
underly TIDA bursting and the viability of this mechanism is confirmed by comparing it
to experimental manipulations of the rat TIDA network. Furthermore, the role of electrical
coupling in coordinating the collective activity of a TIDA network is investigated in a two-cell
network. Such coupling is found to synchronise the TIDA network and influence the network
frequency. Additionally, it is shown that bursting can be forced upon a non-bursting cell via
coupling to a bursting cell. The conclusions highlight the capacity for future work in this neural
population, which is discussed in detail.
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neural activity, including: (C) the action potential waveform, (B) the ISI histogram,

(C) the autocorrelation diagram, and (F) the hazard plot. D-F were made using

NeuroExplorer. 3V: third ventricle, ME: medium eminence. . . . . . . . . . . . . . 56

3.10 Burst period decreases at night, compared to day, due to a reduction in the burst

duration and the interburst interval. (A) Representative TIDA spike trains with

burst periods near the average for the day (10:71 s; green) and the night (8:22 s;

magenta). (B) The burst period shifts from 10:71�1:89 s in the day to 8:22�0:80 s in

the night (p � 10�12, Mann-Whitney U Test). (C) The burst duration decreases from

3:62� 1:35 s (day) to 2:58� 0:94 s (night; p = 7:8� 10�5, Mann-Whitney U Test).

(D) The IBI decreases from 7� 1:66 s (day) to 5:89� 0:94 s (night; p = 8:9� 10�7,

Mann-Whitney U Test). (E) The overall firing rate increases from 0:84� 0:29 Hz

(day) to 1:04� 0:3 Hz (night; p = 0:0017, Mann-Whitney U Test). . . . . . . . . . 57

3.11 The TIDA burst period decreases due to the blockade of fast synaptic transmission.

(A) The TIDA burst period, during baseline (BL) and after the application of

AP5 (25 �M), CNQX (10 �M) and PTX (100 �M), referred to as SB, to block

glutamatergic and GABA neurotransmission. The period changes from 8:33� 1:44 s

to 6:7� 0:96 s (p = 0:0017, Wilcoxon signed-rank test) (B) The IBI also decreases

from 6:04� 1:35 s to 4:92� 1:31 s (p = 0:0025, t-test). . . . . . . . . . . . . . . . 57

xix



LIST OF FIGURES

3.12 TIDA neurone response to VIP (600 nM) during the day and night. (A) Represen-

tative spike trains showing spontaneous TIDA activity (left) and TIDA activity

during the maximum response to VIP (right). Green indicates daytime application

and magenta indicates nighttime application. (B) 69% and 88% of TIDA respond

to VIP during the day and night, respectively. (C) The burst duration increases at

night due to VIP (p = 10�10), but not during the day. (D) The IBI increases due to

daytime VIP by 0.3 s on average, with p = 0:047. Nighttime VIP decreases IBI by

approximately 1 s (p = 1:2�10�5), and the amplitude of the response is significantly

higher during the night (1:8� 10�5). (E) There is no noticeable change in the firing

rate during the day; however, at night VIP increases the firing rate of the TIDA

neurones dramatically (p = 7:2� 10�10). Pie charts show the proportion of TIDA

cells that increased in a measurement (orange), decreased in a measurement (blue),

or did not respond (grey). Statistical tests used were paired t-tests or the Wilcoxon

signed-rank test for paired data; or unpaired t-test or the Mann-Whitney U test for

unpaired data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.13 VIP acts postsynaptically through a range of VIP receptors (A) The response of

n = 27 TIDA cells to SB and to VIP + SB. SB does not change the population

activity aside from a small decrease in the IBI (Ac). VIP + SB significantly increases

the burst duration and the firing rate (p < 10�5 in both cases). (B) The response

of n = 33 TIDA cells to the VPAC2R antagonist PG 99-465 (10 nM) and VIP

+ PG 99-465. The only change induced by PG 99-465 is a reduction in the burst

duration (p = 8 � 10�7). Application of VIP + PG 99-465 increases the burst

duration (p = 0:017), decreases the firing rate (p = 9 � 10�6) and decreases the

IBI (p = 0:007). Statistical tests used were the paired t-test and the Wilcoxon

signed-rank test. ns: not significantly different. . . . . . . . . . . . . . . . . . . . . 60

3.14 TIDA neurone response to GRP (200 nM) during the day and night. (A) Representa-

tive spike trains showing spontaneous TIDA activity (left) and TIDA activity during

the maximum response to GRP (right). (B) 96% and 92% of TIDA respond to GRP

during the day and night, respectively. (C) The burst duration and (E) the mean

firing rate increase at both times of the day in response to GRP (p < 10�5) (D) The

IBI decreases due to GRP at both times of the day (p < 10�5), with daytime GRP

causing a slightly larger decrease in IBI (p = 0:004). Pie charts show the proportion

of TIDA cells that increased (orange), decreased in a measurement (blue), or did not

respond (grey). Statistical tests used were paired t-tests or the Wilcoxon signed-rank

test for paired data; or unpaired t-test or the Mann-Whitney U test for unpaired data. 61
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3.15 GRP excites TIDA neurones postsynaptically and in the presence of GRP receptor

antagonist PD 176252 (500 nM). (A) In the presence of fast synaptic transmission

blockade, GRP (200 nM) prominently excites TIDA cells, similar to without SB.

Insert in Aa is a blown-up plot of BL and SB activity. (B) In the presence of PD

176252, GRP alters TIDA activity in a similar manner to GRP alone (Fig. 3.14.

Significance tested using paired t-test or the Wilcoxon signed-rank test; p < 0:05 for

all tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.16 Neuromedians -B and -C both excite TIDA cells in a similar manner to GRP. (A)

NMB (300 nM; N = 14 cells from 4 animals) excites TIDA cells by increasing the

burst duration (Aa; p = 6:7 � 10�3), decreasing the IBI (Ab; p = O(10�4)), and

increasing the mean firing rate (Ac; p = O(10�4)). (B) NMC (200 nM; N = 28

cells from 3 animals) excites TIDA cells by increasing the burst duration (Ba;

p = 8:5� 10�4), decreasing the IBI (Bb; p < 10�4), and increasing the mean firing

rate (Bc; p < 10�4). Paired t-test or Wilcoxon signed-rank test was used to determine

significance. All recordings were performed during the day ZT 5-10. . . . . . . . . 63

4.1 Analysis of 28 current-clamped TIDA recordings. (A) Representative trace showing

the membrane potential oscillation of a TIDA cell. Numerical values surrounding

the trace indicate average measurements of (starting at the top and moving anti-

clockwise): maximum AP voltage, minimum AP voltage, the average duration of the

rising, spiking, and relaxing phases, and the nadir and the peak of the subthreshold

oscillation. (B) The period and duration of the three oscillation phases. (C) The

number of spikes per burst. (D) The interspike interval distribution (bin width of 20

ms; red line indicates the mode). (E) The interburst interval distribution (bin width

of 1 s; red line indicates the mode). (F) Maxima and minima of the subthreshold

oscillation. (G) The maxima and minima of the action potentials. Boxes indicate

the interquartile spread of the data and horizontal lines mark the median. Data

points outside of the whiskers are labelled as outliers and plotted with a diamond. 74

4.2 Parabolic bursting in TIDA neurones. Each panel shows the interspike interval (ISI)

plotted as a function of the spike number for each burst in a recording of a single

neurone. The results are representative of the wider population (28 cells). . . . . . 75

4.3 The steady-state activation functions, voltage-dependent timescales and bursting

solutions to system (4.1). (A) The potassium (blue) and calcium (orange) steady-

state activation functions, given by equations (4.6) and (4.7) respectively. (B) The

intracellular [Ca2+]-dependent activation function of the calcium-activated potas-

sium current (IKCa), equation (4.9) (C) The voltage-dependence of the potassium

gating variable timescale, equation (4.22). (D) Solutions to equation (4.1) with the
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4.4 Fast-slow analysis of the bursting Morris-Lecar system. (A) The bifurcation diagram

of the fast system (4.12) continued in z. Blue curves indicate equilibria and green

curves are the limit cycles max/min. The stability of each is shown by either solid

(stable) or dashed (unstable) curves. In orange is the c-nullcline (ċ = 0). In grey is

the trajectory of the full bursting system projected onto the V � z plane. In this

figure, and in all bifurcation diagrams henceforth, filled circles represent fold (blue),

Hopf (magenta) and homoclinic (red) bifurcations. In (Ai), the period of the stable

limit cycle solution is plotted. As z approaches the homoclinic point, the period

diverges. (B) The voltage dynamics (B), potassium activation dynamics (C) and

the [Ca2+] dynamics (D) during bursting. . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Including an INaT model and simulating equation (4.14) leads to a stable-steady

state. (A) The INaT model includes an activation gate, for which the steady-state

is given in solid green, and an inactivation gate, the steady-state of which is given

by �1 � �2n1. Here, �1 = 0:89; �2 = 1:1; Ss = �25; ks = 30 and the parameters for

n1(V ) are as in Figure 4.3. (B) Simulations of equations (4.14) with 10 random

initial conditions and parameters given above and in Figure 4.3 lead to a single,

depolarised steady-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Explaining using phase-plane analysis how to restore bursting in the BML+NaT

model. In each panel the V - and n-nullclines (V̇ = 0; ṅ = 0, respectively) of the fast

system (V; n) of (4.14) are plotted along with a representative trajectory. Pale curves

represent a nullcline before the system is altered. Parameters are as in Figures 4.3

and 4.5, unless otherwise stated, and z = 0:3. (A) The fast system with ḡNaT = 0

has a limit cycle solution around the fixed point at the crossing of the middle branch

of the cubic V -nullcline with the n-nullcline. (B) Adding INaT (ḡNaT = 10) shifts the

V -nullcine towards higher n (compare the pale blue with the blue curve, where the

pale blue is identical to V̇ = 0 in A). (C) Spiking is restored by hyperpolarising the

potassium gating threshold. The adjusted parameters of the IK model are Sn = 0

and Vmax = 0, where Vmax is also changed to keep the timescale maximum aligned
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4.7 The bifurcation diagram of the fast-system, (V; n), of (4.14) continued in the slow-

system parameter, z. Equilibria (blue) and the limit cycles min/max (green) are

plotted. Grey vertical lines indicate the range that z = z(c) can take in the full

model. These plotting conventions will be used throughout this chapter. The fold

point here is also a saddle-node of infinite period (SNIP) [161, Chp.7], which explains

why the limit upper part of the limit cycle branch seems to end ‘in mid-air’. . . . 86
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4.8 Bursting can be restored in the BML+NaT model by ensuring the fast-system of

(4.14) is bistable in a physiological range of z. (Aa) and (Ba) are two-parameter

bifurcation diagrams of the fast system, with parameters as in Figure 4.6C, that

show how the Hopf (magenta) and fold (blue) bifurcations change position in

parameter space. Grey lines indicate initial parameter values and the adjusted values

used in subsequent simulations. (Ab) and (Bb) show one-parameter slices through

their accompanying two-parameter diagrams. The red dot indicates a homoclinic

bifurcation. (C) The bifurcation diagram of the fast-system with ḡKCa = 2 and

ḡK = 5 and a representative trajectory overlaid in grey, and plotted over time in (D). 88

4.9 NaP model parameters can be fit using an NaP I-V relationship. (A) The voltage-

dependent NaP current recorded from male rat TIDA neurons in [183] (grey), the

Butera et al. [42] model (blue) and a tuned INaP model (purple). (B) The activation

(solid) and inactivation (dashed) steady states for the TIDA-tuned INaP model in

(A) with parameters: Sp = �37; kp = 5; Sq = �20; kq = 40 (all in mV). . . . . . . . 90

4.10 Bifurcation analysis of the fast subsystem, (V; n), of the BML+NaTP model (4.19)
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parameter bifurcation diagram of (4.19)-fast overlaid with slow-variable trajectories

of bursting solutions to equations (4.19). Parameters are the same as in Figure 4.8F

and Figure 4.9B, with �p = 700ms, unless stated in the legend. . . . . . . . . . . . 92
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4.13 Parameter tuning of system (4.23) to match the simulated voltage oscillation to

the voltage recordings in [184]. In each panel, the grey trace shows the sample

voltage recording presented in Figure 4.1A. Dashed lines indicate the mean value

of the subthreshold maximum (D) and minimum (A) and the spike maximum

and minimum (B), calculated in Figure 4.1. Parameters are largely the same as

in Figure 4.12 and in each panel, a select number of parameters are tuned. The

parameter manipulations from one panel are carried through to the next, such that
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ḡKCa : 1:2! 1. All units are the same as in Table 4.2. . . . . . . . . . . . . . . . . 95

4.14 A selection of parameters tune the temporal properties of the TIDA oscillation. The

top row (A, B, C) shows the effect of a single parameter variation on the solution
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Figure 4.12 and kCa = 0:15; �p = 900 and ḡCa = 3:8. The simulated duration of

the rising, spiking and relaxing phases are Tri = 10:9s; Ts = 7s and Tre = 3:6s,
respectively, and the number of spikes in a burst is Nsb = 24: . . . . . . . . . . . . 96

4.15 The development of the TIDA model (4.23). Starting from the bursting Morris-

Lecar model (described in [81]), three extra currents and two additional variables
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Green (solid) boxes show currents added to the model, and magenta (dashed)

boxes show parameter changes. Arrows indicate the chronological order in which

developments were made. Parameter units are the same as in Table 4.2 . . . . . . 98

4.16 Analysis of the oscillatory mechanism for a single TIDA cell (4.23) with parameters

in Table 4.2 and ḡh = 0.(Aa) The voltage, (Ab) the intracellular [Ca2+] and (Ac) the

INaP activation plotted for a single oscillation cycle. (D) Two-parameter bifurcation

diagram of the fast system, (V; n), of (4.23), with the slow system nullclines (ċ = 0:
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4.17 The duration of the rising, spiking and relaxing phases and the number of spikes per

burst depends upon model parameters. In each panel, a single parameter of (4.23) is

varied whilst all others are kept at the value in Table 4.2. Grey dashed lines indicate

the parameter value in Table 4.2. Red lines indicate the parameter value near which

the solution bifurcates into either tonic firing or quiescence. See Appendix Figure

A.8 to see the sensitivity analysis plotted against the percentage change relative to

the default parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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4.19 The TIDA neurone response to INaP antagonist riluzole (A) and INaP angonist

veratridine (B). (Aa) Representative current clamp recording of a TIDA neurone

during application of riluzole (10�M) which prevents the termination of the spiking

state [183]. Scale bar: 20 s, 20 mV. (Ab) The effect of riluzole is simulated by

hyperpolarising the half-maximum, Sq, of the NaP inactivation function h1(V )

(shown in insert (Abi)). (Ba, left) Representative 1 Hz low-pass filtered current

clamping recordings of a TIDA neurone during control (green) and veratridine

application (500nM; orange). Scale bar: 5 s, 30 mV. (Ba, right) Change in membrane

voltage (1 Hz low-pass filtered) plotted against the membrane voltage for the

recordings in (Ba, left). (Bb) The model analogue to (Ba) where veratridine is

simulated by increasing ḡNaP . All simulations of (4.23) use the parameters described

in Table 4.2 unless stated otherwise in the figure. . . . . . . . . . . . . . . . . . . 104

4.20 Membrane voltage traces of the TIDA model (4.23) under succesivly lower ex-

tracellular [Ca2+] (A), the maximum conductance of ICa (B), and the maximum

conductance of IKCa. Dashed grey lines indicate -60 mV. All parameters, unless

varied in the panel, are the same as Table in 4.2 . . . . . . . . . . . . . . . . . . . 106
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5.3 Similar to Fig. 5.1, but with � = 0:05 showing how the bursting solution can be
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A.1 AP-4Vep PD analysis and estimation of coupling parameters. (A) The

AV-PD dynamics of the five experiments that were selected to fit the AP-4Vep phase

oscillator model. Each data trajectory (grey) has a period of constant PD between

the vertical dashed lines, defined such that jd�av=dtj < 0:01. After estimating the

parameters of an AP-4Vep coupled oscillator model, the simulated trajectory (orange)

matches well with the data. During an epoch of constant PD, the two oscillators are

approximately at the same frequency, indicated by nearly identical period dynamics

in (B). The average period over this epoch for each oscillator in all five experiments

is plotted in (C). The difference between the oscillator’s average period within

this epoch is plotted in (D). The small differences suggest that the oscillators are

approximately at the same period, hence their collective period is calculated as the

mean period between the oscillators throughout this epoch. . . . . . . . . . . . . . 133

A.2 AP-NTS PD analysis and estimation of coupling parameters. (A) The

AN-PD dynamics of the five experiments that were selected to fit the AP-NTS phase

oscillator model. Each data trajectory (grey) has a period of constant PD between

the vertical dashed lines, defined such that jd�an=dtj < 0:01. After estimating the

parameters of an AP-NTS coupled oscillator model, the simulated trajectory (blue)

matches well with the data. To estimate all the parameters of the AP-NTS model,

the linear decay rate of the PD data was estimated by fitting an exponential curve

(red dots) to the PD trajectory when it is sufficiently close to its constant PD state.

During an epoch of constant PD, the two oscillators are approximately at the same

frequency, indicated by nearly identical period dynamics in (B). The average period

over this epoch for each oscillator in all five experiments is plotted in (C). The

difference between the oscillator’s average period within this epoch is plotted in (D).

The small differences suggest that the oscillators are approximately at the same

period, hence their collective period is calculated as the mean period between the

oscillators throughout this epoch. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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A.3 Analysis of the stability of phase di�erences. The prominence of a peak in the

histogram of phase differences is an indication of the stability of the PD time series.

The prominence is measured using the expression in (A), which is 1 for a histogram

with all its weight within one bin (the d-distribution) and close to zero (1=N , where

N is the number of bins) when the distribution is uniform. This metric provides

a measure of the stability of a PD trajectory. Simulations of the model system (1)

with realistic periods and initial conditions (the same used in the simulations of

Figure 4C and D) and zero coupling (s = 0) are shown in (B). PD trajectories of

uncoupled oscillators are linear and display no tendency to remain at a particular

PD value, which is indicated in the histograms in (C) (averaged over all simulations

in (B)). Such distributions are nearly uniform and have a low y value, indicated as

’S0’ in (Da) and (Ea). In (Da) and (Ea), the peak prominence is displayed for all

11 experiments, and example time series and histograms (15min-binned) are shown

in parts b and c respectively. Three AN-PD traces are multistable (red ’MS’), as

shown by the trajectories in Supplementary Figure 2.2 and their PD histograms

displayed bimodality. Despite their high score for stability, these traces could not

be used to fit the model since it was ambiguous which near-constant PD should

be considered the as the steady-state. Furthermore, similar occurrences of multiple

constant PD regions arise in simulations with slowly decaying coupling (Figure 4C;
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Chapter 1

Introduction

1.1 Diurnal oscillations in biology

Intrinsic 24-hour rhythms, or circadian rhythms, pervade all phyla, from bacteria to mammals

[76, 85, 307]. There is a considerable advantage in anticipating a predictable change in the

external environment, and so it is unsurprising that most, if not all, organisms have developed

an internal representation of time that facilitates this. Many diverse biological processes

change periodically throughout the day, including arousal levels, cognitive function, mood,

and metabolic processes, to name only a few. It is remarkable, yet at the same time obvious,

that the fluctuations of such diverse phenomena arise due to a single core mechanism. A

negative transcription-translation feedback loop (TTFL), in which a set of genes suppress their

transcription, drives all circadian rhythmicity [73, 149].

In mammals, the transcription factors clock and bmal1 form a heterodimer and upregulate

the transcription of the Period and Cryptochrome genes. Their protein products, per and

cry, form another heterodimer that, once transported back to the nucleus, acts to suppress

the clock:bmal1 transcription process, completing the negative feedback loop. Although the

genes and proteins of the circadian clock differ between species, the core negative feedback

loop is conserved. In addition to the core TTFL, various post-translational processes such

as phosphorylation, ubiquitination, and transmembrane transport set the timing of the core

feedback loop to produce approximately 24-hour oscillations in clock genes. Additionally, several

other positive and negative feedback looks interact to regulate the core oscillation and produce

robust oscillations [40].

Most cells in the brain and body contain components of the molecular clock [35, 241],

yet the clock machinery, and even cellular oscillations, are not sufficient to drive circadian

changes in physiology and behaviour. For this, coupling is required [250, 300] (see Figure

1.1). Cellular circadian oscillations within a tissue have a distribution of frequencies, phases,

and amplitudes and without coupling there would be no dominant frequency, and indeed

there would be no tissue-level oscillation at all [250, 334]. Interactions between the TTFLs of
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CHAPTER 1. INTRODUCTION

Figure 1.1: Coupling is an integral feature of circadian systems. (A) Within a single rhythmic
cell, different feedback loops are biochemically coupled to generate single-cell rhythmicity in
core clock genes. (B) Coherent oscillations at the level of a tissue require coupling between
many individual cells. (C) Circadian rhythms throughout the body are coupled to one another
to optimally align the internal time of an organism with the external timing cues. This figure is
taken from Pilorz et al. [250]

.

neighbouring cells are required for coherent, tissue-wide oscillations that impact the physiological

function of an organ. Communication between cellular oscillations has been studied best in

the master pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is

the archetypal circadian oscillator, for reasons discussed below, and as such many fundamental

concepts of circadian biology have been revealed by researching these nuclei [330]. The cells

of the SCN communicate using numerous mechanisms to establish large amplitude coherent

oscillations at a well-defined frequency. Chemical synaptic transmission, using a variety of

neurotransmitters and neuromodulators, is utilised to synchronise cells [119], as is gap junction

coupling [54] and paracrine signalling [205]. Astrocytes also interact with neurones to coordinate

the SCN rhythm [31, 32]. The synchronisation of molecular oscillations between cells is critical

for circadian physiology.

The coupling between cells results in a tissue-level oscillation, of which there are many

distributed throughout the body, including the brain (see below), the heart, the lung, skeletal

muscles, and most other organs [35]. As with cellular rhythms, tissue-level rhythms require

coordination so that they can play their part in the circadian symphony. Periodic forcing by

external cues, the so-called zeitgebers, optimally aligns physiological functions with rhythmic

environmental demands. The most prominent zeitgeber for most organisms is ambient light,

and entrainment (synchronisation by periodic forcing) has been extensively studied in the

SCN because it is entrainable to oscillations of ambient light [330]. The decoupling between

external and internal rhythms, which many of us have experienced as jet lag, has a significant

impact on physiological function. Occasional jet lag is not too bad, particularly if it is the cost

of a holiday, but there are serious health consequences that come from chronic misalignment
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between external and internal rhythms [145, 304]. Understanding and resolving circadian

misalignment is a vigorous branch of chronobiology that benefits enormously from theoretical

principles [10, 64, 181, 308]. Organisms have evolved to entrain to more than just daily light

fluctuations and utilise temperature rhythms [260], social interaction patterns [107], rhythmic

drug use [98, 152], and regular exercise [93] to entrain various circadian rhythms throughout the

body. Feeding and fasting cycles are perhaps the best-studied non-photic zeitgeber [214, 242].

Restricting the availability of food for a rodent to a regular time of the day induces anticipatory

activity before the scheduled mealtime, which appears to be driven by a self-sustained circadian

oscillation [214, 299]. Lesion studies have identified that this oscillation is not dependent on

the SCN or any other single oscillator [66]. Our current understanding implicates a network of

feeding entrainable oscillators (FEOs), that are potentially distributed throughout the body

and coupled by hormonal signals [45, 322].

Consideration of the network of FEOs raises a good question: how do clocks in the body

communicate? As mentioned above, there is a wealth of research documenting how daily

oscillations between cells are coordinated and synchronised, yet the coordination of oscillating

tissues has received much less attention. Measuring circadian rhythms in different tissues while

preserving any potential coupling between them is a difficult task. Even if we restrict our

attention to one organ: the brain, there is rhythmic clock gene expression in many spatially

separated nuclei, such as the olfactory bulb [106], the subfornical organ [230], the habenula

[268, 339] and the hippocampus [325]. Nevertheless, it is essential to understand these details.

Understanding how physiological systems entrain to feeding-fasting cycles may improve the lives

of millions of shift workers who experience circadian misalignment [200], and can help increase

general health and longevity [5]. Communication between light-entrainable oscillators is also

an important topic in chronobiology. The conventional view is that the SCN unidirectionally

entrains many subordinate oscillators into its light-synchronised rhythm, but recent findings

suggest that even the master pacemaker may be regulated by the wider circadian network

[226]. From this extended neural circadian system in which oscillators can be distal and widely

distributed [1, 114], several questions arise, including 1) how this network of oscillators interact,

2) are some oscillators pacemakers and others followers, and 3) how are these oscillators

synchronised to the external world. Typically, these oscillators are spatially separate and may

lack physical connections, so determining how oscillators interact to shape each other’s circadian

timekeeping is recondite.

One way to circumvent these challenges is to study a spatially localised collection of circadian

oscillators and infer underlying principles regarding circadian phase communication. The dorsal

vagal complex (DVC) of the medulla of the brainstem is an ideal structure for this. The DVC

is a small collection of nuclei and like many brainstem regions; it is fundamental to mammalian

physiology. In general, the DVC is a key relay hub for visceral and blood-borne information

that are important for basic cardiovascular and metabolic functions. The nuclei that comprise
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the DVC include the area postrema (AP), the nucleus of the solitary tract (NTS), and the

dorsal motor nucleus of the vagus (DMX). A section of the CSF-filled fourth ventricle also runs

through the centre of the DVC. The functions of these nuclei are distinct and diverse. The AP

is a circumventricular organ that lacks a blood-brain barrier, and hence its neurones are capable

of directly detecting molecules circulating through the blood [257]. The NTS is the main relay

centre of visceral information (from the internal organs) from the solitary tract. These bilateral

nuclei integrate information from throughout the body related to various cardiovascular [28]

and metabolic [112] processes. The NTS also has well-documented input from the AP [120]

and makes numerous reciprocal projections to other central regions within the hindbrain and

hypothalamus. The DMX is a collection of motor neurones responsible for some of the output

of NTS integration.

Recently, three regions of DVC have been shown to have robust circadian rhythms in gene

expression that last for several days ex vivo [52]. The AP, NTS and the layer of ependymal

cells surrounding the fourth ventricle (4Vep) rhythmically express the core clock gene Per2.

In Chrobok et al. [52] a bioluminescent marker for Per2 expression (PER2::LUC) is used to

visualise and study circadian gene expression of the brainstem. Near 24-hour rhythms are

observed in all three neighbouring structures, and interestingly, a non-trivial phase relationship

exists between them. Unlike most other circadian clocks of the central nervous system, in

which cells synchronise to form a collective oscillation, the DVC exhibits a spatiotemporal wave

of PER2::LUC expression. The DVC has been implicated as a brainstem satiety centre that

responds to various metabolic signalling factors and inhibits food intake [2, 112]. Additionally,

circadian rhythms in DVC are sensitive to changes in diet. Long-term consumption of a high-fat

diet blunts gene expression rhythms in the NTS [138] and even 3-4 weeks of such a diet dampens

rhythmic neural activity in the DVC and alters feeding patterns [50, 51]. The DVC is well

placed to be a key player in the putative FEO network, being the recipient of visceral ingestive

signals and communicating with other central regions, many of which have daily activity profiles

[237]. Furthermore, the close proximity of DVC circadian oscillators makes it an ideal region in

which to study communication between tissue-level clocks. An investigation of the mechanisms

for collective oscillatory behaviour within the DVC shall form the subject of Chapter 2 of this

thesis

1.2 Neuroendocrine oscillations

Neuroendocrine systems display oscillations in various components and on multiple scales. Cell

electrical activity, circulating hormone concentrations, and the behaviour of an organism can

all exhibit oscillatory profiles. A familiar example is the human female ovarian cycle in which

gonadotrophic hormones oscillate with an approximately 28-day period to regularly prime the

body for conception. This relatively slow oscillation is responsible for several physiological
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and behavioural changes. At the other end of the temporal scale, on the order of milliseconds

to seconds, the activity of the cellular processes oscillates to regulate neurotransmitter and

hormone release, modulating and possibly synchronising the activities of downstream elements.

See [170, 172, 196] for reviews on modelling neuroendocrine pulsatility. Much of this thesis

investigates a population of neuroendocrine neurones that regulate the activity of the hormone

prolactin, therefore, we shall take some time to discuss the lactatrophic axis, and some of the

rhythmic phenomena within.

1.2.1 The lactotrophic axis and patterns of prolactin release

The lactotrophic axis forms one of the five branches of the neuroendocrine system, together with

the thyrotropic, gonadotropic, somatotropic and corticotropic axes (see [173] for a review). Each

axis is associated with a particular hormone (or a collection of hormones) and a relatively distinct

set of neural and pituitary circuits that control their release. In the case of the lactotrophic

axis, the principal output hormone is prolactin (PRL), an incredibly diverse hormone with

more than 300 known functions in vertebrates [109]. Historically, PRL function is linked to

its ability to stimulate lactation in rabbits and pigeons, but it is now understood that this

hormone is involved in many other processes including osmoregulation, reproduction and

parental behaviour, energy and metabolism, and immunoregulation (see [89] for a review). In

general, PRL is responsible for many of the changes associated with the bearing of offspring

and the coordination of reproductive physiology. PRL production occurs throughout the body,

but the primary source is the lactotroph cells of the anterior pituitary gland [89].

The lactotropic axis exhibits oscillations ranging from ultradian to infradian. Cellular

activity oscillates on a scale of milliseconds, and rhythmic surges of circulating PRL repeat

every 4-5 days in female rodents [22]. Between these two temporal scales is a circadian rhythm

in PRL secretion. Unlike other hormonal circadian oscillations that continuously cycle, such

as corticosterone [311], the daily PRL rhythm is absent until it is initiated by an external

signal, such as a mating stimulus. In female rats, the mating stimulus could be mating itself,

cervical stimulation [25], or appropriate administration of oxytocin [79]. The circadian rhythm

is temporary, with the duration depending on how it was initiated, and one of its key functions

has been identified to be the provision of the corpus luteum with PRL during early pregnancy

until placental lactogen is generated [88, 89]. The mating-induced PRL rhythm is characterised

by a nocturnal surge in the early morning and a diurnal surge in the late afternoon. Although

this implies that the oscillation has a period of 12 hours, the period is, in fact, 24 hours since

the amplitudes of the two surges differ, with the nocturnal surge having a larger amplitude

[78, 209]. The PRL rhythm also persists under constant light conditions and is entrained to

light-dark cycles [25, 26]. Furthermore, it is influenced by the master clock in the SCN, as SCN

lesions [26, 198] and localised attenuation of the SCN clock genes abolish the rhythm [254].

Although the physiological basis of the circadian rhythm of PRL is incompletely understood,
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Figure 1.2: The Bertram et al. model of the circadian PRL rhythm [21, 22]. (A) The model
consists of three distinct hypothalamic populations represented by the neurochemicals they
produce (dopamine, DA, and oxytocin, OT) or their neural activity (memory, M). The SCN-
derived neuromodulator VIP is modelled as an inhibitory pulse input into the DA population
at regular times of the day. Filled arrows indicate stimulatory influence and unfilled arrows
represent inhibitory influence. Cervical stimulation (CS) switches the memory population from
a low to a high state of activity. The OT injection arrow in the pituitary is used to model the
specific protocols used by the authors [79]. (B-C) The model output is simulated over seven
days, where the cervical stimulation is given on day two. In (B), the dashed line is DA and the
solid line is PRL. This figure is taken from [22].

Bertram et al. [21] have produced a mechanistic description of how the oscillation is generated,

maintained, and terminated. Bertram’s model, summarised in Figure 1.2, collates numerous

experimental findings to provide a simple mathematical description of the PRL rhythm. The

hypothalamus, and in particular dopaminergic and oxytocin neurones, form the central control

of the lactatrophic axis, which interacts with PRL-producing lactotrophs in the pituitary (Figure

1.2A). The core oscillatory mechanism is driven by reciprocal feedback between dopamine (DA)

and PRL, whereby DA inhibits the release of PRL and PRL stimulates the release of DA. The

delay (�) captures the slow stimulatory effect of PRL on the signal transduction pathway within

dopaminergic cells that produce DA [21, 89]. The twice-daily surge of PRL is a byproduct of

this delayed interaction. The influence of the circadian clock is incorporated by regular pulses

of vasoactive-intestinal polypeptide (VIP) from the SCN that acts to periodically reduce DA

(see the dashed curve in Figure 1.2B). Oxytocin (OT) has a stimulatory effect on PRL levels

by acting directly on lactotrophs [78, 182], and in turn, PRL inhibits the release of OT from

cells in the supraoptic nucleus of the hypothalamus [150, 313]. Together, these components

generate small-amplitude oscillations in PRL (black curve between 0-2 days in Figure 1.2B),

predominantly due to the rhythmic DA-PRL feedback loop. Such small amplitude oscillations

have not been observed experimentally. To produce an observable oscillation, the abstract
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concept of memory (M) must be ‘turned on’ by cervical stimulation (day 2 in Figure 1.2) which

subsequently inhibits DA and stimulates OT. Both of these actions lead to an increase in

baseline PRL, making the circadian oscillation in PRL more prominent (Fig.1.2B) and leading

to oscillations in OT. The memory in Bertram’s model is proposed to represent the activity of

a bistable population of neurones that can be in a low-activity state (M = 0) or a high-activity

state (M > 0), with a sufficient pertubation, such as cervical stimulation, driving transitions

between the two.

The interaction between the hypothalamic DA neurones and the pituitary is believed to

drive the PRL rhythmicity, as illustrated in Bertram et al’s model [21], and more generally,

hypothalamic DA provides the key inhibitory control over pituitary PRL release [17]. It is

surprising then, that we know relatively little about the neural activity of the cells that produce

DA in the hypothalamus. For example, we do not understand how VIP causes a reduction in

hypothalamic DA. Early investigations of PRL regulation, including those that inform the model

above, used DA turnover rates to infer the neural activity of the DA population. Furthermore,

we know that there is a circadian rhythm in hypothalamic DA [198, 277], and that the DA

neurones express clock genes [150, 276], yet whether their neural activity changes throughout

the day remains elusive. Providing an answer to these questions shall form the central aim of

the investigation of Chapter 3.

1.3 Neural activity oscillations

The dopamine that inhibits PRL production originates from three populations of neuroen-

docrine DA neurones in the hypothalamus [17, 187]. One population, the tuberoinfundibular

dopaminergic (TIDA) neurones, contributes most of that DA and principally regulates the

lactotrophic axes [187]. A full description of the TIDA neurones and how they inhibit lactotroph

activity is given in Chapter 3 (Fig. 3.1). Here, we briefly describe the activity of these neurones,

which is elaborated on in Chapter 4, whose aim is to develop a new single-cell mathematical

model of TIDA oscillations.

Until this point, the biological oscillations we have encountered, clock genes in DVC and

DA in the hypothalamus, have been on a relatively slow scale of 24 hours. Oscillations in

TIDA neuronal activity occur on a much faster scale of 10s of seconds. Electrophysiological

studies of TIDA neuronal activity are fairly recent [187], yet numerous studies using whole cell

patch clamp recordings [190], calcium imaging [258], and now multielectrode arrays (Chapter

3) have identified that these neurones are robust bursting oscillators. Bursting (a regular

oscillation between spiking and quiescence) in TIDA neurones typically occurs with a period

of 10-20 s in ex vivo rat slices at room temperature. The properties of the oscillation depend

on the specific species [296], the physiological state [258], and endogenous signalling molecules

[33, 186, 188–190, 295] (all of which are reviewed in Chapter 4). Additionally, the results of
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Chapter 3 show that the properties of TIDA oscillations change throughout the day and in

response to neuropeptides and cell communication. To understand the implication that such a

variety of signals and processes have on TIDA dopamine production, and hence PRL regulation,

we must understand the rhythm that induces DA release.

Bursting oscillations are widespread throughout neural tissue [71, 117, 135, 333], and there

are many hypotheses regarding their function [131, Sec. 9.4.4, for a review]. The main purpose

of an action potential is to cause the release of chemicals from an axon terminal, usually to

communicate information to another neuron. Bursting increases the probability of synaptic

release and evokes long-term potentiation of synapses more effectively than single action

potentials, thus altering neuronal communication and synaptic plasticity [178]. Oscillations are

ubiquitous throughout the brain [43], and bursting neurones have been shown to resonate with

specific frequencies of synaptic input and act as bandpass filters [133]. Neurones can also use

bursting along with non-bursting activity (spiking) to encode multiple features of sensory input

[233]. In short, there is a wide variety of neural computational functions that are attributed

to bursting. For TIDA neurones, bursting is likely to enhance and stabilise DA secretion, as

in other neurones [77, 99]. The PRL-producing lactotroph cells are tonically suppressed by

TIDA dopamine, and removing that inhibtory break under the wrong circumstances can lead

to serious adverse outcomes for the organism [199]. Thus TIDA bursting is thought to be a key

mechanism for ensuring PRL is correctly regulated.

Neurones are embedded within highly connected networks and their activity patterns, such

as bursting, are often studied in relation to such networks. The TIDA neurones form a mutually

inhibitory and electrically coupled network that results in synchronous bursting throughout the

population. The multifaced coupling between cells has been proposed to synchronise cellular

oscillations, as well as impose the collective frequency [296]. It has also been suggested that

coupling between cells may be crucial for rhythmogenesis [190]. Thus a key aim of this thesis is to

once again return to understanding the origin of synchronous behaviour, but unlike in the DVC

where the synchrony is on the circadian scale, in TIDA cells it is at the sub-second scale. This

is a major challenge and a complete answer is beyond the scope of this thesis. Nevertheless, we

provide the first steps, here. First, a mathematical model of the TIDA oscillation is constructed

in Chapter 4 to understand the ionic mechanism that drives bursting. Second, in a brief

Chapter 5, we investigate the properties of coupled TIDA cells using the said model, restricting

our attention in this preliminary study to the case of just two coupled cells. A more general

discussion of how and to what extent bursting TIDA cells synchronise is taken up in the final

discussion chapter.
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1.4 Modelling biological oscillations: From millisecond to
circadian

Understanding oscillations and their synchronisation requires more than the verbal narratives

and schematic diagrams that experimental conclusions provide. For much of the history of

chronobiology, mathematical models have allowed researchers to piece together experimental

findings to illuminate the processes that generate and coordinate biological rhythmicity. In the

next two sections, the role of mathematical modelling in chronobiology and electrophysiology

is reviewed, with a particular focus on the different approaches that can be taken to model

oscillatory dynamics and coupling between oscillators.

1.4.1 Circadian oscillations

A variety of theoretical frameworks exist for modelling circadian oscillations, and the model

choice depends upon the specific process under investigation, the level of physiological detail

necessary and the scientific question being addressed. Phenomenological models are an ideal

approach when physiological details are unimportant. Abstract oscillator models, such as the van

der Pol oscillator [155], describe nonlinear oscillatory dynamics without attempting to simulate

the biophysical processes that drive the oscillation. This lack of physiological detail made

phenomenological models like van der Pol’s useful for studying circadian rhythms even before

we understood the molecular components of the clock [155]. Even recently, phenomenological

models provide a simple and intuitive basis for understanding circadian rhythmicity. For example,

they have been used to study the links between bacteria circadian rhythms and population

growth [102], cellular synchronization properties [156], and body clock re-entrainment dynamics

following jet lag [64], to name a few. Other abstract oscillator models, such as the Poincare

oscillator have been used to understand phase-amplitude coupling [226] and the role that

heterogeneity plays in orchestrating tissue-level activity [341]. A prominent advantage of simple

models is that data can easily be incorporated into the model, and researchers are making use

of this feature to design personalised light-intervention strategies to correct the sleep-wake cycle

of people living with dementia [263]. Other advantages of these models lie in their ability to

provide clear, intuitive insights into complex rhythmic behaviour and their responsiveness to

experimental manipulations, making them invaluable tools in both theoretical and experimental

chronobiology. Additionally, abstract models are typically low-dimensional and mathematically

simple. Such models are computationally easy to solve and can be rigorously analyzed, making

them an ideal choice for simulating large networks of oscillators. A lack of mechanistic detail

is the primary disadvantage of using a phenomenological model, which limits their ability to

predict the effects of molecular or genetic alterations. Additionally, their simplified nature

might overlook important interactions within the system, potentially leading to less accurate

predictions under certain conditions.
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Molecular oscillator models of the biological clock offer a more in-depth description of the

biophysical processes that generate circadian rhythms by describing the molecular dynamics of

gene transcription and translation using systems of differential equations. A typical molecular

model of the circadian clock (based upon a Goodwin oscillator [103]) would work as follows:

one variable, x, represents the concentration of a clock gene mRNA, which gets translated

into a protein product, y, which in turn activates the production of a transcriptional inhibitor,

z. The transcriptional inhibitor suppresses the production of the mRNA, thereby forming

a negative feedback loop. Mechanistic models have been used to explore various features of

the circadian clock, including temperature compensation [260, 267], the role of molecular

noise [47, 292], the influence of neuropeptides [101], and the effect of genetic mutations. In

addition to the core negative feedback loop that drives molecular oscillations, other processes

like phosphorylation, enzymatic reactions, and active transport can be described [86, 168].

These processes are typically represented by Michaelis-Menten or Hill terms, which provide the

nonlinearity necessary for self-sustained oscillations [8, 111]. Mathematically modelling such

biophysical processes has helped explain the molecular basis for neurotransmitter-mediated

interactions [74], how molecular rhythms are coordinated by light [274], and why additional

feedback loops result in a more robust clock [160]. The sacrifice for mechanistic detail is large

and complex models. Many molecular models have a large number of parameters, some of

which are difficult to measure experimentally, such as reaction rates and dissociation constants.

Even when these parameters are measured experimentally, the parameter value could well be

specific to the organism it was measured in, meaning that a model fit to data from a certain

organism may not apply to different species. With more detail comes more variables, and

models of even a single cell can accumulate up to hundreds of variables [147], making them

computationally expensive to run. Furthermore, this limits the feasibility of understanding the

molecular dynamics within large networks of interacting cells, although innovative techniques

and emerging computational resources will aid in this [7, 19, 74].

One approach to retaining some of the physiological detail described by mechanistic models,

whilst also being computationally efficient, is using delay differential equations. The differential

equations still describe the dynamics of mRNA, genes and proteins, but some processes are

simplified into a time delay that represents that the action of a molecule is delayed relative

to the time it’s produced. These models strike a good balance between model simplicity and

dynamic richness, and they have been used to study various aspects of circadian rhythmicity

[160, 162, 169, 270, 271, 293]. An even simpler approach to modelling molecular interactions

involves replacing the continuous oscillation of a molecule’s concentration with a discrete ON

and OFF switch. These so-called ‘Boolean models’ have far fewer parameters than traditional

differential equation models, so fitting them requires substantially less computational demand,

yet they can still capture complex molecular dynamics [7].

In addition to determining core principles of molecular oscillations, theoretical work has been
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indispensable in shedding light on the coupling processes between clocks. Cellular circadian

rhythms are coupled by a variety of different mechanisms, including paracrine signalling,

in which signalling molecules are secreted by a cell and diffuse toward neighbouring cells,

gap-junction coupling and synaptic coupling if the oscillating cells are neurons. How a given

coupling mechanism is incorporated into a theoretical framework depends upon the question

being addressed. For example, to understand the duel role that the neurotransmitter GABA

plays in synchronising molecular oscillations and regulating neural excitability, DeWoskin et
al. [74] explicitly modelled the complex process by which GABAergic post-synaptic potentials

interact with the gene-regulatory network driving molecular oscillations of individual cells [74].

Such a detailed approach was necessary to link the fast electrical activity of SCN neurons to

the much slower activity of the molecular clock. The same GABAergic interaction between

SCN neurons has also been studied using a Kuramoto oscillator framework, in which GABA

signalling was described by the strength of a simple phase difference dependent coupling

function [224, 225]. Intermediate between these two extremes, neurotransmitter coupling

between circadian pacemakers has been modelled using a global level of neurotransmitter

[19, 101] and the effect of the amplitude of the molecular clock has been studied using a

phase-amplitude oscillator framework [226].

Phase oscillator modelling, particularly through networks of coupled phase oscillators

like the Kuramoto oscillators [157, 158], which we will explore in detail in Chapter 2, has

been indispensable for understanding weak coupling and synchronization in biological systems

[12, 122, 301, 342]. These models are highly abstract, simplifying complex, nonlinear oscillations

by focusing solely on the phase of each oscillator. This simplification rests on several key

assumptions: first, that each oscillator operates on a limit cycle, implying that the system

exhibits stable, periodic behaviour; second, that interactions between oscillators are sufficiently

weak, affecting only the phase and not the amplitude of the oscillations; and third, that these

interactions can be encapsulated by a single variable, thus ignoring the detailed mechanistic

underpinnings of the oscillation itself (see [249] for more details). These assumptions have

significant physiological relevance. The assumption of a limit cycle reflects the observed regularity

and robustness of biological rhythms, such as circadian oscillations, which maintain consistent

periodicity despite fluctuations in environmental conditions. Weak coupling is a common feature

in biological systems where individual oscillators, such as cells, influence each other’s timing

without leading to substantial changes in their individual properties. This modelling approach

allows us to explore how biological rhythms synchronize across systems and adapt to external

cues.

Additionally, phase models utilize phase difference-dependent coupling, providing a versatile

framework for modelling various forms of biological coupling. For example, two very distinct

forms of neural coupling - synaptic communication and gap-junction coupling - can be effectively

modelled with phase difference-dependent coupling functions [61, 139, 174, 246]. Synaptic
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interactions, which alter the probability of neural firing events through neurotransmitter-

induced changes in neuron potential, influence the timing of a neural oscillator. Meanwhile,

gap junctions facilitate direct current flow between neurons, enabling their electrical coupling.

If these interactions are sufficiently weak such that they primarily affect the oscillator’s

phase without significantly altering amplitude dynamics, they can be modelled using phase

difference-dependent coupling functions within a phase oscillator framework. By capturing these

interactions through adjustments in phase, phase oscillator models provide profound insights

into how local interactions can lead to complex system-wide behaviours, such as synchronization

and entrainment. In Chapter 2 we encounter a network of three circadian clocks in which the

physiological basis of the coupling is largely unknown [52], yet the generality of phase-dependent

coupling proves useful for analysing the network behaviour.

Neuroscience, and in particular circadian biology, with its regular quantifiable signals and

feedback process, is well suited to exploit advancements in nonlinear phase oscillator modelling

methods. From multiple TTFLs to rhythmic tissues (see Fig. 1.1), weak coupling between

self-sustained oscillators is abundant in chronobiology. Phase models have been used to study the

synchrony between individual SCN cells [181]; the asynchrony between interlocked TTFLs [274];

how multiple oscillators can predict multiple meal times [245]; and how feeding-fasting cycles

may enhance circadian alignment [130]. The variety of oscillatory systems and physiological

coupling mechanisms that can be captured by phase modelling underscores both the generality

of these models, as well as their importance for understanding biological dynamics. Phase models

can also be used to describe the phase difference pattern between neighbouring tissue oscillators.

The SCN can be broken down into its core and shell subcompartments, which can loosely be

considered as distinct oscillators. It is thought that the decoherence between these oscillators

encodes the photoperiod, meaning that it is the origin of an animal’s sense of seasonality (think

of the process that turns the coat of an arctic hare snow white). Myung and Pauls [225] used a

simple model consisting of two coupled phase oscillators to show how photoperiod information

is effectively encoded in the phase difference between SCN subcompartments, and that changes

in coupling strength underpin this process. A similar approach to modelling circadian tissue is

taken in Chapter 2.

1.4.2 Neural oscillations

Modelling neural activity on the shorter timescales of individual action potentials and ion

channels has a long and rich history extending back to Hodgkin and Huxley’s seminal work

describing action potentials in the giant squid axon [125], and since then, applied mathematics,

and more recently, computer science, has played an import role in advancing neuroscience.

Neural systems, from the microscopic scale of ion channels to large-scale activity across the

cortex, have been understood using mathematical techniques. Coombes and Wedgwood [62]

provides an excellent modern overview of neural modelling across these scales. Neural models
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can be simple, such as the integrate-and-fire neurone model, or unimaginably complex in the

case of neural network models.

At the heart of neural models is the notion of excitability. A property of the membrane to

give a so-called ‘all-or-nothing’ response that arises from the inherent nonlinearity of biological

systems and facilitates, amongst many things, information processing and transmission. The

details of membrane excitability will not be covered here, but the reader is directed to Izhikevich

[131] for further details. Membrane excitability also lays the foundation for oscillations. One

form of neural oscillation is regular action potential firing, or spiking, in which Na+ and K+

ions rapidly flow into and out of a cell, respectively. Another type of neural oscillation arises

when spiking is coupled to a slow accumulation process. While a neurone is spiking, each

action potential may alter the state of a cell a small amount, for example, by increasing the

intracellular Ca2+ concentration, and a gradual change may occur over the course of many

spikes. If sufficient accumulation eventually suppresses spiking, and in the absence of spiking,

the accumulated quantity subsequently decays, repetitive bursts of action potentials can be

sustained.

Bursting has been extensively studied by both the experimental and theoretical neuroscience

communities. Describing such an activity is a quintessential example of how mathematics and

biology can work together to aid both disciplines. Models of burst oscillations first appeared for

the Aplysia neurone R15 [253], which took advantage of Hodgkin and Huxley’s mathematical

framework for understanding neural activity [125]. Since then, models of bursting neurones

have been an indispensable aid, in combination with experimentation, for understanding how

membrane physiology, cellular communication, sensory input and hormonal signalling give

rise to such activity. Theoretical considerations have also shed light on the possible functions

that bursting plays in neural circuits (see above). The peculiar form of the oscillation, a fast

oscillation regulated by a slower oscillation, has also stimulated the development of fast-slow

analysis (Sec. 4.5), which has now been used in fields far outside of neuroscience, such as in

superconducting Josephson junction arrays [212] and coupled laser systems [302]. We shall

introduce some of the key ideas in modelling bursting oscillations in Chapters 4 and 5.

1.5 Thesis overview

In Chapter 2 of this thesis, we construct and analyse a simple model of the DVC oscillator

network. The PER2::LUC rhythms of the AP and NTS nuclei are modelled as phase variables,

with the aim of understanding the communication processes that facilitate the spatiotemporal

phase wave observed by Chrobok et al. [52]. The DVC phase oscillator model, in combination

with high-resolution time-frequency analysis of DVC bioluminescent signals, indicates how

circadian phase information could be communicated between this unique collection of oscillators.

Furthermore, our analysis points toward the DVC network being subcritically coupled, which
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has the potential to be utilised by the network to encode information in the level of decoherence

between the rhythms.

In Chapter 3 we investigate whether TIDA neurone activity changes throughout the day

and how it may be regulated by the SCN. We start by reviewing the circadian rhythm in

hypothalamic DA, and the role that the SCN, VIP and intrinsic circadian rhythmicity of

the TIDA neurones are thought to play. The rest of the chapter then describes the results

of recording extracellular TIDA neurone activity on multi-electrode arrays. We delve into

the activity profile of these neurones (a topic developed in future chapters) and we create

a novel method for detecting the extracellular signatures of that activity. We examine how

TIDA electrical activity changes spontaneously throughout the day, and how SCN-derived

neuropeptides alter the neuroendocrine population’s activity. The conclusions we come to

suggest that both signalling from the SCN and intrinsic changes in the TIDA neurones may

drive the circadian rhythm in DA. Furthermore, our results highlight that the relationship

between electrical activity and DA release is not straightforward.

In Chapters 4 and 5 of the thesis, we focus solely on the TIDA bursting oscillation. In

Chapter 4 we take a closer look at the TIDA oscillation by analysing voltage recordings from

patch-clamped TIDA neurones and reviewing the membrane physiology that may give rise

to such activity. A mechanistic understanding of the processes that generate TIDA bursting

is lacking; thus we go on to develop a conductance-based mathematical model of the TIDA

oscillation. The chapter concludes by proposing a mechanism in which a slow activating, voltage-

dependent persistent Na+ current and a Ca2+-activated K+ current work together to drive the

subthreshold oscillation, and faster Na+ and K+ currents generate action potentials. Chapter

5 uses the TIDA model to investigate how the electrical coupling between model cells alters

the network activity and, in particular, to what extent such coupling enhances synchronisation.

We find that even a simple network of only two cells behaves in unpredictable and unintuitive

ways, highlighting the need for future work. We end with a discussion on how coupling may

orchestrate the network TIDA rhythm and how we can study this in the future.

Finally, Chapter 6 closes the thesis with a very brief summary and a discussion of open

questions. We draw together the conclusions from each chapter and highlight the common

themes between them. In particular, we discuss the many varied roles that oscillator coupling

plays in the neural networks we’ve encountered. In doing so, it becomes apparent that this

principle underlies the rich behaviour we’ve sought to explain, and that there is much left to

learn about it.
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Chapter 2

The communication and
coordination of three hindbrain
circadian oscillators

This chapter is based on a previously published paper authored by Ahern et al.,
titled ”A new phase model of the spatiotemporal relationships between three

circadian oscillators in the brainstem”, which was published in Scientific Reports

in 2023 [6]. The contribution of the authors of [6] is as follows. JA: data analysis,

model construction, model analysis, study design, and writing the first draft. LC:

bioluminescent experiments, region of interest analysis, manuscript editing. HP and

AC: supervision, study design, manuscript editing.

2.1 Introduction

At one time, the SCN was thought to be the only circadian oscillator in the brain, however,

it is now known that rhythmic clock gene expression occurs at multiple sites throughout the

central nervous system [16, 113, 114, 226, 230, 339]. Using brain slices from mice or rats in

which there is a fluorescent or bioluminescent reporter of the molecular circadian clock (e.g.

Per1-luc rats and Per2Luc mice), has enabled the determination of the autonomy of circadian

oscillations in these extra-SCN brain sites [1]. It is now recognised that the molecular clock

in cells of these areas, such as the olfactory bulb or arcuate nuclei, can continue to oscillate

for several days even when isolated from the SCN [113, 114]. As the extra-SCN oscillators are

distributed throughout the brain, an emerging challenge is to understand how they communicate

and synchronise with one another. One way to address this problem is to focus on a brain

region in which several circadian oscillators are in close physical proximity. In this regard,

the dorsal vagal complex (DVC) in the medulla of the brainstem presents an accessible and
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tractable setting for the investigation of the principles via which multiple circadian oscillators

can interact. The DVC is a key relay hub for visceral and blood-borne information which

are important for a range of cardiovascular and metabolic functions [112]. It is composed of

readily delineated neuroanatomical structures including the area postrema (AP), the nucleus

of the solitary tract (NTS), and the dorsal motor nucleus of the vagus (DMX) [15] as well

as the cerebrospinal fluid-containing central canal/4th ventricle running along its medial axis.

Rhythmic clock gene expression is reported in vivo in the AP and NTS [123, 138, 215, 220].

Further, using a bioluminescent reporter (luciferase; LUC) of the clock protein, PER2, a recent

study showed that rhythms in PER2::LUC were sustained for several days in culture in mouse

DVC explants. Specifically, robust rhythms in PER2::LUC were observed in the AP and NTS

as well as the ependymal cells surrounding the 4th ventricle (4Vep) [52]. Intriguingly, daily

PER2::LUC expression appeared to organize in a distinct spatiotemporal order, peaking first in

the AP, then the NTS, and lastly several hours later in the 4Vep.

The phase ordering between these DVC oscillators suggests there are complex relations

between them, and at present, it is unclear as to how this spatiotemporal clock gene pattern in

the DVC emerges or how it is sustained. Our aim with this chapter is to gain an elementary

understanding of physiological processes potentially responsible for this pattern of PER2::LUC

phasing. Currently, a consistent phase pattern between DVC oscillators has been observed

during the second day of culture recordings, which is associated with large single-cell coherence

within these structures [52]. Subsequent measurements on day five show reduced coherence

between cells and an altered phase difference between the AP and NTS, indicating that dynamic

processes are at play. Understanding the evolution of the phase pattern may be useful for

understanding the mechanisms that lead to its formation. For example, if the relationship

between DVC oscillator phases arises due to rhythmic input from peripheral tissues [237] or brain

sites [41], then in ex vivo cultures we would not expect phase relationships to be maintained. If

interactions between the oscillators contribute to their phasing, then some persistence of this

pattern should be observed in our recordings. There are neuronal connections between the AP

and the NTS in the coronal plane [2, 120], which are both conserved in our culture preparations

and exhibit a daily variation in the magnitude of their signalling [52]. Furthermore, severing

these connections significantly reduces the NTS oscillator period, whilst leaving the AP period

relatively unaffected [52], indicating a possible asymmetry in the phase communication between

the nuclei.

The regulation of Per2 has been extensively modelled to understand its complex dynamics

and interactions within the circadian system. Mechanistic models typically represent the

interactions between Per2 and other core clock components, incorporating feedback loops

that describe transcriptional activation and repression mechanisms critical for maintaining

rhythmicity [19, 74, 86, 101, 159, 160, 168, 260, 267, 274]. Stochastic models address the intrinsic

noise in gene expression, highlighting how random fluctuations can affect Per2 expression and
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stability [47, 87, 291]. Mechanistic models can be simplified by describing certain biochemical

processes, such as phosphorylation, as a time delay. Delay differential equation models provide

insight into the molecular aspects of Per 2 regulation while keeping the number of model

variables relatively low compared to mechanistic models [160, 162, 169, 270, 271, 293]. Simpler

still are phenomenological models, which omit molecular interactions completely by focusing on

the patterns and behaviors of Per2 expression, making them useful for studying tissue-level

dynamics. Lastly, phase models abstract the Per2 dynamics to their essence, examining how

the phase of Per2 expression is influenced by and influences other circadian processes, which is

crucial for understanding synchronization both within single cells and across cellular and tissue

networks [4, 225, 227, 274].

The aim of this chapter is to understand the complex pattern of phase ordering between

the tissue-level PER2::LUC oscillations in the DVC. Specifically, we wish to investigate the

origin and evolution of the phase pattern. To accomplish this, phase models for the three nuclei

are constructed and used to investigate how interactions between three autonomous oscillators

can generate phase differnece patterns similar to what has been observed experimentally.

2.2 Methods

2.2.1 Animals and bioluminescence recordings

This study is based on a reanalysis of previously published results [52] supplemented with

new experimental data using laboratory animals. Previously published PER2::LUC recordings

used an exposure time of one hour, whereas new PER2::LUC recordings used an exposure

time of 30 minutes. To match the new data with the old data, the new data was binned into

one-hour epochs. All data collection and initial region of interest analysis for both data sets

were performed by  Lukasz Chrobok. The region of interest-analyzed data from both data sets

was merged into the single data set used in this chapter. For full details of the experimental

procedures and methods, see [6, 52].

2.2.2 Analysis of circadian time series data

Raw PER2::LUC time series were detrended using a sinc filter (cutoff frequency of 48 h) and time-

frequency spectrums were calculated by a continuous wavelet transform using the Python package

pyBOAT [228, 273] (minPer=10hrs, maxPer=48hrs, numberOfPers=101, ridgeThreshold=0).

All analysis in this chapter was performed using custom-made scripts in Python 3.10.9

2.2.3 Analysis of phase di�erence stability

Phase difference traces were used to construct 15-min-binned histograms (PD measured in

minutes). A histogram with a unimodal peak suggests that the PD remained at the value of
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the peak for a considerable portion of the recording. The prominence of the maximum peak

in a histogram was evaluated using the metric y = maxifhig=
PN

i=0 hi, where fh1; :::; hNg are

the values of the N bins. High values of y correspond to a prominent peak, while low values

indicate a more uniform distribution of phases. See Figure A.3 for more details.

2.2.4 Analysis of constant phase di�erence dynamics

A state of constant PD between any two oscillators is identified if the rate of change of PD is

less than 0.01 rad/hr (jd�ij=dtj < 0:01) for at least 24 hours. The constant PD between two

oscillators, ��ij (Figure 2.5C), is calculated as their average PD while this condition is met. The

collective frequency of two oscillators with constant PD, ��ij (Figure 2.5D), is defined as the

mean frequency between the two oscillators while their PD is constant. Examples of regions of

constant PD, and their corresponding collective frequency are shown in Figures 2.5A, A.2 and

A.1.

2.2.5 Numerical simulations

Numerical integration of differential equations was performed using the SciPy (Pyhton 3.10.9)

function solve ivp and the ‘RK45’ solver (explicit Runge-Kutta method of order 5(4)). The

default absolute tolerance was 10�6 and the default relative tolerance was 10�3. Numerical

continuation was performed using the MATLAB package MatCont with the default parameter

values [75].

2.3 Results

2.3.1 The evolving phase pattern

The phase difference (PD) relationship reported [52], which is summarised in Figures 2.1C

and 2.1D, consists of a small positive AP-NTS phase difference (AN-PD) of approximately

2 hours, and a large positive AP-4Vep phase difference (AV-PD) of around 9 hours. Positive

values indicate that the AP zenith occurs before the peak of the other oscillator. This phase

relationship was calculated using one measurement on the second day of the recording (see [52]).

To extend this description and gain insight into the dynamic stability of the DVC relationship,

we shall use wavelet decomposition [228] of nulcei-wide PER2::LUC signals to understand how

the rhythmic properties change over time.

The PD dynamics of a combination of 11 recordings of coronal DVC slice cultures are shown

in Figures 2.1E and F. Between the three oscillators, two PDs are plotted: the AN-PD (E)

and the AV-PD (F). Only two PDs are required to describe the full phase relationship and we

choose the AP as the reference oscillator because a near synchronous state in the system almost

always includes the AP. Our results indicate that the initial PD relationship observed is not
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Figure 2.1: Phase difference dynamics between circadian oscillators in ex vivo DVC cultures.
(A) The DVC, highlighted in red, in the medulla of the brainstem, initially in the sagittal
plane and then in the coronal plane. (B) PER2::LUC bioluminescent images from coronal
sections of the DVC, taken from three different time points. (C) Schematic diagram of the
rhythmic bioluminescent signal from the regions defined in (B), where the two NTS are taken
as a single oscillator. (D) Phase relationship on day 2 of the recording (described in [52]). The
PD dynamics between the AP and NTS (E) and the AP and 4Vep (F) were calculated via
wavelet analysis of PER2::LUC signals. The y-axis is periodic, meaning that traces disappear
from one end and reappear on the other. (G) If the coupling between two oscillators i and j is
sufficiently small, they will not synchronise and their phase difference (PD) will drift (left). For
very strong coupling, oscillator periods align and a constant PD is maintained. For intermediate
coupling near the synchrony threshold (red line), the oscillator’s PD is slowly drifting (middle).

sustained. Specifically, in (E), there is an initial large positive PD in the first 18 hrs which then

gradually declines throughout the subsequent 130 hrs such that the PD between the AP and

NTS eventually becomes negative in most (9/11) recordings, but can also return to positive

or near-positive values (2/11 cultures). This indicates that the AP initially phase leads the

NTS, but that this order cannot be sustained. In (F), the AP consistently leads the 4Vep in

most recordings (7/11), but in some cultures, the PD is reduced over time so that the AP lags

behind the 4Vep. Note that this analysis captures the previous analysis of Chrobok et al. (cf.

Figure 2.1D and[52]) because between 12-36 hours, the mean phase difference of the oscillators

in our original data set is calculated as 2 hours for the AN-PD and 8.4 hours for the AV-PD.

Since the PD in the initial 24 hrs in culture is currently interpeted as representing the PD

in vivo, this suggests that the AP does phase-lead the NTS and 4Vep, but the mechanism(s)

underlying this phase arrangement is attenuated ex vivo.

While the PD relationship is generally not maintained, we also observed PD time series

ranging from unstable (red plots in Figure 2.1F) to stable (dark blue plot in Figure 2.1E), with

a majority of PDs intermediate between stable and unstable (see the Methods and Figure A.3
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Figure 2.2: Phase difference dynamics of the hindbrain circadian network. Phase difference
dynamics from all 11 PER2::LUC bioluminesence imaging experiments. The phase difference is
plotted in hours [hrs] and is periodic such that PD = 12 is equivalent to PD = �12. The phase
differences are obtained using wavelet deconvolution, as described in the Methods section of
the main text. Blue and orange shaded rectangles indicate regions of approximate PD stability
for the AN-PD and the AV-PD, respectively.

for further details regarding the analysis of stability). The theory of weakly coupled oscillators

[249] describes this variety in PD trajectories using the notion of varying oscillator interactions

(Figure 2.1G). For two oscillators of different intrinsic periods and negligible interactions, their

PD will be unstable and continuously grow in time. Significant interactions lead to an occasional

reduction in the differences in their circadian periods, which manifests as gradually drifting

PDs. As the coupling strength approaches its critical value, at which a saddle-node bifurcation

gives rise to both a stable and unstable fixed point, the PD drift becomes slower. While no fixed

points exist below the critical coupling strength, the vector field changes very slowly close to

the saddle-node, which causes the slow shift in PD dynamics. Further increasing the coupling

strength above its critical value leads to synchrony, where frequencies match and a constant PD

is established. With this in mind, the first 100 hrs of our data bear similarity to an oscillator

system in various states of coupling. Motivated by this, we will now focus on developing and
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Figure 2.3: The normalized raw PER2::LUC bioluminescent signals from the AP (blue), the
NTS (red) and the 4Vep (green) from all 11 experiments. Signals are comprised of both an
underlying trend and an oscillatory component. The amplitude of the oscillatory component
decreases throughout a recording.

analysing a simple model to investigate the possibility that sub-critical dynamics between three

weakly coupled oscillators account for the PDs observed among DVC oscillators.

2.3.2 Derivation of DVC phase oscillator model

The PER2::LUC signals are a bioluminescent glimpse into the complexity of the molecular

circadian clock. In full, the clock mechanism consists of multiple genes and protein interactions,

the dynamics of which can be assumed to map onto a limit cycle attractor. Following the

phase reduction methods established by Winfree [332], the dynamics of a single limit cycle

variable, such as PER2, can be investigated in isolation by mapping the dynamics around the

limit cycle to the motion around the unit circle [4, 252, 274, 301]. This method describes a

multi-dimensional limit cycle using a single phase variable, which we use here to model the

phase of PER2::LUC oscillations.

There are a plethora of approaches that can be taken to model the DVC PER2::LUC
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Figure 2.4: Period dynamics of the hindbrain circadian network from all 11 PER2::LUC
bioluminesence imaging experiments.

dynamics, many of which were reviewed in Sec. 1.4 and Sec. 2.1. We will not use a detailed

single-cell description, which has been used to describe PER2::LUC oscillations in the SCN

[19, 224] because of two reasons. First, the data does not allow for single-cell resolution of

the 4Vep cells [52]. Restricting our attention to tissue-level oscillations also keeps the model

tractable by only describing three oscillators. Second, unlike in the SCN, the components of

the DVC molecular clock have not yet been investigated, therefore using a detailed mechanistic

model, which would be based on the SCN molecular clock, could result in erroneous conclusions

when applied to the DVC. Furthermore, this investigation aims to understand how the phases

of PER2:LUC oscillations relate to each other, and this does not require a detailed description

of the molecular mechanism that regulates PER2 expression. A phenomenological description

appears most suitable, which leaves two types of models: 1) phase and amplitude models (such

as the van der Pol oscillator), or 2) phase models (such as the Kuramoto model). Modelling

the amplitude dynamics is problematic because the signal amplitude degrades due to both

luciferase depletion and decoherence between single cell oscillations [52], both of which require

substantial investigation before describing mathematically. A phase model then appears to be
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a suitable choice. These models are capable of capturing the evolution of the phase pattern

we wish to study, and they can link the internal dynamics of an oscillator (the period) and

the interactions between oscillators to the evolution of phase patterns. Starting from a phase

model has successfully described the phase difference dynamics between SCN nuclei [225], and

complex phase patterns that emerge from ensembles of cells [175].

Before deriving a phase model for the DVC oscillators, several critical assumptions must

be acknowledged. Firstly, the limit cycle behaviour of each nucleus is assumed, wherein each

oscillator in the DVC is considered to exhibit stable, periodic behaviour on its own, independent

of interactions with others. This assumption simplifies the complex dynamics into a manageable

form but Figure 2.3 shows that the amplitude of the signals decays over time, as described above.

We assume that the amplitude decay does not significantly alter the oscillatory dynamics and

that the ex vivo DVC system can be approximately described by three autonomous oscillators.

Secondly, we assume weak coupling between oscillators, implying that interactions are subtle

enough to influence only the phase, not the amplitude, of the oscillations. This facilitates

the use of weakly nonlinear mathematical tools but might not capture strong interaction

effects accurately. Thirdly, the model abstracts the system to single oscillatory variables—the

phases—neglecting other potentially influential variables like amplitude, which can be critical

in certain physiological contexts. Each of these assumptions allows the phase model to remain

tractable but introduces limitations that must be carefully considered when interpreting results

and applying them to experimental observations.

Each of the nuclei-wide PER2::LUC bioluminescent oscillations from the AP, the NTS and

the 4Vep are described by individual phase variables. The NTS is effectively bilateral in the

coronal sections that our data is from (these bilateral structures fuse together caudal of the

AP [112]), and we start by considering each bilateral NTS as an independent oscillator. In the

absence of interactions, an oscillator will evolve at its intrinsic frequency, !i, which is described

by the ordinary differential equation (ODE): d�i=dt = !i. The intrinsic frequency is related to

the intrinsic period, �i, by !i = 2�=�i. Interactions alter the evolution of phases, and hence

frequencies (since frequencies are described by !i(t) = d�i=dt), and they are usually assumed

to depend upon phase differences, �ij = �i � �j 2 (�12; 12] hrs. The functional form of the

interaction, which we refer to as Γ(�ij), is largely free to choose, however, a realistic function

should be periodic (Γ(�ij + 2�) = Γ(�ij)) due to the periodicity of the signal we aim to model. It

is also common to assert that the interaction function is odd (Γ(�ij�) = Γ(�ij)), which ensures

that the coupling is symmetric, such that the influence of one oscillator on another reverses when

their phase relationship is inverted. This assumption is typical because it reflects the symmetry

of many biological interactions, and it promotes either synchronization (�ij = 0) or anti-phase

synchronization (�ij = �), which are common states observed in biological systems. We initially

choose the conventional sin(�ij) interaction function, which is the dominant term in the Fourier

expansion of Γ(�ij), giving us a Kuramoto model [157]. This interaction function is an adequate
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starting place because the observed phase relationship involves two almost in-phase oscillations

coupled to a third, almost � out-of-phase oscillation (see Fig. 2.1C). A general three-state

Kuramoto model, unconstrained by experimental findings, can easily replicate such dynamics.

However, we shall see below that the leading order cos(�ij) term must also be included in the

AP-to-NTS coupling function for the experimentally-tunned model to capture the data.

We start by considering only the AP-NTS system in order to justify treating the bilateral

NTS as a single oscillator. Consider thhe AP (�a) oscillator connected to two NTS oscillators

(�n1 ; �n2). The phase dynamics are given by

(2.1)

�̇a = !a +Kan1 sin(�n1 � �a) +Kan2 sin(�n2 � �a)

�̇n1 = !n1 +Kn1a sin(�a � �n1) +Kn1n2 sin(�n2 � �n1)

�̇n2 = !n2 +Kn2a sin(�a � �n2) +Kn2n1 sin(�n1 � �n2);

First, assume that the oscillatory signals from both NTS are identical, such that !n1 =

!n2 = !n and �n1 = �n2 = �n. Next, we assume that AP-NTS interactions are symmetrical

across hemispheres, such that Kn1a = Kn2a = Kna and Kan1 = Kan21 = Kan. This results in

(2.2)

�̇a = !a + 2Kan sin(�n � �a)

�̇n = !n +Kna sin(�a � �n)

�̇n = !n +Kna sin(�a � �n):

Clearly, these assumptions result in either NTS being described by the same equation, hence it

makes sense to study only one variable to represent the NTS oscillations.

Let’s remain with the isolated AP-NTS system for now, the phase difference of which is

given by the Adler equation

(2.3) �̇an = !an � K̃an sin �an;

where K̃an = Kan + Kna, and !an = !a � !n < 0. The steady-state solution, ��an, and the

derivative at this solution, �, is given by

(2.4) sin ��an = !an=K̃an and � =
d�̇an
d�an

�����
��
an

= �K̃an cos ��an;

respectively. In our experiments, we observe small phase differences around zero between the

AP and NTS (Figs. 2.1E and 2.5C), and so we want a stable (biologically observable) solution

to be small, which we define as ��an 2 [6; 6] hrs ([��=2; �=2] rad). For this solution to be stable

we require � < 0, and since cos ��an > 0 this implies that K̃an > 0. However, this immediately

leads to a problem since for K̃an > 0, equation 2.3 only allows positive solutions; the minimum

phase difference possible, in the limit of infinite coupling, is zero. This does not agree with

our observations of constant phase differences below zero (see Figure 2.2, experiments 9, 12

and 13). Negative, stable solutions would be possible if there were an overlap in the intrinsic
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frequency distributions of the AP and the NTS, but our data reveals that this is not the case

(see Figure 2.5B). To facilitate stable, negative solutions to (2.3) we include a phase lag, 
, in

the argument of the interaction term such that

(2.5) �̇an = !an � K̃an sin(�an � 
):

The AN phase lag breaks the symmetry of AP-NTS interactions thereby allowing non-zero

interactions between the oscillators when they are perfectly in phase. It is analogous to including

a cos(x) component in the expansion of Γ(x) and we use it here to tune steady-state AN-PD

values. Analysis similar to that above shows that small ��an either side of zero are stable given

the appropriate choice of 
.

Considering now the full system, including the 4Vep oscillator, leads to the following set of

three ordinary differential equations (ODEs) for the phases of the PER2::LUC oscillations from

the AP (�a), the NTS (�n) and the 4Vep (�v)

(2.6)

�̇a = !a +Kan sin(�n � �a + 
) +Kav sin(�v � �a)

�̇n = !n +Kna sin(�a � �n � 
) +Knv sin(�v � �n)

�̇v = !v +Kva sin(�a � �v) +Kvn sin(�n � �v);

where �̇i = d�i=dt and phases are 24 hr periodic variables defined between -12 and 12 hrs. The

strength of an interaction from oscillator i to oscillator j is modulated by the scalar parameter

Kji 2 R, and the set of all coupling parameters describes an interaction network. Coupling

can be repulsive, with Kij < 0, or attractive, with Kij > 0. Both forms of coupling may

promote synchronisation, in the sense of the equivalence of frequencies, with attractive coupling

promoting in-phase synchrony (�ij ! 0) and repulsive coupling promoting anti-phase synchrony

(�ij ! 12 hrs).

The phase dynamics are not of direct interest to us here, and consequently, we make a

coordinate transform to describe the phase differences between the AP and NTS (�an = �a� �n)

and the AP and 4Vep (�av = �a � �v). The resulting system is given by

(2.7)
�̇an = !an � K̃an sin(�an � 
)�Kav sin �av

�̇av = !av � K̃av sin �av �Kan sin(�an � 
):

Here, the parameters !ij = !i � !j are the frequency detuning between oscillators i and j; that

is the differences between the intrinsic frequencies (related to the intrinsic period by !i = 2�=�i).
The coupling constants Kij are the scalar parameters that describes the influence that oscillator

j has upon oscillator i, and K̃ij = Kij + Kji. Note that we have assumed that 4Vep-NTS

interactions are negligible and so the appropriate coupling strengths have been set to zero

(Knv = Kvn = 0). The justification for this assumption is that the stability of the NTS-4Vep

PD is rarely observed (2/11 cultures), unless it is mediated by the AP. Furthermore, a detailed

bifurcation analysis (details not shown) indicates that these parameters are inconsequential. The
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AN phase lag parameter, 
, tunes the AN-PD and it is essential to obtain negative steady-state

AN-PD values. We wish to understand what set of parameters, if any, are consistent with the

phase difference trajectories we presented in Figure 2.1.

2.3.3 Model �tting indicates an ex vivo DVC topology

To estimate the coupling parameters in each of the subsystems individually describing the

AN-PD and the AV-PD, we focused on the top five most stable PD datasets that were unimodal

in their PD distribution (AN-PD: experiments 3, 4, 5, 7 and 12; AV-PD: experiments 3, 4,

7, 8 and 9; see Figure A.3). Some AN-PD trajectories that scored highly for stability were

also multistable, having two regions of nearly constant PD. We excluded these traces from the

model fitting because it was ambiguous which PD plateau should be considered the steady

state. The assumption is that the most stable data with a single PD plateau are simulated by a

model above the synchrony threshold. This allows us to compare the steady state of the model,

where variables are constant, with the approximately constant states in our data.

AP-4Vep Coupling. An AP-4Vep phase model consists of the equations

�̇av = !av � K̃av sin �av(2.8)

Ωav(t) = h!iav +
∆Kva

2
sin �av;(2.9)

where Ωij = ˙h�iij = 1
2(�̇i + �̇j) is the mean frequency of oscillators i and j and h�iij denotes

the mean. It is simple to compare this model to the AV-PD dynamics to estimate coupling

parameters. The steady state of equation (2.8) is given by ��av = arcsin
�
!av=K̃av

�
, hence

K̃av = Kav + Kva can be calculated since we know the constant AV-PD (��av; Figure 2.5C)

and the initial frequency detunings (!av; Figure 2.5B). Equation (2.9) for the mean frequency

of the AP-4Vep system can be rearranged to calculate the difference in the coupling terms

∆Kav = Kva � Kav = 2 (Ω�av � h!iav) = sin ��av, where Ω�av is the mean frequency of the two

oscillators whilst their PD is constant.

AP-NTS Coupling. Estimating the AP-NTS coupling parameters and phase lag is less

straightforward because the extra parameter results in degeneracy: different combinations of

(K̃an; 
) lead to the same steady state ��an. To identify the parameter set that best describes

the data, an extra constraint, the time taken for perturbations to decay, is used. The PD and

mean frequency of AP-NTS system is given by

�̇an = !an � K̃an sin(�an � 
)(2.10)

Ωan(t) = h!ian +
∆Kna

2
sin(�an � 
);(2.11)

Linear stability analysis tells us that a small perturbation from the steady state will exponentially

decay at a rate � = �K̃an cos(��an� 
). Combining this with the expression for the steady state,

sin(��an � 
) = !an=K̃an, gives an expression for K̃an in terms of a linear decay rate and initial
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detuning: K̃an =
p
�2 + !2

an. To calculate linear decay rates from the most stable subset of data,

we fit exponential curves (y = ae�t + b) to the AN-PD time series when the PD is sufficiently

close to the steady state (see Figure A.2). With K̃an known, the phase lag 
 can be calculated

using the expression for the steady-state of (2.10). The equation for the collective phase gives

an expression for the difference in coupling parameters, ∆Kan = 2 (Ω�an � h!ian) = sin(��av � 
),

which allows us to estimate the coupling constants Kan and Kna (Figure 2.5E). Figures A.1

and A.2 show how the two-oscillator models compare to individual PD data.

A selection of PD trajectories that remain constant for over 24hrs are used to estimate

the parameters in the model above, the mean values of which are presented in Table 2.1. To

simplify the estimation process, the model is decoupled into two subsystems (AP-NTS and

AP-4Vep systems) and each is fit to data separately. Figure 2.5A illustrates this process. The

derivation of the equations in 2.5A and a more detailed description of how constant PD states

are analysed can be found in the Methods section. Once the AP-NTS and AP-4Vep models are

fitted, they can be coupled together to form a three-oscillator system. This recoupling results

in a slightly worse fit of the three-oscillator model to the data, but such small changes in the

final steady-state PDs were found not to be important for the purpose of the model.

Parameter Mean value STD
�a 25.7 hr 1.75 hr
�n 22.5 hr 0.72 hr
�v 23.4 hr 2.03 hr
Kan 0.031 0.021
Kna 0.041 0.020

 0.770 rad 0.23 rad
Kav -0.045 0.039
Kva -0.007 0.015
Knv 0
Kvn 0

Table 2.1: Intrinsic oscillator periods estimated from experimental data and fitted model
parameters of (2.6) and (2.7) for fully syncrhonized AP-NTS-4Vep oscillations, and their
standard deviations (STD). Note that the final two parameters are assumed to be zero (see
text).

The intrinsic periods of each oscillator were estimated directly from the experimental data.

For the AP, we calculate this period as the time-averaged period of PER2::LUC bioluminescent

signals from surgically isolated and spatially separated AP explants (n = 4; Figure 2.5B), which

have an average period of 25:7� 1:75 hrs (mean � SD). We calculate the intrinsic period of the

NTS in a similar manner, where now one bilateral NTS is surgically separated (see Figure 2.7F

and [52] for details), which has a period of 22:5�0:72 h (n = 5; Figure 2.5B). In particular, there

is no overlap between the intrinsic period measures of the AP and NTS. Surgical separation of

the 4Vep from the surrounding oscillators is technically challenging; therefore, we estimate the
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intrinsic period as the 4Vep period in experiments where the AV-PD is least stable, which has

a mean of 23:4� 2:0 hrs (n = 6; Figure 2.5B). Notice here that there is considerable overlap

between the intrinsic frequencies of the AP and the 4Vep.

Figure 2.5: Estimating model parameters using the most stable PD recordings. (A) Constant
PD trajectories can be analysed to find the steady state PD (��ij) and the collective period of the
two oscillators when their PD is constant (��ij), which is used to estimate the parameters of two
two-oscillator models (2.9)-(2.11). Recoupling the two systems creates a three-oscillator model
that closely matches the data. (B) Intrinsic period parameters. Note that �a and �v overlap. (C)
The constant PD between the most stable oscillator pair and (D) the corresponding collective
periods. (E) The coupling parameters and AN phase lag are estimated from the most stable
PD signals.

The numerical values of the constant PD states that occur between the AP-NTS (blue)

and AP-4Vep (orange) are plotted in Figure 2.5C. For the AP-NTS, a small PD around zero

(0:55 � 1:06 hrs) is (semi) stable, and for the AP-4Vep, constant PDs arise at higher values

(10:9� 2:95 hrs). In one case, the constant AV-PD is negative. The period of each oscillator

during a constant PD state is calculated and averaged over time. The difference in period

between two oscillators while their PD is constant is always less than 4% (Figures A.1 and

A.2) and so the collective period of the coupled oscillators is defined as the average of the two

individual periods. The collective periods of the coupled oscillators when their PD is constant

(��an and ��an) are shown in Figure 2.5D. Each period is a compromise between the intrinsic

periods of the two participating oscillators. The intrinsic periods, constant PD states, and their

corresponding collective periods are used to estimate the model parameters, which are plotted

in Figure 2.5E. The intrinsic period parameters of the model are averages of those calculated in

Figure 2.5B.
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2.3.4 DVC is subcritically coupled ex vivo

Starting from the fully synchronised AP-NTS-4Vep system (2.7) using the parameter values

in Table 2.1, we examine the effect of reducing the coupling by introducing a global coupling

parameter s such that Kij ! sKij , for all i; j. Reducing s is analogous to reducing all coupling

parameters by the same fraction, and the result of varying the total coupling strength is seen in

Figure 2.6. For strong coupling (insert (i)), the system quickly decays from its initial conditions

to its steady state. The bifurcation diagram shows that as the coupling decreases, the steady

state for both �an and �av decreases along a parabolic curve. Associated with lower coupling

strength is a decrease in decay rate (insert (ii)). The model has a fold bifurcation close to s = 0:3,

below which the synchronous state does not exist. The simulated AN- and AV-PD’s have initial

transients that give way to drifting solutions, with the slope of the drift increasing with lower

s (inserts (iii) and (iv)). Our experimentally obtained PD dynamics (Figure 2.1E, 2.1F and

Figure 2.2) are qualitatively similar to the dynamics of the system around the bifurcation point,

indicating that the ex vivo dynamics of the DVC system is close to a synchronisation transition.

Figure 2.6: Simulated PD dynamics change as the global coupling parameter decreases. (A) The
structure of the AP-NTS-4Vep oscillator network with the AP in the centre. (B) Bifurcation
diagram showing how the steady state ��an changes as the global coupling strength changes.
Solid lines are stable solutions and dashed lines are unstable solutions. Inserts (i-iv) show the
AN-PD (blue) and AV-PD (orange) dynamics for different values of global coupling, s. The
parameters of all the simulations are as given in Table 2.1, the only difference between the
simulations being the chosen initial conditions and the value of s.
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2.3.5 Coupling decay simulates the data better

A significant difference between the ANV model and our data is that the experimental PDs

occasionally show a rapid deviation from the constant or drifting state (Figure 2.1E and 2.1F).

Furthermore, the model does not capture the apparent loss of synchrony that occurs after 60+

h in culture (for example, see experiments 5, 7 and 12 in Figure 2.2). This behaviour resembles

the phase slip observed between two nearly synchronised oscillators, but our simulations of

this scenario could not replicate the rapid nature of these slips. A reasonable hypothesis is

that the coupling between the oscillators gradually decreases in the ex vivo slice. To investigate

this, we introduce a time dependence into the global coupling parameter. Furthermore, because

the communication mechanisms of the AP-4Vep and AP-NTS are likely different because the

4Vep is a non-neuronal structure, we introduce two separate time-dependent coupling control

parameters, sn(t) and sv(t), to describe how these interaction mechanisms can change in time

(Figure 2.7A).

In Figure 2.7 we simulate an ensemble of AP-NTS-4Vep oscillator systems with varying

global coupling decays and intrinsic frequencies. Global coupling parameters are constant or

linearly decaying, with various initial values and decay rates (Figure 2.7B). Mathematically, this

corresponds to si(t) = max(s0;i � cit; 0). An initial value of s0;i = si(0) = 1 corresponds to the

coupling strengths in Table 2.1. Different initial values are chosen to encompass the variability

we observe in the initial stability of the PD dynamics. For example, both PDs in experiment 11

(Figure 2.2) quickly become unstable and we use sn(0) = sv(0) = 0 to simulate this. Some of the

PD data are similar to the subcritical dynamics of Figure 2.6 (iv), and we use constant control

parameters at various values to simulate this behaviour. To simulate PD data that initially

seem stable but subsequently drift, a constant decay is introduced into the coupling control

parameters. To achieve a qualitative likeness to the experimental data we use linear decays that

decline to zero coupling between 100-200hrs. Exponential decays of the overall coupling were

also simulated, but the resulting PD dynamics were not noticeably different from a linear decay.

To incorporate the natural variation of the oscillator’s intrinsic frequencies, we also varied the

intrinsic frequencies of the model AP and 4Vep oscillators. The intrinsic frequency calculations

of the NTS (Figure 2.5A) are considerably less variable than those of AP and 4Vep, so this

parameter was always set to the average value.

By varying the parameters described above, we were able to qualitatively match the model

to most of the individual PD dynamics, which are plotted in Figure 2.7C and 2.7E. These

simulations capture the dynamics that are persistently stable throughout the recording, as

well as those that instantly drift. More complicated phase evolutions, including an increasing

AN-PD (Figure 2.7C; dark blue curve), nearly constant PDs followed by rapid drifts (Figure

2.7C; teal curve) and multiple near-constant regions in the same time series (Figure 2.7C; black

curve) are also simulated. A full likeness of any simulation to its corresponding experimental

PD was not the objective of our simulations, so we have not rigorously estimated the model
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Figure 2.7: AP-NTS-4Vep coupled oscillator with decaying coupling parameters simulates
multiple features of the data. (A) Network topology of the model. The coupling control
parameters sn(t) and sv(t) are specific for AP-NTS and AP-4Vep interactions respectively. (B)
Time course of the coupling control parameters. (C)-(D): Simulated AN-PD and AV-PD traces,
respectively, with initial conditions taken from the data. (E) Periods of the three biological and
simulated oscillators across a baseline experiment or simulation. (F) Schematic illustration of
the surgical disconnection experiment performed in [52] and its in silico analogue. (G) Results
of the simulated NTS disconnection experiment for observed periodicity of oscillators.

parameters. Instead, we aim to capture the general trend of the PD dynamics between DVC

oscillators. In this sense, Figures 2.7C and 2.7D compare well with Figures 2.1E and 2.1F.

Further comparisons between the model and the data can be made by assessing the average

period throughout the recording (or simulation) time (Figure 2.7E). We observe that the

simulation periods match well with the periods calculated from the data. In particular, note

that even without varying the intrinsic frequency parameter of the NTS, a realistic variation in

the observed period is simulated. Our model can also be tested against an experiment performed

in [52] in which a bilateral NTS is surgically disconnected from the surrounding DVC (Figure

2.7F). We previously observed that this intervention leads to the disconnected NTS (NTSd)

oscillating much faster than the connected NTS (NTSc), while the AP (APx) frequency is not

significantly altered. Here, we simulate the NTSd using a completely uncoupled NTS oscillator.

The APx-NTSc-4Vep system is simulated by taking the model in Figure 2.7A and reducing

the NTS to AP connectivity by one-half (Kan ! 1
2Kan; the global coupling parameters, si are

omitted). To understand this, see that the 2Kan term in (2.2) has a factor of 2 because of AP

input from two identical NTS oscillators. Removing one oscillator halves the coupling strength.

The effect of this coupling reduction is shown in Figure 2.7G. The period of the AP with one

bilateral side of the NTS removed is similar to the period of the AP when full NTS connectivity
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is present. As expected, the period of the NTSd is a single value: the intrinsic period of the

NTS, since this parameter is not varied and no other oscillators influence its dynamics.

2.4 Discussion

Instability of the phase relationship and its implications for the DVC and other
clock networks. In a previous exclusively experimental study, a spatiotemporal pattern in

gene expression rhythms was observed between three distinct regions of the hindbrain: the AP,

the NTS and the 4Vep [52]. The pattern formed by this triad of oscillators is a simple phase

ordering, where the AP phase leads the three oscillators, with the NTS following approximately

two hours behind and the 4Vep in almost antiphase to the others, reaching its zenith around 9

hours after the AP (Figure 2.1B and 2.1C). If this pattern persisted throughout a recording, in

which the DVC network is removed from other potentially rhythmic inputs, it can be concluded

that the network itself establishes the pattern. Conversely, if the pattern is only maintained

during the initial few days of recording, it would indicate that in vivo processes are required and

the pattern we observe reflects its state in the intact animal. To gain insight into the dynamics

of the phase pattern, we used wavelet analysis [228] to obtain high-resolution PD (and period)

dynamics. Our results show that the phase pattern is neither completely stable nor unstable ex
vivo. In some cases, the PDs that define the pattern are remarkably stable and in other cases are

unstable (Figure A.3). An initial inspection would imply that the DVC circadian properties are

maintained via a combination of inter-network communication and external rhythmic inputs.

External rhythmic input potentially shapes the phasing of the DVC network since the NTS is

innervated by brain structures such as the lateral hypothalamus and the arcuate nucleus of

the hypothalamus [112], which are also rhythmic in the expression of PER2 [1, 113], as well

as peripheral oscillators in the gut and nodose ganglia [141, 237]. However, we argue that the

observed dynamics can be effectively explained by three interacting oscillators, where their

connectivity is reduced compared to conditions in vivo and is slightly variable between tissue

preparations.

We demonstrate that the DVC phase dynamics can occur from the interactions of coupled

oscillators using a phase model with an experimentally derived network topology. This model

leads to phase dynamics, observable periods, and the response to NTS disconnection similar

to the biological system (Figure 2.7). The range of PD evolutions is explained by two factors:

first, the couplings between DVC nuclei are close to a synchrony threshold and, second, these

coupling mechanisms diminish over time. In Figure 2.6 we show that as global network coupling

reduces below a fold bifurcation, steady states give way to PD trajectories with almost invariant

plateaus. Further reduction of the coupling results in rapidly changing phase differences. Mostly,

our data resemble an oscillator system near this synchronisation transition, which alludes to

the possibility that in the absence of external inputs, the three oscillators can maintain stable
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phase relationships. Experiment 3 (Figure 2.2) is a potential realisation of this. Unsurprisingly,

cultured oscillators may have weakened connectivity, since their preparation into thin (250 �m

thick) slices can remove neural projections, thus weakening at least one form of inter-oscillator

communication [52]. Small differences in the angle of tissue slicing may be a source of variation

in the global coupling that we observe. Circadian oscillators can also exert their influence using

paracrine mechanisms [48, 137], as suggested by the influence of circadian oscillations in the

choroid plexus of the 3rd ventricle on the period of the SCN [226]. Paracrine signalling may be

utilized between the non-neuronal 4Vep and the AP, which is more densely populated with glial

cells than the NTS [163, 202], and a candidate signalling factor is transforming growth factor-�
(TGF-�) which has recently been shown to mediate peripheral oscillator interactions [84]. If

paracrine signaling is utilised, this communication pathway will be significantly weakened or

absent in our experiments due to the relatively large volume of culture medium compared to the

size of the explant. It is worth noting that in this study we have only considered how oscillator

coupling and intrinsic frequency differences affect phasing. Other properties such as oscillation

amplitude, intercellular coupling strength, and the aftereffects of in vivo zeitgebers [3, 11, 105]

may also determine DVC phasing, and future studies should consider these effects.

It is possible then that the system we have recorded from is in a state of reduced connectivity,

and that in vivo there is sufficient coupling between the oscillators for synchronisation and a

persistent phase pattern. Our model would suggest that stronger coupling is associated with

larger phase separations between the NTS/4Vep and the AP (Figure 2.6). This effect can

be observed with methods used in vivo to quantify clock components in the AP and NTS

[52, 220], which have a PD close to a few hours. Subcritical coupling may also be biologically

functional. Previous studies [30, 229, 266, 272] indicate that subthreshold coupling facilitates a

more flexible oscillator system, capable of responding to a wide range of cues. The DVC is a

site of significant information integration from central and peripheral areas, some of which are

rhythmic. It may be advantageous for oscillator phasing to be altered by external cues such

that the network PDs can encode relevant information.

The DVC phase dynamics is captured best when the global coupling parameter is separated

into an AP-NTS coupling, sn, and an AP-4Vep coupling, sv, both of which can decay over time

(Figure 2.7A and 2.7B). A gradual time decay allows the system to exhibit synchronous (or

near-synchronous) behaviour before showing rapidly changing PDs, indicative of very weak

coupling. Experiments 5, 8 and 11 are examples of such behaviour. In experiment 7, a rapid

reduction in sn compared to sv leads to the AP synchronising with the 4Vep and becoming

faster than NTS, leading to increased AN-PD (Figure 2.2). Other dynamic profiles that are

readily simulated using a decaying global coupling, but not static couplings, include the AN-PD

traces in experiments 9 and 11. Decreasing coupling probably reflects a deterioration in tissue

integrity. Even in the SCN, it is well known that single-cell autonomous circadian oscillations

desynchronise over time, likely due to a reduction in cell communication [179, 334], which we
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have also observed between single cells of the AP and NTS [52]. To gain a better understanding

of the coupling decay process, our phase model could be extended to the single-cell level, where

phases of individual cells are modelled. The desynchrony observed between cells within DVC

structures could then be incorporated into a model to describe how, for example, AP-NTS

coupling deteriorates as a result of this reduced cellular communication between the AP and

NTS.

We have compared our biological system to a deterministic mathematical system; however,

biological systems are subject to noise. We have not included the effect of noise in our model,

but it is well known that noise tends to smear the synchrony transition, making a bifurcation

point impossible to calculate [249]. Our data are likely to show such behaviour.

Model parameters and their implication for the DVC The coupling parameters

calculated between the AP and NTS oscillators are both positive and comparable in magnitude,

with the AP to NTS coupling around 30% larger. In our previous experimental investigation

[52] we concluded that the NTS had a negligible effect on the periodicity of the AP, since

surgical removal of one side of the NTS did not alter the period of the AP. We have shown

here that this result is possible even when there are reciprocal interactions between the AP and

the NTS (Figure 2.7). This occurs because removing one side of the NTS (Kan ! 1
2Kan) only

reduces the total coupling by around 20%, which is similar to reducing s = 1! 0:8 in Figure

2.6. Hence, the overall state of the system is relatively unaffected by the modification.

Communication of circadian phases between the AP and NTS likely involves action potential-

dependent neuronal coupling. Functional neural projections from AP to NTS remain viable

within our slice preparations [2, 52, 120, 219], and a previous experimental study indicates

that the NTS is more responsive to AP stimulation at night [52] and that both structures

exhibit daily variation in neuronal excitability [51, 52]. Neural projections from the AP to the

NTS are extensively documented [112, 279, 317], and, notably, noradrenalin can colocalize with

glutamate at the AP axon terminals in the NTS [255, 324]. It is currently unclear whether

this or other AP-derived signals are recruited to communicate the circadian phase, and future

studies are necessary to resolve this. In addition, the neurochemical phenotype of oscillating AP

and NTS cells is unknown. Both structures contain multiple cell types with differing functions,

and identification of the key neurochemicals coexpressed with the molecular clock machinery

will progress our understanding of both the mechanism and function of circadian rhythms in

the DVC. Additionally, dual colour bioluminescence technology [278], in combination with the

modelling framework presented here, could illuminate the roles that individual cell populations

play in orchestrating DVC rhythmicity. Our results indicate that NTS-to-AP communication

is also important for maintaining circadian phasing between the two structures. Anatomical

evidence supports the possibility of this pathway [279, 317, 323], however, functional connectivity

should be confirmed and the efferent types of NTS cells should be identified.
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We restricted our modelling to coarse-grained nuclei-wide rhythms, without treating the

single-cell oscillations of the AP and NTS that have been previously reported [52]. The reason for

this approach was due to insufficient cellular resolution in our 4Vep PER2::LUC images, and as

such we aimed to constrain our approach. Since our analysis indicates that the AP and NTS can

synchronise independently of the 4Vep, it will be of interest to apply other techniques such as

that employed by [224] to the AP and NTS. In that study, individual cellular oscillations of the

SCN subcompartments (core and shell) were modelled using the same phase oscillator framework

as in this chapter, and intraSCN-wide interactions emerge from many cellular interactions.

Taking this approach and simulating single-cell oscillations could yield results similar to those

we present here, but the additional complexity provided by a large array of oscillators could aid

in resolving why a phase lag is required in the whole-structure description. This is a limitation

of a simple phase oscillator description, and more mechanistically detailed models capturing

the dynamics of intracellular clock gene expression may be necessary [19, 100, 101].

In deriving the DVC model, the interaction function was initially assumed to be the odd,

first-order term in the expansion of the general periodic coupling function, Γ(�ij). This choice,

driven by simplicity, necessitated an even component for the AP-NTS interaction, leading to the

phase lag 
. Recent advancements in the estimation of phase coupling functions suggest more

sophisticated approaches for identifying the functional form of the interaction term. Tokuda et
al. describe a method to identify first-order phase coupling (i.e., a sin(�ij) + b cos(�ij)) and the

intrinsic periods of a network of oscillators using only single oscillatory observables for each

oscillator [312]. This approach is highly applicable to the data presented in this chapter, and

future work could refine the DVC model by using this technique. Describing coupling functions

beyond the first-order approximation could be beneficial for capturing nuanced effects beyond

the scope of traditional phase models, as described by Wison and Ermentrout [331]. While our

focus has been on pairwise coupling, methods that consider higher-degree couplings, including

triplets and quadruplets of interacting oscillators, also exist [298]. Considering high-degree

coupling may be useful for DVC circadian modelling, especially as new autonomous oscillators

are discovered in this region. Moreover, machine learning software such as SINDy (Sparse

identification of nonlinear dynamical systems) has proven very effective at estimating dynamical

system equations from data [38]. Using a similar approach may be fruitful for uncovering the

governing equation of the DVC phase dynamics, including the coupling terms.

A feature that could be included in a range of future models is the existence of both

neuronal and non-neuronal couplings. Tetrodotoxin (TTX) selectively blocks voltage-gated

sodium channels, which are crucial for the generation of action potentials, thus effectively

silencing electrical synaptic transmission, and its application has differential effects on the AP

and NTS. Cellular oscillations within the NTS show more pronounced desynchrony compared

to the AP after TTX application [52]. This indicates that the AP maintains its rhythmicity by

utilising action potential independent mechanisms, such as gap junctions or communication
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among non-neuronal cells. It is reasonable to assume that TTX only affects the coupling

between cells, without impinging upon the intrinsic molecular oscillation, because single-cell

molecular oscillations appear to continue without any disruption during long-term (1-7 days)

TTX applications [13]. It should be noted that both synaptic and gap junction-mediated

coupling is observed between SCN pacemaker cells [31, 32, 54]. Using theoretical models to

discriminate the role of these and other forms of intercellular communications will be useful in

understanding this cell-cell coupling in these structures.

Identification of the physiological mechanisms that lead to a phase lag in the AP-NTS

coupling is also an aim for future studies. We have used this parameter to tune the AP-

NTS phase difference because realistic phase differences are not obtainable without it. We

estimate the phase lag to be 2.9 hrs, however, it is a phenomenological parameter and its

biological significance remains to be determined. Currently, it represents an unknown in AP-NTS

communication and it could be an emergent property of multiple non-linear oscillators. It is

interesting that stronger AP-NTS coupling leads to a larger phase separation between the

oscillators (Figure 2.6), as this is the opposite of what others have found in coupled oscillator

systems [272]. This emphasises that there are unknown processes underlying the circadian

coupling of the AP-NTS that require further investigation. An interesting possibility is that

the glial barrier that separates the NTS from the AP can limit communication between these

structures. Experimentally, Chrobok et al. showed PER2::LUC expression is rhythmic in this

area and that the barrier is more permeable at night than during the day [52]. Therefore, this

barrier is potentially a fourth DVC oscillator that interfaces with both the AP and NTS.

Our model fitting process indicates that phase communication is negligible from the AP

to the 4Vep and significantly stronger from the 4Vep to the AP, which is reflected by the

parameters in Figure 2.5E. Our analysis suggests this AP-4Vep topology because the frequency

of synchronised AP-4Vep clusters is much closer to the intrinsic frequency of the 4Vep than

the AP. However, the intrinsic properties of the 4Vep are not easily examined due to its small

size and position between the other oscillators. Here, we have estimated its intrinsic frequency

from experiments in which the 4Vep phase dynamics resemble an uncoupled oscillator. Future

studies should aim to culture the 4Vep oscillator separately from the rest of the DVC, first to

assess the autonomy of the oscillator and, secondly, to calculate its true intrinsic frequency.

Currently, it is not known how the ependymal cells in the 4Vep communicate with the AP.

Unlike neurones, ependymal cells do not have axonal projections and it is unknown whether

they secrete factors locally within the DVC to influence the other circadian oscillators. Despite

the uncertainty, it is interesting to speculate that the unidirectionality arises as a consequence

of the access of 4Vep cells to the cerebral spinal fluid, which contains oscillating concentrations

of signaling factors secreted by other circadian oscillators [226]. This could position the 4Vep

as a receiver and integrator of circadian signals, relaying the rhythmic output of the rostrally

positioned hypothalamic nuclei [113, 286] to the dorsal vagal complex.
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The DVC serves as a site for the integration of central (brain) and peripheral physiology.

It is involved in many processes, including the regulation of food intake and the control of

heart and lung activity [126, 192, 256] that vary over the day-night cycle. Circadian oscillations

within the DVC are altered in unhealthy metabolic or cardiovascular states [123, 138, 215],

and the relationship between oscillator phases may encode functionally relevant information.

Here, we have provided a simple explanation for how phase difference patterns are maintained

between the three DVC oscillators. With relatively simple network coupling, a phase model

tuned to the DVC can reproduce the phase difference dynamics observed from wavelet analysis

of rhythms in PER2::LUC expression. Further experimental and modelling work will be key to

illuminating how intrinsic circadian oscillators interact with recurrent input from the periphery

to shape the activity of the DVC across 24hrs.
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Chapter 3

The circadian regulation of the
TIDA network

3.1 Introduction

The lactotrophic axis (see Section 1.2.1) stands apart from the other neuroendocrine axes since it

is primarily under inhibitory control, whereas other pituitary cells are simulated by hypothalamic

signalling factors. Under basal conditions, PRL secretion is primarily regulated by dopamine

(DA), which binds to the D2 receptor on lactotrophs and facilitates their hyperpolarization

by activating an inwardly rectifying potassium current [110, 234, 306]. The primary source of

lactotroph-inhibiting DA is derived from the network of tuberoinfundibular dopaminergic (TIDA)

neurons located in the dorsomedial arcuate nucleus (dmARC), adjacent to the third ventricle

[89, 92]. Neurones in this population project their axons into the hypophyseal vasculature, a

collection of blood vessels that deliver hypothalamic signalling molecules to the anterior pituitary.

Dopamine is also delivered to the pituitary directly by two other neuroendocrine dopaminergic

populations: the tuberohypophyseal (THDA) and periventricular-hypophyseal (PHDA) cells,

which target the posterior and intermediate lobes of the pituitary gland respectively. The

relation between THDA- and PHDA-derived DA and PRL secretion is less well studied than

TIDA-derived DA [70], however, it is established that TIDA neurones are the primary source

of PRL inhibiting DA [180, 239, 284].

The circadian PRL rhythm (see Sec. 1.2.1) is, at least in part, mediated by a daily rhythm

in DA turnover in the median eminence (ME). In the first study to link PRL rhythmicity with

TIDA rhythmicity, Mai et al. [198] measured the levels of the TIDA-derived DA metabolite

dihydroxyphenylacetic acid (DOPAC) and dihydroxyphenylalanine (DOPA) in the ME, along

with measuring serum PRL levels, of ovariectomized (OVX) female rats. Other studies use

similar methods, so it would be constructive to briefly explain these. Due to the fact that

TIDA neurones are defined by the location of their secretory output in the ME, an accessible

method to infer neural population activity is to measure the ratio of DOPAC to either DA or
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Figure 3.1: Schematic diagram of the lac-
totrophic axis in the coronal plane. Tub-
deroinfundibualr dopaminergic (TIDA) neu-
rones (green) form a network of electrically
and chemically coupled cells in the dorso-
medial hypothalamus. TIDA neurones pro-
duce dopamine and gamma-aminobutyric
acid (GABA; an inhibitory neurotransmit-
ter) and innervate the external zone of the
medium eminence. Dopamine released from
TIDA axons enters the hypophyseal vascu-
lature and is transported to the anterior
pituitary gland. In the pituitary, dopamine
inhibits the activity of lactotroph cells (pur-
ple) by binding to the D2 receptor (green)
and activating an inwardly rectifying K+

current. This figure is from [187], which
gives comprehensive review of TIDA neu-
rone regulation of prolactin release.

DOPA (a precursor of DA) in the ME. Much of the work investigating the daily regulation of

TIDA neurones uses this as a proxy for network activity [69, 218]. OVX refers to the removal

of the ovaries and is performed to nullify the influence of ovarian hormones. The study found

that the PRL rhythm in OVX rats, initiated with oestrogen in this case, was accompanied

by a rhythmic decrease in ME DOPA and DOPAC that coincided with the afternoon surge

in PRL, similar to what was found in [284]. The rhythm was entrained to light-dark cycles

and persisted under constant dark conditions [198, 277]. Mai et al. also found evidence that

the dopaminergic rhythm exists without estrogen treatment [198], indicating that the TIDA

rhythm is initiated in a manner distinct from that of PRL. A subsequent study by Sellix and

Freeman used a similar method to investigate the rhythmic activity of all three hypothalamic

DA populations [277]. The authors found that the TIDA and PHDA populations, but not the

THDA population, have circadian rhythms in their activity. These results are from OVX rats

without a PRL rhythm-inducing stimulus given, supporting the idea that a DA rhythm does

not require a mating stimulus or a PRL rhythm.

Initial analysis of the daily TIDA rhythm indicated that DA activity is influenced by a

light-responsive oscillator [198, 277]. The suprachiasmatic nucleus (SCN) was known to be

necessary for the PRL rhythm since a lesion of the master clock prevented daily PRL surges

[26, 198]. One lesion study also found that without the SCN there was no day-night variation

in DOPA/DOPAC [198]. The SCN is rostral and adjacent to the dmARC [44] and early

tracing studies show that the SCN sends projections to the ARC [232, 328]. In particular, SCN
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projections directly innervate TH-expressing cells in the ARC that themselves project to the

ME, suggesting that the SCN may directly communicate with TIDA neurones [128].

Further details were elucidated by Gerhold et al. [96] who identified VIP fibres in close

proximity to DA neurone somata and dendrites in rat ARC slices stained for VIP and TH.

This study also found that the VIP receptor VPAC2 is expressed in TH+ cells and the level of

expression was higher for OVX rats treated with oestrogen compared to rats without oestrogen

treatment [96]. The same group found that the introduction of VIP antisense oligonucleotides

(ASO), which attenuate VIP expression, into the SCN prevents the daily drop in TIDA activity

[97]. A similar methodology used by Egli et al. [78] confirms that VIP ASO injected into the

SCN prevents PRL rhythmicity, as well as oxytocin rhythmicity. ASO for the clock genes Per1,

Per2 and Clock injected into the SCN of cervically stimulated OVX rats also disrupted DA

rhythmicity in the ME and abolished serum PRL rhythmicity, emphasising the importance

of a functional SCN in this aspect of lactotrophic physiology. Most SCN neurones produce

gamma-aminobutyric acid (GABA) as well as neuropeptides such as VIP [330], and central

administration of the GABAA receptor antagonist bicuculline prevents both the daily drop

in ME dopamine and the subsequent surge in PRL [165]. Together, these results indicate a

clear involvement of the SCN, through the actions of VIP and GABA, in timing and possibly

driving daily changes in TIDA activity in rats. The daily regulation of TIDA neurones in other

species may not work similarly. A recent study found no evidence of colocalization of VIP or

VIP receptor mRNA with TH neurones in the ARC of mice [297].

Another neuropeptide produced and secreted by the SCN is gastrin-releasing peptide (GRP),

which plays a role in communicating photic information in the SCN [37, 207, 330]. GRP has been

known to suppress PRL production since the 1980s due to experiments in which hypothalamic

GRP is immunoneutralized, leading to elevated serum PRL levels some three hours later [142].

Furthermore, intraventricular injection of GRP, when administered with the DA antagonist

domperidone or the Met-enkephalin analogue FK33-824, blunted the increase in PRL that

is usually caused by these compounds [204]. Larger doses of domperidone, or intravenous

GRP injection, lead to an increase in PRL, indicating that GRP action is on neurones in

the hypothalamus [204]. Bombesin, a closely related peptide to GRP, blocks daily changes in

PRL and TIDA activity in oestrogen-primed OVX rats when injected into the ventricles [197].

Experiments in which the SCN is lesioned or bombesin is injected precisely into either the SCN

or the ARC have concluded that bombesin acts through the SCN to disrupt the TIDA and

PRL rhythms [197].

In addition to regulation by the master pacemaker in the SCN, there is evidence that

the daily TIDA rhythm may be driven by the internal clockwork of TIDA cells. Oscillation

in PER2::LUC has been observed in mouse dmARC slices [113], and the location of cellular

oscillations coincides with the location of TIDA cells (compare [113, Fig. 1] and [296, Fig. 1B]).

Furthermore, clock gene expression has been reported in both rat and mouse TIDA neurones
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[153, 276]. Thus, it is possible that both intrinsic circadian rhythmicity and SCN communication

influence the day activity of TIDA cells.

It appears that the circadian rhythm in medium eminence DA turnover, which drives daily

PRL surges, could be due to both neuropeptinergic signalling from the SCN and intrinsic

clockwork within TIDA cells. In this chapter, we record dmARC activity on multi-electrode

arrays and, using a novel TIDA detection algorithm, identify TIDA cells to understand how

their activity is modulated by neuropeptides and changes throughout the day. We find that

electrical activity is different between night and day, indicating that the circadian clock in

TIDA cells drives changes in neural activity. Furthermore, we show that both VIP and GRP

elicit robust changes in TIDA activity that, in the case of VIP, is different across the day.

3.2 Methods

3.2.1 Animals

Male Sprague-Dawley rats (purchased from Charles Rivers and Envigo, UK), 21-42 days old,

were group housed under standard 12:12 light-dark lighting conditions with lights on at 08:15

AM or reverse lighting conditions (12:12 light-dark) with lights on at 08:15 PM. Animals had

ad libitum access to standard rat chow and water.

3.2.2 Tissue

Rats were culled between ZT2-4 / ZT10-11 with an overdose of sodium pentobarbital and

transcardially perfused with an ice cold, oxygenated (95%O2/5%CO2) “cutting” solution

containing the following (in mM): 214 sucrose, 2.1 KCl, 1.2 NaH2PO4, 26 NaHCO3, 10 glucose,

4 MgCl and 1 CaCl2. The brain was removed and placed in the same cutting solution, the

meninges were carefully removed and the brain was cut and glued to a vibratome (Campden

Instruments, Loughborough, Leics., UK) and 250 �m slices containing the arcuate nucleus

(ARC) were prepared. The rostral tip of the ARC was identified by the appearance of the

median eminence and the continuation of the 3rd ventricle. Slices were subsequently placed

into a 32�C holding chamber for 25 minutes containing continuously oxygenated “recording”

solution consisting of (in mM): 127 NaCl, 2.1 KCl, 1.2 NaH2PO4, 26 NaHCO3, 10 glucose, 1.3

MgCl and 2.4 CaCl2. After this, the slices were allowed to recover in room temperature (22�C -

24�C) recording solution for a minimum of 1 hour before recording.

3.2.3 MEA recordings

Slices were transferred to the MEA2100-System recording well (Multichannel Systems GmbH,

Germany) and placed on top of the 6�10 perforated multi-electrode arrays (MEAs; 60pMEA100/30iR-

Ti, Multichannel Systems). Slices were continuously perfused with fresh recording solution
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at room temperature for the duration of the experiment and allowed to recover in the well

for 30 minutes, or until the average activity stabilised before recordings were made. The raw

data was sampled at 25 kHz and acquired using MultiChannel Experimenter 2.10.0 software

(MultiChannel Systems).

3.2.4 Drugs

The drugs gastrin-releasing peptide (GRP, 200nM; Phoenix Pharmaceuticals, Burlingame, CA,

USA), neuromedin-B (NMB, 300nM; Tocris, Abingdon, UK), neuromedin-C (NMC, 200nM;

Tocris, Abingdon, UK) and thyrotropin-releasing hormone (TRH, 1�M; Phoenix Pharmaceuti-

cals, Burlingame, CA, USA) were stored as 100x concentrated; vasoactive intestinal polypeptide

(VIP, 600nM; Tocris, Abingdon, UK) were stored as 25x concentrated; PG 99-465 (10nM;

Bachem AG, Bubendorf, Switzerland) and AP5 (25�M; Tocris, UK) were stored as 1000x

concentrated. All compounds above were dissolved in deionised water for stock solutions and

stored at �20�C. PD 176252 (500nM; Tocris, UK) was stored as 10000x concentrated; pi-

crotoxin (100�M; Tocris, UK) was stored as 100x concentrated; and CNQX (10�M; Tocris,

UK) was stored as 500x concentrated; and these compounds were dissolved in DMSO and

stored at �20�C. For antagonist experiments using PD 176252, the concentration of DMSO

was < 0:01% when the drug was dissolved in recording solution. For synaptic transmission

blockade experiments using CNQX, picrotoxin, and AP5, the concentration of DMSO was 0.3%

during a recording. The activity change due to 0.3% DMSO was investigated, but no prominent

changes occurred (see Fig. A.5). All drugs were delivered to the slice by bath application.

For receptor antagonist experiments, antagonists were applied to slices for at least 10

minutes prior to drug applications and for 20 minutes following a drug application. For synaptic

blockade experiments, 10 minutes of activity in the presence of 0.3% DMSO was recorded,

followed by 10 minutes of activity in the presence of CNQX, picrotoxin, and AP5 prior to drug

applications. After a drug application, activity in the presence of CNQX, picrotoxin, and AP5

was recorded for at least 60 minutes before returning to ‘normal’ recording solution. The drugs

GRP, NMB, NMC and TRH were applied for 30 s and VIP was applied for 5 minutes. The flow

rate was approximately 1 ml/min and the MEA recording well holds a volume of approximately

1.5 ml.

3.2.5 Spike sorting

Pre-processing. The raw data was exported to HDF5 files with MultiChannel DataManager

(MultiChannel Systems GmbH) and then processed using a custom-made MATLAB script

(R2022a version, MathWorks) to remap and convert the file to DAT format. DAT files were

initially automatically spike-sorted with the KiloSort program in the MATLAB environment (see

below). In parallel, raw data were exported to CED-64 files with Multi Channel DataManager,

remapped, and filtered with a Butterworth band pass filter (fourth order) from 0.3 to 7.5
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kHz. Spike-sorted data were transferred to the prepared CED-64 files (Spike2 8.11; Cambridge

Electronic Design Ltd., UK) using a custom-made MATLAB script. The outcome was then

manually curated in Spike2.

KiloSort spike sorting. KiloSort (KS) is a spike sorting software that detects spikes in

neural signals and clusters them based on waveform characteristics [236]. It assigns spikes

by considering both temporal features, like spike waveforms, and spatial distribution across

multiple recording channels. The three main stages of any spike sorting process are spike

detection, feature extraction, and clustering. KS detects spikes by first filtering the raw data

and identifying threshold crossings that indicate potential spikes. It then uses template matching

to describe the shape and properties of the detected spikes, with principal component analysis

identifying the most significant variances in spike shape and reducing the dimensionality of the

spike shape data. Finally, KS employs a combination of template fitting, where spike shapes are

compared against a set of templates calculated by the algorithm, and hierarchical clustering to

group similarly shaped spikes. The algorithm also iteratively updates the templates and adjusts

for electrode drift to maintain accuracy over time. For more details of the KS algorithm, see

[235, 236].

Manual curation. Manual checking of automatically spike-sorted data is critical to ensure

that single-neurone activity has been optimally identified. Automatic results will undoubtedly

contain errors, and the best technique to correct for these errors is a manual evaluation of both

the raw data and the sorting results.

The two major problems that arise during spike sorting are over-clustering, where spikes

from a single neurone are assigned to multiple units; and under-clustering, where the activity of

multiple neurones is assigned to a single unit. Principal component analysis (PCA) of the spike

shape, the interspike interval (ISI) histogram, and the autocorrelation diagram of single-unit

activity can be used to verify that a unit represents at most one neurone. Using these objects,

one can exploit that during the neural refractory period, in which the membrane potential

is driven below the spiking threshold following a spike, the cell will not fire again. Typical

refectory periods are between 2-3 ms. The ISI histogram of a correctly sorted unit will have an

absence of spikes with intervals . 2 ms. Similarly, in an autocorrelation diagram, there will be

zero counts within the refractory period. See Figure 3.9D,E for examples of each.

Under-clustered units are usually evident by a large number of ISIs or autocorrelation counts

within the refractory period, or by several distinct action potential shapes. In many cases, PCA

of all spike shapes in the unit results in visually discernable clusters in PCA space, which

can then be clustered either manually or automatically using K-Means or normal mixtures

clustering algorithms. Over-clustering is, in general, more challenging to detect and is identified

by correlated activity between different units. A refractory period in the cross-correlation

diagram between two units indicates that the two units may contain spikes from the same
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cell, in which case both units’ activity can be merged into one. Overclustering for bursting

neurones is common and, fortunately, easy to spot. The spikes of a burst usually change shape

throughout the burst, and typically the first few spikes have a larger amplitude. This occurs

in TIDA cells [186], and occasionally during spike sorting the large-amplitude spikes at the

beginning of a burst were sorted as a separate unit. In these cases, the above procedure was

carried out.

Rigorous spike sorting was not performed for every putative cell (8963 in total). Using Spike

2 to inspect the raw data and automatically spike-sorted cells, only units that were visually

bursting, had a rhythmic firing rate, were detected on the same electrode as a rhythmic unit or

were clearly over- or under-clustered were manually checked, as described above.

3.2.6 Data analysis

Spike-sorted files were exported to MAT files using Spike 2 and the spike times and action

potential waveforms were extracted from the MAT file and converted to CSV files in Python

3.10.9. For spike time files, each column contained the times when a single spike-sorted unit fired

an action potential. Analysis was performed using custom scripts in Python and NeuroExplorer

(NEX) 5.423 [310]. Specifically, all properties of the spike trains that we compared between

conditions and drug applications were calculated using the NEX ‘Maximum Interval’ (MI)

method for burst detection with parameters MaxInt=1.5, MaxEndInt=2, MinIBI=2, MinDur=0.1

and MinNum=3. In addition to detecting bursts, the MI method calculates a set of burst properties

such as the burst duration, the number of spikes in a burst, etc. for each burst. See [310, pg.

131] for more details.

Bursting and TIDA activity detection. The full details of the burst and TIDA activity

detection process will be given in full in the text. A crucial step in the TIDA detection method

that we use throughout this study is to estimate continuous probability density functions (PDFs)

from data. For this, we use the SciPy (Python) kernel density estimate function gaussian kde
that uses a Gaussian kernel and Scott’s rule for bandwidth selection. The bandwidth affects

how smooth the resulting PDF is, and the bandwidth obtained by Scott’s rule was adequate

for our purpose. For further details on density estimates, see [287]

Drug responses. To identify drug responses, the NEX-MI analysis was performed on 200

s long epochs of data during a baseline window, a drug response window, and occasionally a

wash window. The baseline epoch was always the first 200 s of stable baseline activity, where

stability was inferred by a steady firing rate. The response epoch was chosen by evaluating

the 1-minute binned firing rate histogram of all cells in a recording and finding the time of

maximum firing rate change from baseline. The firing rate histograms of the TIDA cells were

simultaneously inspected to confirm the maximum response time. The wash epochs, where used,
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were calculated as 2000 s after the maximum drug response time. During an epoch, the mean

burst duration, the mean IBI, and the mean firing were calculated, along with their respective

standard deviations. TIDA neuronal responses were detected if the mean duration of the burst,

the mean IBI, or the mean firing rate changed, compared to their baseline levels, by more than

3� the standard deviation of their baseline level.

Statistics. Paired recordings were tested using the paired Student’s t-test or the Wilcoxon

signed rank test if the assumptions of the t-test (normally distributed and homogenous variances)

were not met. For unpaired recordings, the unpaired t-test or the Mann-Whitney U test was

used. The p-value used to threshold a significant result is typically 0:05 and when p is close to

this threshold, the explicit p is stated. In some cases, as stated in the text, the p-value threshold

used was 0:1. Difference outliers were removed from a distribution before performing a statistical

test. Outliers throughout this thesis are defined as being outside of a range determined by 1.5�
IQR (interquartile range) subtracted from the first quartile and added to the third quartile.

When comparing the change in burst duration, a cell is defined as tonic firing if its mean

burst duration > 60 s, and these points are removed and are not included in statistical tests

or descriptive statistics calculations. All descriptive statistics are given as the median � the

median absolute deviation (MAD), unless otherwise noted.

3.3 Results

3.3.1 Detecting burst activity

The NeuroExplorer Maximum Interval (MI) method [310] is used to detect bursts of action

potentials. Burst detection is a common task for electrophysiologists, and numerous approaches

have been designed to do this, many of which are tailored to the specific needs of the developer

[63]. Neuroexplorer [310] (a commercial electrophysiology analysis software) provides three

algorithms that detect bursts based on either the interval between spikes (the MI method); the

statistical likelihood of a burst when assuming a Poisson spike train (the so-called ‘surprise’

method [104]); or variations in the firing rate above its mean (the firing rate method, [251]).

Cotterill et al. have reviewed several of the most commonly used burst detection algorithms,

including the NeuroExplorer MI and surprise methods, and the MI method was the most

successful [63]. The supremacy of the MI algorithm was also found to be replicated in the

present study. Specifically, we took data recorded from whole cell patch-clamped TIDA neurones

in which effectively all spikes belonged to bursts [184] and detected incidents of bursting using

the three NeuroExplorer methods. Methods based on burst surprise and cell firing rate were

found to generally overestimate the duration of a burst and merge multiple bursts into one [63],

while the MI method, on the other hand, yielded better results with the default parameters.

The MI algorithm parameters define thresholds for activity considered as bursting. A full
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Figure 3.2: Bursting activity is detected and analysed using the NeuroExplorer Maximum
Interval (MI) algorithm [310]. (A) Description of the five parameters used by the MI algorithm
to determine bursting activity in a sequence of action potential firing times (depicted as vertical
lines). All parameters are in units of seconds. (B-C) The MI method applied to spike times
extracted from whole-cell (B) and cell-attached (C) TIDA neurone recordings from [184]. Blue
lines indicate an action potential (i.e. a raster plot) and yellow boxes indicate bursts detected
by the algorithm.

description of the parameters can be found in [310]. The interval thresholds were chosen based

on preliminary analyses of the whole-cell data which suggested an optimal balance between

sensitivity and specificity in burst detection. Specifically, we set the parameters at values that

maximized the detection of visually identified bursts while minimizing the inclusion of isolated

spikes (see Figure 3.2B). After tuning the parameters (shown in Figure 3.2A) the method

correctly identified all bursts in the whole-cell data set (over 99% of spikes assigned to a burst;

Figure 3.2B). As confirmation that the chosen parameters are correctly tuned to TIDA bursts,

the detection algorithm was then run on the cell-attached data, which included nine cells

that were not in the whole-cell data. The result, shown in Figure 3.2C, indicates that the MI

algorithm and the tuned parameters are capable of successfully identifying TIDA-like burst

patterns. For a full description of the MI detection method, see [310].

Next, we inspect how the MI algorithm, tuned for TIDA-like cells, performed on original

MEA data. For simplicity and ease of visualisation, we limited our investigation to 19 cells

selected to represent a range of neuronal activity within the MEA data set. The raster plots
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and identified bursts are shown in Figure 3.3. The cells were chosen by visual inspection to

represent prominent and highly regular bursts, prominent and less regular bursts, and a mixture

of slowly and rapidly firing nonbursting cells. The MI method works well for bursting cells; most

of the spikes that make up a burst are identified as being within a burst. It was uncommon

for the algorithm to mistakenly fail to assign a spike to a burst. However, it is more common

for the algorithm to over-assign spikes to a burst, such as for cell 12 (Fig. 3.3). In some cases,

overassignment of spikes to a burst can lead to extra-long bursts, such as in cell 11 at 400s.

This issue can be overcome by reducing the MaxEndInt parameter, which better isolates the

bursts in cells 11 and 12, but also reduces the algorithm’s ability to accurately detect all the

bursts in the patch-clamp data set. Another problem is that rapid and tonic successions of

action potentials, seen in cells 3 and 4, are sometimes detected as bursts. This is an unfortunate

feature of the MI method since there is no parameter to limit the size of a burst. Therefore,

we introduced a ‘burstiness’ metric to overcome this problem (see below). The burst detection

shown in Figure 3.3, and the similar results observed in larger data sets, are sufficient for

our purposes; therefore, the parameters used for all subsequent analyses are the TIDA-tuned

parameters shown in Figure 3.2A.

We not only want to detect bursts but also measure the degree of burstiness of a spike train.

This is essential for detecting bursts because most spike trains resemble cells 1-6 in Figure

3.3 and show no distinguishable bursting activity, yet a burst is detected by the analysis. We

therefore require a method to distinguish obviously bursting cells from nonbursting cells. A

useful measurement for this is the burst surprise, which is a statistical measure of how unlikely

the sequence of action potentials within a burst is when the cell spiking is assumed to follow

a Poisson process [166, 238]. The rate of the Poisson process is estimated directly from the

spike train under analysis by calculating its mean spike frequency. More information and the

equations underlying the calculation can be found in [166]. The mean burst surprise (MBS),

S, for the most part, is a good measure of burstiness. Visually prominent bursting cells are

labelled with high MBS, whereas cells with no bursts or cells that rapidly and tonically fire

have a low MBS value. However, using MBS as a burst metric is problematic due to cells such

as 4 and 5 in Figure 3.3. Small bursts with high surprise values are detected in sparsely firing

cells like these, which may lead to spike train MBS values greater than the MBS of spike trains

that are visually obvious bursters. This is illustrated for cell 5 and cell 11 in Figure 3.3. The

issue of whether these bursts are erroneously detected or not is irrelevant since the spike trains

in which they occur are not the objective of our search. The highly regular burst patterns in

Figure 3.2 are the focus of our search. Hence, to reduce the burst metric of spike trains that

contain bursts surrounded by ‘free’ action potentials, we can multiply the MBS by the ratio of

spikes within a burst to the total number of spikes, �, to give the burst metric

(3.1) M = S�;

where S is the MBS. For prominent bursting cells, most spikes are identified to be within bursts,
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Figure 3.3: Multi-unit array recordings ranked by burst metric, M. The raster plot shows the
spontaneous activity of 19 spike-sorted recordings from 7 animals. Highlighted spike trains
illustrate that less bursty activity (cell 5) can have larger mean surprise values than more
prominent burst activity (cell 11). Including the ratio of spikes in a burst to the total spikes, �,
in the burst metric reduces the burstiness of recordings such as cell 5.

so � � 1 and M � S. For spike trains such as cells 4 and 5 an occasional burst surrounded

by action potentials leads to low values of �. Using M = S� ensures that spike trains with

low-surprise bursts or bursts surrounded by action potentials rank lower than activity patterns in

which most spikes appear within a burst. See Figure 3.4 forM calculated for all MEA-recorded

activity. A activity pattern is classified as bursting if M > �M, where the threshold �M = 1:5
is determined by rigorous visual inspection activity patterns.

Figure 3.4: A distribution of burst metric
values, M, for 8963 spike sorted cells, de-
tected in 78 recordings and 30 animals. Cells
with M > 1:5 (red line) are classified as
bursting. Here 1145 (12.8%) are bursting.
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3.3.2 Detecting TIDA activity

Studying specific neural populations is often done by visualising the neurones of interest or

otherwise inferring their identity. Genes specific to the population, such as tyrosine hydroxylase

(TH) for dopaminergic neurones, can be targeted by immunohistochemistry or genetic engineer-

ing techniques. Immunohistochemistry allows post-recording identification of cells and provides

a visual maker of where cells are located in an ex vivo slice. Examples of this technique applied

to the TIDA population can be found in [189, 190]. Transgenic techniques allow cells to be

identified during a recording [134]. No such identification techniques have been used in this

study due to the limitations of the available resources. Therefore, to identify TIDA neurones,

we will compare the MEA recordings with the TIDA activity in [184] to create a TIDA score,

similar to the burst metric above.

The Lyons data set [184] (see Figure 3.2) contains 28 recordings of identified TIDA cells

in the whole-cell (WC) patch-clamp configuration and 27 recordings in the cell-attached (CA)

configuration. Of these, 19 cells have both a WC and a CA recording. The CA configuration

involves recording the extracellular potential difference in the immediate vicinity of a cell with

an electrode in contact with the cell membrane [244]. The signal produced from CA recordings

is similar to the signal from a single MEA electrode, however, it can be localised to a single cell

due to the small size of the patch-clamp electrode tip. In the WC configuration, the electrode

punctures the cell and replaces the intracellular medium with a solution of the experimenter’s

choosing. By doing so, the subthreshold membrane potential oscillations are readily detectable

and the physiology of the membrane can be probed in great detail [244]. For further details of

the methodology of Lyons et al., see [189, 190].

We can only compare the spike timing between MEA recordings and patch-clamp recordings,

so for the remainder of this section, all references to the patch-clamp data set will refer to

the spike times, and not to the voltage signal. The burst analysis conducted in Figure 3.2

provides information on the properties of the TIDA bursts, which are compared between the

two recording configurations in Figure 3.5. We aim to identify a multidimensional distribution of

TIDA burst properties P , consisting of the burst duration, the number of spikes per burst, the

interspike interval (ISI) within a burst, and the interburst interval (IBI). These four properties

indicate when bursts start and end, and the spiking dynamics within a burst. The standard

deviations of the burst duration and the IBI indicate how regular the burst pattern is, and since

rat TIDA activity is highly regular we also incorporate these properties into our distribution.

We refer to the set of properties as P . Since the CA configuration is closer to the MEA

recording condition, this data set is used to characterise our six-dimensional distribution. For

each recording, the mean burst duration, the mean number of spikes per burst, the mean ISI

within a burst, the mean IBI and the standard deviations of the burst duration and the IBI

are calculated. We find that there is no statistical difference between the WC and CA TIDA

burst duration, IBI, and their standard deviations for the 19 paired recordings (Figure 3.5,
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Figure 3.5: Comparison of the burst properties between whole-cell (WC) and cell-attached
(CA) recording configurations made from the same cell (N = 19). Each data point is the mean
calculated over the duration of the recording. Most measurements are not statistically different
(ns) between conditions, other than the ISI within a burst and the spikes per burst (paired
t-test, where p < 0:1 indicates a statistical difference). Including the other 17 unpaired cells
does not obviously change the distributions of the burst properties (not shown). In this figure
and in all subsequent box plots, the boxes extend from the first quartile to the third, with a line
at the median. Whiskers extend to the farthest data point that is within 1:5� the interquartile
range of the box. Diamonds are outliers, defined as being outside the range of the whiskers.

paired t-test); therefore, the WC measurements for these properties are incorporated into their

respective distributions. The number of spikes per burst and the mean ISI within a burst were

found to be different between the recording conditions (Figure 3.5 B,C); therefore, only the CA

data were used to calculate their distributions. Data from the 17 unpaired cells are also used in

our calculation of the distributions. The six distributions of burst properties that define the

TIDA spiking activity are shown in Figure 3.6.

Now that we have a quantitative description of the activity of TIDA neurones, we can search

for similar activity in the MEA data set. To achieve this, two different methods have been

developed (Figure 3.7) which are described below and tested against each other to determine

an optimal method. Our aim is to label every bursting cell in the MEA data set with a ‘TIDA

score’, T , that quantifies how similar the MEA activity is to the patch-clamp TIDA activity

in Figues 3.2 and 3.6. Cells with larger T should be more TIDA-like, and TIDA cells could

be detected by considering cells with T > �T , where �T is a suitable threshold. We start by

considering the spontaneous activity of a single MEA-recorded cell (Figure 3.7A), and for each

burst we make four measurements: the burst duration (xd), the number of spikes within it (xn),

the mean ISI (xs) and the time interval between the end of the burst and the start of the next

one (xb). Let x = [xd; xn; xs; xb] be a vector of measurements where each measurement xi for

i 2 fd; n; s; bg is a sequence of N values, where N is the number of bursts during a 600 s period
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Figure 3.6: The distribution, P , of TIDA neurone (n = 36) burst properties from [184]. For
cells with both a WC and CA recording (n = 19), both recordings were used to calculate
the distribution (other than B-C, see text). 9 and 8 cells had only a WC or a CA recording,
respectively, and these were also incorporated into the distribution calculation.

of time. Now we wish to compare x with the distribution of TIDA properties P (Fig. 3.6).

As a first method, which we call the likelihood method, we calculate the mean of each

measurement across the spontaneous activity period,

x�i =
1

N

NX

j=0

xi;j ; for i 2 fd; n; s; bg;

where xi;j represents the j-th value of the measurment xi for j = 1; 2; :::; N . The standard

deviation of the burst duration and the IBI are also calculated as

�xi =

sPN
j (xi;j � x�i )2

N
; for i 2 fd; bg:

The vector of properties for the spike train is p = [x�d; x
�
n; x�s; x�b ; �d; �b], and we wish to calulate

the likelihood that p is within our distribution P . In other words, how similar is the MEA spike

train to the patch-clamp TIDA data? To this end, we define a probability density function, fi,
for each of the six distributions in Figure 3.5, where i 2 fD;N; S;B;D�; B�g (see Sec. 3.2.6

for details and Fig. 3.7B for an example). The likelihood of p being a point in P is given by

the product of each probability density function evaluated at the corresponding element of p.
Explicitly, this is given by

LT = fD(x�d) � fN (x�n) � fS(x�s) � fB(x�b) � fD�(�d) � fB�(�b):

Taking the natural logarithm of LT gives us the TIDA likelihood score

(3.2) TL = log(LT ):
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Figure 3.7: Detecting TIDA activity in bursting MEA spike trains. (A) For each spike train
identified as bursting, a number of properties are calculated using the NeuroExplorer MI
algorithm. (B) An example calculation of a single likelihood for the mean burst duration (left)
and the definition of the log TIDA likelihood (right). (C) An example calculation for the TIDA
burst interval fraction for the mean burst duration (left) and the definition of the full interval
TIDA score (right). (D) A comparison of the burst properties between TIDA neurones, detected
using the likelihood method (�T = �18; blue; n = 292), and all other bursting neurones (grey;
n = 853). Each data point represents the mean for that cell.
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For a second detection method, which we call the interval method, instead of considering

only the means and standard deviations of the MEA measurements, we incorporate every burst

measurement of a spike train (with the 600 s baseline period) into the calculation. We start by

defining four intervals, Id; In; Is and Ib that span the distributions in Figure 3.6A-D. For the

measurements xi;j in x we say that a measurement is within the TIDA range for this burst

property if ILi < xi;j < IUi , where IUi and ILi are the upper and lower bounds of the interval

Ii, respectively, and i 2 fd; n; s; bg and j = 1; 2; :::; N . The number of bursts in a spike train

that have a measurement within the corresponding interval is Mi. For a single spike train, the

fraction of bursts that have a property within the TIDA range is qi = Mi=N . The Cartesian

product of each interval fraction gives the TIDA burst interval fraction,

(3.3) TI = qd � qn � qs � qb;

which is our second TIDA score. We also considered employing a convex hull approach to define

the TIDA burst interval fraction, which might provide a more data-driven and biologically

accurate representation by exclusively encompassing observed burst properties, yet opted for

the Cartesian product due to its computational simplicity and the preliminary nature of our

explorations.

To compare the two methods, we use the robust response of the TIDA population to

thyrotropin-releasing hormone (TRH), in which cells are excited and typically change from

phasic to tonic firing [190]. In their study, Lyons et al. [190] report that 100% of cells (n = 33=33)

respond to TRH (1�M). Therefore, we propose that the more accurate TIDA detection method

will report a higher number of TIDA cells responding to TRH (1�M). Figure 3.8 shows the

fraction of cells that respond to TRH against the total number of TIDA cells considered (see

Sec. 3.2.6 for the definition of a response). TIDA neurones are ordered by their TIDA score so

that as more cells are considered, their TIDA score decreases. For the 40 cells with the highest

likelihood or interval TIDA score, more likelihood-detected TIDA neurones respond (around

85%) to TRH compared with interval-detected TIDA neurones (approx. 65%; Figure 3.8). A

larger proportion of interval-detected TIDA neurones do not respond to TRH; indicating that

the likelihood method is better than the interval method.

To rigorously assess each detection method, a 6-fold cross-validation was conducted using 36

patch-clamp recordings (Figure 3.6). This analysis involved training each method on 30 cells and

testing on the remaining six, cycling all cells through the test set exactly once. Repeating this

process 10 times with different random seeds provided a robust assessment of reliability across

various train/test splits. Accuracy was evaluated based on the fraction of test set cells correctly

identified as TIDA cells. Ideally, a perfect method would identify 100% of the cells as TIDA,

reflecting true positive identification. Figure 3.8B reveals mean accuracies of 81.6% for the

likelihood method and 29.8% for the interval method across all folds, with standard deviations of

13.2% and 8.2%, respectively. These findings highlight the likelihood method’s superior accuracy.

However, the considerable standard deviations indicate variability in performance, suggesting
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Figure 3.8: The likelihood TIDA detection method outperforms the interval method. (A) The
fraction of cells that respond to TRH (1 �M) is plotted against the top n 2 [5; 50] ranked TIDA
cells, detected with the likelihood method (blue) and the interval method (orange). For 50 cells,
TIDA cells are detected in 8 recordings from 4 animals. (B) 6-fold cross-validation for each
detection method, curves indicate averages over 10 iterations with different train/test splits and
bars denote the standard deviations. (C) The likelihood score is plotted against the interval
score for all cells with �T > �18 (n = 292). A moderate positive association between the two
detection method scores is summarized by Spearman’s rank correlation coefficient of 0.574.

sensitivity to specific data splits. Furthermore, a Spearman’s rank correlation coefficient of

0.574 between the methods’ TIDA score rankings (Figure 3.8C) suggests a moderate positive

association, reinforcing the presence of some consistency in the methods’ assessments.

Given the likelihood method’s superior performance in both identifying TRH-responsive

cells and its robustness in the cross-validation test, we have chosen this method for future TIDA

cell detection. The detection threshold is set at �T = �18, determined by visual evaluation of

spontaneous activity.

3.3.3 TIDA activity across the day and night

Neural activity in the rat dmARC was recorded ex vivo using a 60-channel multielectrode

array unit (MEA) that covered most of the dmARC and a small portion of the ventrolateral

hypothalamus (Figure 3.9A). In total, 8963 cells were detected in 78 recordings and 30 animals

after being spike sorted. Of these cells, 1145 (12.8%) were classified as bursting and 292 (3.25%

of total; 25.5% of bursting) were classified as TIDA cells. Throughout this chapter, we refer to

single-unit activity with T > �T = �18 as TIDA cells (see Sec. 3.3.2). In truth, we do not know

the neurochemical phenotype of these cells so we cannot say with certainty that they are TIDA

cells; hence, they are best described as ‘cells with TIDA-like activity’. However, most of the

detected TIDA cells were located on the electrodes close to the walls of the 3rd ventricle, and

very few were detected outside of the approximate dmARC bourders in Fig. 3.9A. This location

pattern is consistent with studies of TH immunohistochemistry in the ARC [189, 190, 296].

Ongoing work aims to spatially characterise TIDA activity using the two-dimensional grid

layout of MEA electrodes. The TIDA spike activity detected on the MEA (Figure 3.9B) is
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Figure 3.9: Representative TIDA activity recorded on the MEA. (A; top) A sagittal view of the
rodent brain with the dmARC marked in orange. (A; bottom) coronal view of the dmARC
overlaid with the positions of the 6�10 grid of electrodes. Electrode spacing is 100 �m. (B)
The action potentials (top), spike times (middle) and the 1 s binned firing rate histogram
from a typical TIDA neurone. For the neurone in B, a number of features can be examined to
assist in spike sorting and characterising the neural activity, including: (C) the action potential
waveform, (B) the ISI histogram, (C) the autocorrelation diagram, and (F) the hazard plot.
D-F were made using NeuroExplorer. 3V: third ventricle, ME: medium eminence.

similar to our patch-clamp data [184], but there are differences too (see Fig. A.4 for a full

comparison). Action potential waveform and the spike activity characteristics of a typical TIDA

neurone (judged by the ISI histogram being similar in shape to the mean ISI histogram) are

shown in Figures 3.9C-F.

To assess whether TIDA activity increases throughout the day, we recorded spontaneous

activity from dmARC slices during the projected day (ZT 5-10; n = 163 cells, 23 animals)

and during the projected night (ZT 17-22; n = 72 cells, 6 animals). We find that the burst

period (60 / Num. bursts per min.) is lower during the night (8:22 � 0:80 s) compared to

the day (10:71� 1:89 s; p < 0:05; Fig. 3.10). To investigate what aspect of the spike activity

causes this period shift, we measured both the burst duration and the IBI and found that both

quantities are on average lower during the night (Fig. 3.10C,D). Representative spike trains

with burst periods corresponding to the average for that time of day (Figure 3.10) illustrate

that TIDA nighttime activity is faster and with shorter periods of action potential firing. Faster

TIDA rhythms at night were also accompanied by a larger mean firing rate, compared to day,

indicating that TIDA cells are more active during the night. Given that dmARC expresses

robust PER2::LUC rhythms [113] and TIDA cells express clock genes [153, 276], our data
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Figure 3.10: Burst period decreases at night, compared to day, due to a reduction in the
burst duration and the interburst interval. (A) Representative TIDA spike trains with burst
periods near the average for the day (10:71 s; green) and the night (8:22 s; magenta). (B) The
burst period shifts from 10:71 � 1:89 s in the day to 8:22 � 0:80 s in the night (p � 10�12,
Mann-Whitney U Test). (C) The burst duration decreases from 3:62�1:35 s (day) to 2:58�0:94
s (night; p = 7:8� 10�5, Mann-Whitney U Test). (D) The IBI decreases from 7� 1:66 s (day)
to 5:89 � 0:94 s (night; p = 8:9 � 10�7, Mann-Whitney U Test). (E) The overall firing rate
increases from 0:84� 0:29 Hz (day) to 1:04� 0:3 Hz (night; p = 0:0017, Mann-Whitney U Test).

suggest that the intrinsic TIDA clock may regulate membrane processes to alter the TIDA

oscillation.

3.3.4 Burst frequency increases in the absence of fast synaptic transmition

Figure 3.11: The TIDA burst period decreases due to the blockade of fast synaptic transmission.
(A) The TIDA burst period, during baseline (BL) and after the application of AP5 (25 �M),
CNQX (10 �M) and PTX (100 �M), referred to as SB, to block glutamatergic and GABA
neurotransmission. The period changes from 8:33� 1:44 s to 6:7� 0:96 s (p = 0:0017, Wilcoxon
signed-rank test) (B) The IBI also decreases from 6:04� 1:35 s to 4:92� 1:31 s (p = 0:0025,
t-test).
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It is well established that TIDA oscillations in rats persist after blocking fast synaptic

transmission [190, 295], but the implications of this network alteration on the TIDA rhythm

have not been reported. To this end, we measured spontaneous (baseline; BL) TIDA activity

and compared it to TIDA activity following fast synaptic transmission blockade (n = 36 cells; 4

animals). A combination of AP5 (25 �M), CNQX (10 �M) and PTX (100 �M), collectively

referred to as synaptic blockers (SB), were used to block the receptors NMDA, AMPA and

GABAA, respectively. All TIDA rhythms persisted after SB and did so at a reduced period

(Fig. 3.11A). The burst duration and the IBI were measured to further examine the effect of

SB, and we found that the mean IBI was significantly shortened (Figure 3.11 B), while the

mean duration of the burst was not (see Fig. A.5).

3.3.5 VIP excites TIDA neurones at night

The neuropeptide VIP is likely responsible for some of the day-night variation in TIDA-derived

DA in the median eminence. Here, we explore the action of VIP on TIDA neurone electrical

activity by bath applying VIP (600 nM) for 5 minutes during the projected day (ZT 5-10;

n = 28 cells; 4 animals) or the projected night (ZT 17-22; n = 51 cells; 5 animals; Fig. 3.12A).

A higher proportion of TIDA neurones respond to VIP during the night (88%, n = 45=51),

compared to the day (69%, n = 19=28). Although a number of daytime responses were detected,

only a small change in the mean IBI was detected, from 7:37� 1:45s to 7:63� 2:05s, with a p
value close to threshold (Fig. 3.12D; paired t-test, p = 0:047). Therefore, despite the activity

of cells changing due to VIP, these changes did not result in a meaningful population-level

response. However, during the night, all burst properties changed significantly at the population

level (Figure 3.12C-E), including an increase in burst duration (2:60� 1:01 s to 11:5� 5:42 s,

p = 2:5� 10�11); a decrease in IBI (5:47� 0:82 s to 4:26� 0:96, p = 5� 10�6); and an increase

in the mean firing rate (1:03 � 0:35 Hz to 1:9 � 0:88 Hz, p = 2:3 � 10�10). The amplitude

of the population response was significantly higher at night compared to day for all three

measurements (unpaired t-test or Man-Whitney U test, p < 10�5 in all cases). These data

indicate that the application of VIP excites TIDA neurones during the night by increasing the

duration of a burst and decreasing the interval between bursts. During the day, VIP elicits a

noticeably weaker response.

Next, we explore how the TIDA population response to a daytime VIP application is altered

by suppressing fast synaptic transmission. In the presence of SB, the daytime application of

VIP increases both the burst duration (from 3:12� 1:8 s to 5:8� 1:82 s, p = 10�6; Fig. 3.13Aa);

and the mean firing rate of TIDA neurones (from 1:21� 0:38 s to 1:46� 0:57 s, p = 10�4; Fig.

3.13Ab). There is no noticeable change in IBI or mean ISI within a burst (Fig. A.6) due to VIP

+ SB (Figure 3.13Ac). Taken together, this suggests that VIP + SB excites TIDA neurones by

increasing the burst duration without changing the timing between spikes.

Current evidence suggests that VIP acts via the VPAC2 receptor (VPAC2R) to alter ME
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Figure 3.12: TIDA neurone response to VIP (600 nM) during the day and night. (A) Repre-
sentative spike trains showing spontaneous TIDA activity (left) and TIDA activity during the
maximum response to VIP (right). Green indicates daytime application and magenta indicates
nighttime application. (B) 69% and 88% of TIDA respond to VIP during the day and night,
respectively. (C) The burst duration increases at night due to VIP (p = 10�10), but not during
the day. (D) The IBI increases due to daytime VIP by 0.3 s on average, with p = 0:047.
Nighttime VIP decreases IBI by approximately 1 s (p = 1:2� 10�5), and the amplitude of the
response is significantly higher during the night (1:8� 10�5). (E) There is no noticeable change
in the firing rate during the day; however, at night VIP increases the firing rate of the TIDA
neurones dramatically (p = 7:2� 10�10). Pie charts show the proportion of TIDA cells that
increased in a measurement (orange), decreased in a measurement (blue), or did not respond
(grey). Statistical tests used were paired t-tests or the Wilcoxon signed-rank test for paired
data; or unpaired t-test or the Mann-Whitney U test for unpaired data.

dopamine [97], and therefore we examined the response of TIDA cells to VIP while applying

the VPAC2 receptor antagonist PG 99-465 (10 nM). A decrease in burst duration was observed

due to PG 99-465 (Figure 3.13Ba). Neither the firing rate nor the IBI changed. However, in

response to VIP + PG 99-645, all three burst properties were statistically different compared to

activity in the presence of PG 99-465 alone (Fig. 3.13B). The firing rate and the IBI were also

statistically different compared to the baseline activity. It appears that VIP affects TIDA activity

while VPACRs are blocked, which may point to other VIP receptors participating in the VIP

response we observe. Other studies have used PG 99-645 at 10-100 nM for VPAC2 antagonism

[37, 65], and our 10 nM used here is at the lower end. A more pronounced attenuation of

the VIP response may be observed using a higher concentration of PG 99-645. Furthermore,

earlier results (Fig. 3.12) show that there is a negligible TIDA response to VIP during the day;
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Figure 3.13: VIP acts postsynaptically through a range of VIP receptors (A) The response of
n = 27 TIDA cells to SB and to VIP + SB. SB does not change the population activity aside
from a small decrease in the IBI (Ac). VIP + SB significantly increases the burst duration and
the firing rate (p < 10�5 in both cases). (B) The response of n = 33 TIDA cells to the VPAC2R
antagonist PG 99-465 (10 nM) and VIP + PG 99-465. The only change induced by PG 99-465
is a reduction in the burst duration (p = 8� 10�7). Application of VIP + PG 99-465 increases
the burst duration (p = 0:017), decreases the firing rate (p = 9� 10�6) and decreases the IBI
(p = 0:007). Statistical tests used were the paired t-test and the Wilcoxon signed-rank test. ns:
not significantly different.

therefore, only very speculative results can be drawn from the SB and VPAC2R antagonist

experiments, as they were performed during the projected day. Future studies should investigate

blocking VPAC2R, and the other VIP receptors during the projected night when the VIP

response is prominent.

3.3.6 GRP postsynaptically excites TIDA neurones

Another neuropeptide produced by the SCN that is known to alter PRL levels is GRP [142, 204].

We investigate whether GRP changes TIDA neurone activity by bath applying GRP (200

nM) to ex vivo MEA-recorded dmARC slices for 30 s. The response to GRP was recorded

during the projected day (ZT 5-10; n = 49 cells; 6 animals) and during the projected night

(ZT 17-22; n = 25; 4 animals). Overall, GRP dramatically changes TIDA activity and there is
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little difference between the GRP response at night compared to day (Figure 3.14). A large

proportion of TIDA cells respond to GRP (96% during the day and 92% at night) and many of

these responses include a large increase in the duration of a burst (Fig. 3.14C) and an increase

in the mean firing rate (Fig. 3.14E). A considerable number of cells switched to tonic firing

(19 during the day and 6 at night). This change in TIDA activity is a typical response of the

population to a range of endogenous compounds [33, 188–190]. The only difference detected

between the day vs. night response to GRP was that the IBI decreased further during the day

than during the night (p = 0:004; Fig. 3.14D).

Figure 3.14: TIDA neurone response to GRP (200 nM) during the day and night. (A) Repre-
sentative spike trains showing spontaneous TIDA activity (left) and TIDA activity during the
maximum response to GRP (right). (B) 96% and 92% of TIDA respond to GRP during the
day and night, respectively. (C) The burst duration and (E) the mean firing rate increase at
both times of the day in response to GRP (p < 10�5) (D) The IBI decreases due to GRP at
both times of the day (p < 10�5), with daytime GRP causing a slightly larger decrease in IBI
(p = 0:004). Pie charts show the proportion of TIDA cells that increased (orange), decreased in
a measurement (blue), or did not respond (grey). Statistical tests used were paired t-tests or
the Wilcoxon signed-rank test for paired data; or unpaired t-test or the Mann-Whitney U test
for unpaired data.

To determine whether the effect of GRP on TIDA neurones is postsynaptic, GRP + SB

was applied during the day (Figure 3.15A; n = 8 cells, 2 animals). Application of SB causes a

reduction in the duration of the burst (Fig. 3.15 Aa); therefore, we compare the GRP + SB

response to the SB-induced activity. All eight cells respond in a similar manner as without SB:

increased mean burst duration and mean firing rate, and reduced IBI. The robust response

to GRP in the presence of fast synaptic blockade suggests that GRP acts postsynaptically
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Figure 3.15: GRP excites TIDA neurones postsynaptically and in the presence of GRP receptor
antagonist PD 176252 (500 nM). (A) In the presence of fast synaptic transmission blockade,
GRP (200 nM) prominently excites TIDA cells, similar to without SB. Insert in Aa is a blown-up
plot of BL and SB activity. (B) In the presence of PD 176252, GRP alters TIDA activity in a
similar manner to GRP alone (Fig. 3.14. Significance tested using paired t-test or the Wilcoxon
signed-rank test; p < 0:05 for all tests.

to excite TIDA neurones. We address whether the GRP receptor (GRPR) mediates GRP’s

actions by examining the response to the neuropeptide whilst the slice is exposed to the GRPR

antagonist PD 176252 (500 nM). TIDA activity does not change in the presence of PD 176252;

however, in the presence of both GRP + PD 176252, the TIDA neurones respond similarly to

our experiments without the GRPR antagonist. GRP elicits such a strong response in TIDA

cells that the concentration of PD 176252 that we used may not have been sufficient to prevent

a response. However, the antagonist may accelerate the return of TIDA activity to baseline

levels following the application of GRP. To test this, we examined the burst duration, the

mean firing rate, and the IBI 4500 s after GRP application in recordings with and without PD

176252. No change in these quantities was detected (not shown), indicating that the effect of

GRP lasts for a similar duration with and without PD 176252. This may point to GRP acting

through a receptor other than the GRPR, or that a larger concentration of PD 176252 or longer

pretreatment with the antagonist is required to attenuate the GRP response.
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Figure 3.16: Neuromedians -B and -C both excite TIDA cells in a similar manner to GRP.
(A) NMB (300 nM; N = 14 cells from 4 animals) excites TIDA cells by increasing the burst
duration (Aa; p = 6:7� 10�3), decreasing the IBI (Ab; p = O(10�4)), and increasing the mean
firing rate (Ac; p = O(10�4)). (B) NMC (200 nM; N = 28 cells from 3 animals) excites TIDA
cells by increasing the burst duration (Ba; p = 8:5� 10�4), decreasing the IBI (Bb; p < 10�4),
and increasing the mean firing rate (Bc; p < 10�4). Paired t-test or Wilcoxon signed-rank test
was used to determine significance. All recordings were performed during the day ZT 5-10.

3.3.7 Other bombesin-like peptides excite TIDA cells

Finally, we examine whether TIDA cell activity is altered by peptides with a structure similar

to that of GRP, namely neuromedin-B (NMB), and neuromedin-C (NMC). The response of

TIDA neurones to NMB (300 nM; n = 14 cells; 4 animals) and NMC (200 nM; n = 28 cells; 3

animals) was indistinguishable from the response of TIDA cells to GRP (Figure 3.14A). The

cells were excited by NMB and NMC, which was seen by large increases in burst duration and

mean firing rate, and a significant reduction in mean IBI (Figure 3.16).

3.4 Discussion

The aim of this chapter has been to investigate whether the activity of TIDA neurones changes

throughout the day and in response to SCN-derived signalling peptides. The dopaminergic

output of TIDA neurones changes throughout the day [198, 277, 284, 285], and evidence suggests

that the DA rhythm could be driven by the molecular clock of TIDA neurones [153, 276],

VIP signalling from the SCN [22, 78, 96, 97], or both. Here, by taking a novel approach to

identifying TIDA activity from large sets of MEA-recorded extracellular data, we find evidence

for both. The properties of the TIDA burst oscillation change between night and day, and
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various neuropeptides produced by the SCN alter TIDA activity. Our results indicate that

the regulation of hypothalamic DA could be multifaceted, with peptidergic signalling from

the SCN interacting with the intrinsic rhythmicity of TIDA neurones to coordinate a critical

reproductive rhythm [90, 247].

We find that the TIDA oscillation is spontaneously faster at night compared to day and

that this change is driven by a reduction in both burst duration and IBI. Given that TIDA

cells express clock genes [153, 276] and that robust rhythms in PER2::LUC and neural activity

have been observed in the dmARC [113], it is possible that the TIDA molecular clock drives

the daily change in activity. In the SCN, the molecular clock drives changes in membrane

currents, such as the persistent Na+ current, the BK current, the L-type Ca2+ current and

the hyperpolarisation activated current, to alter the activity of SCN neurones [55]. The TIDA

oscillation is generated by the above-mentioned currents (see Chapter 4), and it is conceivable

that the daily changes in the oscillation properties that we report could be driven by the

intrinsic circadian rhythmicity of the TIDA neurones. It is interesting to note that the reduction

in IBI from day to night is similar in duration (1.11 s; Fig. 3.10C) to the reduction in IBI due

to synaptic transmission suppression (1.12 s; Fig. 3.11B). This may indicate circadian changes

in the synaptic input of TIDA cells from nearby dmARC neurones. Indeed, adjacent cells

exhibit rhythms in electrical activity [113]. To isolate the contribution of intrinsic 24-hour TIDA

rhythmicity on TIDA activity, day and night recordings should be performed while synaptic

communication is blocked. Furthermore, to confirm that such effects are truly circadian, and

not driven by the animal’s recent ambient light exposure, animals should be kept in constant

lighting conditions.

There is considerable evidence that VIP signalling from the SCN regulates, and possibly

drives, the DA rhythm in the ME [78, 96, 97]. Despite this, no direct attempt has been made to

understand the effect that VIP has on the electrical activity of TIDA cells. Here, we have shown

that VIP excites TIDA cells when applied during the projected night, but not during the day

(Figure 3.12). At night, VIP increases the burst duration, decreases the IBI and overall increases

the mean firing rate of TIDA cells. During the day, however, this response is significantly

attenuated, and we find that VIP elicits no response overall. During the projected night, the

turnover of DA in the ME is low compared to the day [277] and attenuating the expression

of VIP in the SCN prevents this daily drop in DA [97], suggesting that VIP inhibits TIDA

activity. On the contrary, we have found that VIP stimulates TIDA cells, especially at night,

when DA is low. At first, this is counterintuitive. Thyrotropin-releasing hormone (TRH) is a

potent PRL-releasing factor [269], yet it excites TIDA neurones and causes a switch to tonic

firing [190], like nighttime VIP. It is possible that the excitation observed due to VIP leads

to a reduction in the dopaminergic output of the TIDA neurones. In DA neurones in the

midbrain [99], and neurosecretory cells in the hypothalamus [77, 195], burst firing leads to more

efficient and sustained neurotransmitter release. The relationship between spiking and secretion
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is highly nonlinear and complex [195], therefore, the specific pattern of spikes could be critical

for the secretory output of TIDA neurones. The larger burst durations and tonic firing patterns

evoked by VIP at night may lead to DA depletion at TIDA terminals, therefore reducing DA in

the ME. Interestingly, at low concentrations, DA has been suggested to simulate, rather than

inhibit, lactotroph activity [305]. As TIDA electrophysiology studies become more frequent and

a growing number of compounds are found to alter TIDA activity [187], linking changes in

TIDA membrane activity to DA secretion will be important for understanding the regulation of

the lactatrophic axis. Future work should consider this. Mathematical modelling, as eluded to

in the subsequent chapters, will be useful for this aim.

Additionally, we asked whether the TIDA response to VIP was postsynaptic and whether

it was mediated by the VPAC2 receptor. It is difficult to answer these questions because the

SB and VPAC2R antagonist experiments were performed during the projected day, which, in

hindsight, was a poor choice. Our results clearly show that these experiments must be performed

during the projected night. Nevertheless, we may still gain some insights. Although no change

in activity due to VIP is detected in the day, VIP + SB applied during the day increases both

the burst duration and the mean firing rate of TIDA cells. This points toward VIP acting

postsynaptically to excite TIDA cells and may suggest that VIP’s effect on TIDA cells during

the day is attenuated due to synaptic input. It could be that the inhibitory cells in the dmARC

that innervate TIDA cells are excited by VIP and the elevated inhibition experienced by a

TIDA cell masks the excitatory effect of VIP. To confirm this, future daytime SB experiments

should be performed with a larger sample size.

The application of VIP induces a response in TIDA cells even when the VPAC2 receptor

is blocked. Visually inspecting the distribution of properties in Figure 3.13B may lead one to

decide that there is only a minor response. Indeed, the p-values of the responses are borderline.

Our data suggest that VIP’s action may be mediated by receptors other than VPAC2, such as

VPAC1 or PAC1. The identification of the receptor responsible for the action of VIP should be

investigated in the future, and our results indicate that such investigations should be carried out

during the projected night when VIP profoundly changes TIDA activity. In our experiments,

we used the concentration of PG 99-465 used in [37, 10 nM] to block VPAC2 receptors, but

others have used concentrations up to 100 nM [65]. Nighttime applications of VIP + PG 99-465

should be utilised to identify whether VIP is mediated by VPAC2 and, if so, what effective

concentration of PG attenuates the response.

The peptide GRP is produced in the SCN and inhibits PRL release [142, 143, 204] by

increasing ME dopamine [204]. Bombesin, which is similar in structure to GRP, has also been

shown to mediate the interaction of the SCN with TIDA cells by acting directly within the SCN

[197]. Furthermore, many bombesin-like peptides, including GRP, NMB, and NMC, potently

excite ARC neurones [177, 316]. Hence, we investigated whether GRP and similarly structured

peptides NMB and NMC alter TIDA membrane activity. We find that all three compounds
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robustly excite TIDA neurones (Fig. 3.14, 3.16). The burst duration is dramatically increased,

and bursting can be replaced by tonic firing (Figures 3.14A, D and 3.16Aa, Ba) and the IBI

is markedly reduced, leading to a higher mean firing rate (Figures 3.14C, D and 3.16). The

excitatory action of GRP is impervious to blocking fast synaptic transmission (Fig. 3.15 A),

implying that GRP acts postsynaptically. Intracellular recordings performed by Lyons found

that GRP induces a large depolarisation of the TIDA membrane in the presence of TTX [185],

further confirming the postsynaptic action of GRP. The GRPR antagonist PD 176252 failed to

attenuate the TIDA response to GRP in our study (Fig. 3.15B), despite the fact that the inward

GRP-induced current was significantly attenuated during voltage-clamp recordings made in the

presence of PD 176252 (500 nM; the same concentration used in this study) [185]. This could

indicate that only small GRP-induced currents are necessary to dramatically change TIDA

activity (a result supported by later modelling, see Fig. 4.17). It is also possible that there is

an error in the methodology or implementation of the experimental procedure.

Although both VIP and GRP have been implicated in the regulation of hypothalamic DA,

the effect of these peptides on TIDA electrical activity has not yet been described. Here, we show

for the first time that both neuropeptides excite TIDA neurones, and in the case of VIP, there is

a considerable time-of-day difference in the magnitude of the response. The circuit mechanism

in which GRP, VIP, NMC, and NMB may act to regulate TIDA activity is unknown. Various

studies have identified that the SCN regulates TIDA activity [97, 128, 198, 254], and VIP fibres

have been found close to TIDA cells [96]. Future work should seek to identify the origin of

VIP fibres and search for GRP-containing terminals in the ARC. The circuit mechanism could

also be investigated with the MEA by recording from horizontal ARC slices containing the

SCN whilst simultaneously stimulating the SCN, specifically in the ventrolateral region where

VIP cells are localised. Comparing recordings both with and without the presence of VIPR

antagonists could shed light on how TIDA neurones are regulated in an intact animal. The

pharmacological methods used in this study should be combined with analogous experiments

in voltage-clamped TIDA neurones to determine the VIP receptors that mediate the effect that

VIP has on TIDA neurones. Furthermore, imaging VIP and GRP receptor proteins, or their

mRNA, in TH cells in the dmARC would be beneficial (for example, see [297]).

The TIDA neurones in this chapter were identified using an original TIDA detection method

that compares the large number of MEA-recorded spike trains with patch-clamp-recorded TIDA

activity in [184]. For the purpose of this discussion, we shall refer to MEA-recorded TIDA cells

as TIDA-like cells or TIDA-like activity, to distinguish them from true TIDA neurones. This is

the first time that a MEA recording platform has been used to record TIDA-like activity and

the first time that extracellular TIDA-like activity has been automatically detected. The TIDA

likelihood detection algorithm performs well when tested against the interval method (Fig. 3.7)

using experiments in which TRH is applied - around 85% of likelihood-detected TIDA-like

cells respond, compared to 56% of interval-detected TIDA cells (Fig. 3.8). In Lyons et al. [190],
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100% of TIDA cells respond to TRH. Additionally, a 6-fold cross-validation study indicates that

the likelihood method is more robust and accurate than the interval method (Fig. 3.8B) when

each method is trained on a subset of data and tested on the remaining data. The accuracy of

the 6-fold cross-validation suggests a mean accuracy of 81.6% for the likelihood method, which

is similar to the accuracy estimated using a response to TRH. While the likelihood method

outperforms the interval method, an accuracy of around 80% would suggest that some of the

TIDA-like activity we detect is not true TIDA activity, although differences between MEA

and intracellular recordings could alter the response rate. Either way, one should note that

non-TIDA cells may have been misidentified as TIDA-like by our detection method. Given the

robust responses observed by TIDA-like cells, it is unlikely that true TIDA cells would behave

differently than the TIDA-like cells we report here.

The method we use to detect TIDA neurones relies upon having a prior belief about what

defines TIDA spiking activity. We use 36 TIDA cells, identified by their position in the ARC

and their subthreshold activity [184], to define TIDA spiking activity. We represent this prior

as a six-dimensional distribution of burst property measurements, P (Fig. 3.6). Improving

the description of TIDA activity, as described below, would improve our ability to detect its

extracellular signatures. First, we only have a limited number of recordings made by the same

experimenter under identical conditions [184]. This is an issue because it may introduce biases

and inaccuracies into our definition of TIDA activity. The recordings we use to train both

TIDA detection methods were made by a single experimenter, with a single species of male

rats. This specific and limited data set may not adequately capture the full spectrum of TIDA

activity variability, potentially resulting in a narrow characterisation of TIDA activity. This may

increase the risk of overfitting, where the detection algorithms become overly tailored to the

idiosyncrasies of the training data and perform poorly on unseen data. A more comprehensive

detection method should incorporate a diverse data set, from different rat strains, females, and

different experimental conditions. Furthermore, the detection algorithms’ validity and accuracy

could be better determined by testing the algorithms on unseen published data sets.

Incorporating a greater number of TIDA recordings from a diverse set of sources would make

our description of TIDA activity more representative of the population and therefore improve

the detection algorithms. That being said, the detection of TIDA activity specifically using

MEAs could be achieved using a combined computational and experimental approach. The

burst duration, IBI and number of spikes per burst of MEA-detected TIDA activity is typically

lower than patch-clamp recorded TIDA cells (Figure A.4A, B, D). It is unclear why this is

the case, but some aspects of TIDA activity, such as long-duration bursts, may be prohibited

by the MEA platform. There are several approaches one could use to detect MEA-recorded

TIDA activity without using TIDA data obtained from other recording platforms. The most

effective approach would be using opto- or chemogenetics to reliably identify TH+ cells in the

dmARC. A light pulse or drug infusion, respectively, would incur activity specifically in TIDA

67



CHAPTER 3. THE CIRCADIAN REGULATION OF THE TIDA NETWORK

cells, which could be observed and used as a direct method to detect TIDA activity on MEAs.

Additionally, this approach could be used to train a detection algorithm, since it would label

some activity patterns as belonging to TIDA cells. A simple machine learning classification

algorithm could then learn to distribute between TIDA cell activity and other MEA-recorded

activity in the ARC. With enough data, the detection method could be used to automatically

detect TIDA activity in data sets recorded from non-transgenic animals, such as the data set

presented in this chapter. As discussed above, the diversity and the source of the data used for

training a classifier model should be considered carefully.

Other experimental procedures could be used to investigate the accuracy of any partic-

ular detection method. For example, both dopamine and prolactin reliably induce specific

responses in TIDA cells [189, 295], which could be used to identify false positives in a detection

algorithm. Cells labelled as TIDA-like that do not respond to dopamine or prolactin may be

incorrectly detected. Identifying the types of activity patterns that are commonly misidentified

as TIDA-like could help develop a more robust detection algorithm. Furthermore, performing

immunohistochemistry staining for TH could identify the presence of TIDA cells in tissue slices

used in an MEA recording. Comparing the location of TIDA-labelled activity with the location

of TH+ (TIDA) cells could identify activity patterns that have been erroneously detected as

TIDA-like. Conversely, it could also point towards electrodes in which no TIDA activity was

detected, despite a TH+ neurone being near the electrode (indicating a false negative).

The detection process could also be improved by exploring other computational approaches

to classifying extracellular spike trains as TIDA-like. The two methods proposed here are

relatively simple - they only take into account six features of the spiking activity. However,

the complexity of neural activity patterns recorded by MEAs suggests that more sophisticated

statistical techniques could be beneficial for detecting TIDA activity. In particular, machine

learning approaches offer promising avenues for improving the classification of TIDA activity.

Supervised learning techniques, such as multi-layered perceptrons, support vector machines or

random forests, could be trained using labelled datasets obtained through transgenic methods,

as described above. Additionally, deep learning architectures, such as convolutional neural

networks or recurrent neural networks, have shown great success in analyzing neural data due to

their ability to capture hierarchical and temporal dependencies in the data [335]. Unsupervised

machine learning techniques could be used to distinguish distinct types of activity profiles in large

data sets, using dimensionality reduction and clustering methods [259, 326]. For instance, recent

studies have demonstrated the effectiveness of deep learning models in classifying neural spike

data and decoding neural activity patterns [39, 164, 231]. Additionally, the implementation of

spike-timing-dependent plasticity in spiking neural networks can provide a biologically inspired

unsupervised learning approach to detect and classify different groups of neural activity [95].

Given the distinct electrophysiological characteristics of TIDA activity compared to activity

in the surrounding ARC, such approaches could be very effective for detecting and classifying
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TIDA cells. Future work should aim to leverage machine learning techniques to develop more

robust and accurate TIDA detection algorithms than the ones presented here.

Direct improvements to our likelihood method may be possible by exploring different

probability density function estimation procedures. We have used a standard procedure that

uses a Gaussian kernel and Scott’s rule for estimating the bandwidth to make a kernel density

estimate (Sec 3.2.6, [287]). The exploration of alternative kernels and bandwidths may improve

the results of the detection algorithm. Such a detection method, whether derived from the ones

presented in this work or other, more sophisticated algorithms, will facilitate electrophysiological

studies of the TIDA network in rats. To date, studies of the TIDA network have been limited

to paired recordings in rats [190, 296], or calcium imaging in mice [258], which have a different

network structure compared to rats [296]. A robust and accurate detection algorithm for

extracellular TIDA activity would be highly beneficial for studying the network dynamics of

the primary neural population underlying prolactin regulation.

One advantage of the MEA recording platform that has not been utilized in this chapter

is that the spatial location of TIDA activity is determined. While immunohistochemistry has

been used to map the location of dopamine cells in the ARC [189, 190], this technique does

not facilitate studying how activity properties, such as TIDA burst frequency, may depend

upon a cell spatial location in the ARC. A pertinent question regarding TIDA physiology

is whether the TIDA networks in the left and right ARC (separated by the third ventricle)

are synchronised such that they have the same burst frequency. There is synchrony within

each TIDA network [190, 296], but it is unclear whether each network is synchronized. The

recording area covered by the MEA spans both sides of the ARC, therefore, the data in this

thesis can answer this question (current research by the author is investigating this topic). If

there is synchrony between any two TIDA cells, one can also use the spatial location to assess

how the phase difference between burst oscillations may change throughout the extent of the

ARC. Incorporating spatial data into the MEA analysis can also be used to study how the

TIDA network interacts with its surrounding tissue. For example, the TIDA network is close

to both the third ventricle and the ventromedial hypothalamus, and thus differences in TIDA

activity properties close to these structures could suggest mechanisms of interactions between

the tissues. Finally, the spatial location of a cell could also be used to check the detection

algorithm. Since the location of TIDA activity is well described [189, 190], an algorithm that

detects cells outside the typical location of TIDA cells could be generating false positive results.

Circadian rhythms in PRL are observed in female rats after cervical stimulation [90, 247],

but a similar rhythm may not be present in male rats [285]. Despite this, we have shown that

there is evidence for daily regulation of TIDA membrane activity in male rats through multiple

mechanisms. We exclusively used males in this study because the TIDA oscillation changes

throughout the female oestrus cycle [258] and accounting for this would require a larger number

of animals. Future investigation of daily changes in TIDA physiology should focus on the
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issue in female rats, as this would have the greatest implications for understanding rhythmic

lactatrophic regulation.

70



Chapter 4

Development of a single cell TIDA
model

4.1 Introduction

In the previous chapter, we examined the collective bursting activity of tuberoinfudibular

dopaminergic (TIDA) neurones of the dorsomedial arcuate nucleus (dmARC) and how their

activity is regulated throughout the day and by neuropeptides. Now we focus more specifically on

the TIDA neurones themselves, in an attempt to understand the origin of their natural bursting

behaviour. TIDA neurones are typically spontaneously bursting in rats [189, 190] and mice [340],

by which action potentials occur in clusters separated by periods of quiescence (see Chapter 3).

A subthreshold membrane potential oscillation with a period of 10-20 seconds, depending on

the recording conditions and the species, underlies the firing of action potentials, which occur

at the peak of the subthreshold oscillation (see Figure 4.1A for an example waveform).

Gaining a better comprehension of the TIDA oscillation could enhance our knowledge of

the primary regulation of a major neuroendocrine system. The development of in silico tools to

investigate neuroendocrine systems has successfully deepened our understanding of numerous

brain-hormone interactions (see [20, 173, 196]). In fact, mathematical models, particularly

those that describe neuronal activity in the hypothalamus, are commonly used in conjunction

with experimental techniques to study many neuroendocrine systems [173]. Despite this, the

hypothalamic dynamics that underlie PRL regulation have received very little theoretical

attention. The system-level model of Bertram et al. [21] describes the level of ME dopamine as

part of a mechanism to generate circadian prolactin (PRL) surges (see Figure 1.2), but does

not describe any detailed TIDA network activity. A master’s thesis from van Lunteren et al.
[321] explicitly attempts to model TIDA bursting in the NEURON software environment [124],

and it does a good job at producing TIDA-like membrane oscillations, however, the proposed

mechanism does not hold up when pharmacological manipulations are compared between

simulations and experiments [190, 295, 321]. Furthermore, the authors did not attempt to
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identify a mechanism and instead simply showed that the collection of currents they considered

resulted in TIDA-like bursting. A lack of clear model equations and parameters, unfortunately,

made the model challenging to simulate by the author of this thesis. It is, therefore, overdue

for a robust mathematical description of the TIDA oscillation.

There is a considerable benefit in mechanistically understanding the activity of such a

core regulatory process in the lactatrophic axis. Dopamine delivery to the median eminence

(ME) is critical for healthy levels of circulating PRL [89, 109], and TIDA cells contribute

most of that DA [180, 239, 284]. The role that oscillating membrane activity plays in the

release of DA from TIDA neurones is beginning to be investigated, but it is not yet fully

understood [294]. Mathematical models have been used in other neurosecretory systems to

determine how membrane activity interacts with cellular processes to determine the dynamics

of hormone release [193, 194, 206], and a similar approach may help improve our understanding

of neuroendocrine dopamine release.

Disrupting dopaminergic signalling in the brain, such as with antipsychotic drugs, can lead

to fertility and sexual reproduction problems that have been associated with hyperprolactinemia

[127]. Similar problems can arise due to commonly prescribed antidepressants, and, in fact, can

be a major cause of patient non-compliance [216, 318]. The adverse sexual side effects of these

drugs likely arise from several distinct mechanisms, but hyperprolactinemia can be directly

related to altered TIDA oscillations, since various selective serotonin reuptake inhibitors (SSRIs),

and serotonin, have been shown to alter the properties of the TIDA rhythm or completely

abolish the oscillation [186]. In addition to being sensitive to exogenous compounds, the TIDA

oscillation is regulated during different stages of life, throughout the day (Figure 3.10) and

by numerous endogenous compounds [33, 186–190, 340]. In a recent study, Perez et al. [258]

found that mouse TIDA oscillations increase in frequency during pregnancy. The authors

identified various changes in the membrane and synaptic processes to explain the adaptation

of the pregnancy-induced network [258]. Understanding how the TIDA cell oscillates is an

important first step toward understanding both the physiological and pathological regulation of

the oscillation. Investigating the bifurcation that transitions the TIDA network from oscillating

to silent may suggest interventions that prevent such a transition, for example, in patients

receiving SSRIs. A model also makes a valuable experimental tool by providing a conceptual

link between the result of an experiment and the underlying biology. Experimentally probing

the system in conjunction with running simulations can answer questions that neither approach

alone could attempt, thereby deepening our understanding of the system.

4.2 Analysis of the TIDA voltage oscillation

To construct a model of a TIDA neurone oscillation, we must first understand the properties

that a model must capture. Additionally, we must understand what the hypothesised ionic
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basis for the oscillation is. In this section, we review a mixture of evidence from published

sources and newly analysed data to determine these features. We start by describing the TIDA

oscillation using original analysis and then go on to discuss the membrane physiology that may

give rise to various features of the oscillation. We will use the whole-cell recordings from [184]

to inform our modelling choices, which include 28 current-clamped recordings made from male

Sprague-Dawley rats at room temperature between ZT 6-12. A complete description of the

methodology behind these recordings will soon be published in [183], and the reader is referred

to references [186, 188–190] for a description of similar methods.

4.2.1 Orginal analysis of electrophysiology data

The TIDA neurones display a robust bursting oscillation characterised by a subthreshold

voltage profile that gradually rises from its minimum to a depolarised plateau upon which

action potentials fire, after which, the membrane voltage returns to its nadir. Figure 4.1A

shows a representative voltage trace. The subthreshold oscillation is relatively slow for a neural

oscillation, with a period of 23:7� 3:8 s (frequency of 0.042 Hz; Figure 4.1D, similar to what

others have reported [190, 296]). Unless stated otherwise in this section, average values will

be reported as the distribution median � the median absolute deviation (MAD). It has been

reported [187] and directly observed by the author (not shown) that the burst frequency is

temperature dependent and increases five-fold at physiological temperatures (33�C) compared

to room temperature (22�C). We will see later in the chapter that different phases of the

oscillation cycle are driven by different processes, and to study such differences it is useful to

dissect the oscillation into three phases (see Figures 4.1Aa and 4.1D). The rising phase starts

at the subthreshold nadir (�59:6� 3:32 mV; Figure 4.1G) and continues until the time of the

first spike event (measured at the peak of the spike). Our data indicates that this phase lasts

for 8:91� 3:66s. The spiking phase spans from the first spike to the last and has a duration

of 7:1 � 3:15 s. The spiking is superimposed upon the maximum plateau of the underlying

oscillation at a membrane potential of �40:7� 1:62 mV (Figure 4.1G). From the final spike

to the subthreshold minimum is the relaxing phase which lasts for 4:83 � 0:6 s. A similar

dissection of the voltage profile was performed in [295, Fig.1], which obtained similar results

for the duration of each phase. Note, however, that they include an extra phase between rising

and spiking denoted as ‘fast depolarisation’, which we ignore here since it was not obvious in

our data.

Although the subthreshold oscillation will turn out to be a key focus of understanding

TIDA bursting, multiple aspects of the spiking activity will also prove useful. In all recordings

[184] spikes are organised into regular bursts that contain 22:5� 16:1 spikes on average (Figure

4.1E). The interspike interval (ISI) distribution for intervals less than 5 s is shown in Figure

4.1B, which indicates that 0.12 s (frequency of 8.3 Hz) is the most common ISI in our data.

Other studies report that 4 Hz is typical of firing within a burst [190], which is closer to the
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Figure 4.1: Analysis of 28 current-clamped TIDA recordings. (A) Representative trace showing
the membrane potential oscillation of a TIDA cell. Numerical values surrounding the trace
indicate average measurements of (starting at the top and moving anticlockwise): maximum AP
voltage, minimum AP voltage, the average duration of the rising, spiking, and relaxing phases,
and the nadir and the peak of the subthreshold oscillation. (B) The period and duration of
the three oscillation phases. (C) The number of spikes per burst. (D) The interspike interval
distribution (bin width of 20 ms; red line indicates the mode). (E) The interburst interval
distribution (bin width of 1 s; red line indicates the mode). (F) Maxima and minima of the
subthreshold oscillation. (G) The maxima and minima of the action potentials. Boxes indicate
the interquartile spread of the data and horizontal lines mark the median. Data points outside
of the whiskers are labelled as outliers and plotted with a diamond.

mean ISI of 0:31 s (frequency of 3 Hz). We interpret intervals greater than 5 s as interburst

intervals (IBI) which are on average 13 s in duration (Figure 4.1C). The spike timing across

the course of the spiking phase is a useful relationship that we seek to explain when modelling

bursting cells because it points towards the geometric structure of the underlying dynamical

system (see Section 4.5). Analysis of ISI progression throughout a burst reveals that the first

and last ISIs are larger than the ISIs towards the middle of a burst (Figure 4.1F), which has

been referred to as parabolic bursting [262] and will be important later. Finally, the spiking can

be assessed in the voltage domain to reveal that the action potentials depolarise to 42:8� 7:08

mV and hyperpolarise to �54:3� 3:0 mV. With this understanding of the TIDA oscillation, we

can now review the membrane physiology that may generate it.
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Figure 4.2: Parabolic bursting in TIDA neurones. Each panel shows the interspike interval (ISI)
plotted as a function of the spike number for each burst in a recording of a single neurone. The
results are representative of the wider population (28 cells).

4.2.2 A review of TIDA membrane physiology

Detailed studies of TIDA membrane physiology using intracellular recording techniques are

relatively recent (see [187] for a review), and previous studies used dopamine turnover and

extracellular techniques to infer population activity [218]. One of the first studies to investigate

the membrane physiology of patch-clamped TIDA cells from male rats found that tetrodotoxin

(TTX, a Na+ channel antagonist) reliably abolished rhythmicity [190]. At the concentrations

used by Lyons et al. [190], TTX blocks both fast Na+ channels initiating action potentials

and slower subthreshold-activated Na+ conductance that contributes to the persistent sodium

current (INaP ). Subsequent studies have identified that INaP plays a crucial role in orchestrating

the TIDA oscillation. In their soon-to-be-published work, Lyons et al. [183] show that the

specific INaP channel blocker riluzole dramatically increases the length of the spiking phases

and in many cases prevents the spiking phase from terminating (Figure 4.19). This is a curious

result since INaP is an inward current that depolarises the cell and in its absence, one would

expect the cell to be hyperpolarised. In the same study, the INaP channel agonist veratridine

was shown to alter the oscillation waveform by increasing the duration of the rising phase and

increasing the amplitude of the subthreshold oscillation by depolarising and hyperpolarising

its maximum and minimum, respectively. Taking into account both the effects of riluzole and

veratridine, it would appear that INaP is a critical component of the TIDA burst process.

Stagkourakis et al. [295] found that lowering the concentration of extracellular Ca2+ ions

([Ca2+]) affects oscillating TIDA cells similarly to riluzole by significantly increasing the duration

of the spiking phase [295]. The high voltage-activated L-type calcium channel is involved in

mediating the low [Ca2+] solution effect, since the application of its antagonist nimodipine

elicited similar, but reduced, spike phase-prolonging effects [295]. Subthreshold calcium channels
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have been suggested to be driving components of the slow oscillation of other bursting neurones

[201, 262], including mouse TIDA neurones [340], however, there is no evidence for these

channels in rat TIDA neurones. An alternative mechanism for the action of calcium is through

calcium-induced activation of other ionic conductance channels. Examples of such channels

include the BK and SK channels (big- and small-K+, respectively) that are activated by

intracellular Ca2+ [336]. In [295], application of the BK channel antagonist, charybdotoxin,

was also found to increase the duration of the spiking phase, pointing to the involvement of a

calcium-activated K+ current terminating the spiking state.

Another finding in [295] was that the prolongation of the spiking phase due to a low-Ca2+

solution (ca. 60s) is not completely captured by blocking the BK channel (prolongation of ca. 6s)

[295], which may be due to several reasons. Charybdotoxin does not block all BK channels and

it may be possible that if a higher proportion of BK channels were effectively blocked, then the

increase in the spiking duration could be comparable to applications of a low-Ca2+ solution. It is

unlikely that SK channels contribute to TIDA activity, as the application of apamine and UCL

1684 has no effect (Lyons, personal communication, [340]). Another interesting possibility is that

the activation of INaP is regulated by intracellular calcium and the membrane potential [309].

Given that blocking the INaP channel significantly increases the spiking phase, the calcium

dependence of INaP may also explain the effect of low-Ca2+ solution.

The pharmacological blockade of ionic currents that leads to a cessation of the TIDA

oscillation is particularly important to us because we aim to understand the simplest mechanism

that generates the oscillation. If a particular manipulation destroys the oscillation, then it

is reasonable to assume that the physiological mechanism involved is important for burst

generation. In this sense, the persistent Na+ current and the presence of sufficiently high

extracellular Ca2+, which may indirectly activate an outward current, appear to be critical for

burst generation. Transient receptor potential (TRP) channels also appear important, since

blocking TRPC channels abolishes the TIDA oscillation [189]. It is not clear whether there

are other ionic currents or cellular processes that are similar in importance to TIDA activity.

Gap junction blocking compounds abolish rat TIDA oscillations [190], but their mechanism

of action is unknown and needs to be investigated using the model developed here. A notable

abolishment of the TIDA oscillation is observed due to various compounds that are functionally

relevant to the population’s role in prolactin regulation. Specifically, thyrotropin-releasing

hormone [190], prolactin [189], oxytocin [33], orexin [188], VIP and GRP (Chapter 3) depolarise

rat TIDA cells and replaces phasic firing with tonic discharge. The depolarization caused by

these compounds is predominantly mediated by the activation of a TRP current [189]. Other

compounds eliminate rhythmicity by hyperpolarising cells, including serotonin in rats [186] and

met-enkephalin and dynorphin-A in mice [340], which appear to activate a G-protein coupled

inwardly rectifying K+ channel. The mechanisms by which endogenous compounds alter TIDA

oscillations will not be studied here but could be incorporated in future studies.
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Other aspects of TIDA membrane physiology can regulate activity oscillations without

destroying them. The A-type K+ current has been observed in both rat [190] and mouse

oscillating TIDA neurones and blocking the current with 4-AP leads to faster bursting in rat

[184] and less regular bursting in mouse [340]. The A-type current is involved in modulating

the timing of action potential firing and, in particular, in delaying the onset of spiking in other

neural systems [57, 81]. It appears that the A-type current may be delaying or regularising the

transition from quiescence to spiking in TIDA cells.

Another current that is known to regulate the period of TIDA neurones is the hyperpolarisation-

activated current, Ih [184, 258, 295]. Ih is a mixed cationic current composed of Na+ and K+

ion flux, with a preference for K+ [27]. Unlike many other conductance channels, Ih chan-

nels are activated by hyperpolarization and inactive at higher membrane potentials. Ih has

been described in rhythmic processes throughout the brain [191, 240], and can generate sub-

threshold oscillations in combination with other currents [131, pg.136]. Blocking Ih with the

hyperpolarization-activated cyclic nucleotide–gated (HCN) channel antagonist ZD7288 increases

the burst period in rats (Figure 4.21 and [184]); however, the compound has no effect on the

mouse TIDA rhythm [340]. Therefore, the Ih current does not appear to be part of the core

oscillatory mechanism, but it does have important period tuning properties.

To summarise the evidence above, a variety of ionic conductances orchestrate the bursting

oscillation described in Figure 4.1A. The termination of the burst in rats depends on INaP
and extracellular Ca2+. Both INaP activation dynamics and Ca2+ dynamics within the cell

are slow processes and both form intergral parts of the burst mechanism in other neural

networks [42, 72, 81], and may be critical for the bursting behaviour in TIDA neurones. The

calcium-activated outward BK current is present in TIDA cells and also appears to play a role

in the termination of a burst. The prolonged spike phase in low extracellular Ca2+ may be

facilitated by the BK current, but other calcium-dependent processes may also be involved.

Furthermore, there is ample evidence for the existence of a variety of calcium channels in

TIDA neurones, from low- to high-voltage-activated types [189, 295, 340]. In this chapter, we

are specifically interested in describing the TIDA oscillation of male rats. As we have seen,

there are differences in both membrane physiology and electrical output of the rat and mouse

TIDA networks [296, 340]. In developing the TIDA model, we will incorporate data obtained

only from rats [184]. Finally, the data analysed and the literature reviewed above are mainly

from ex vivo slices in which electrotonic and synaptic coupling is present and contributes to

TIDA activity [9, 190, 295]. In this chapter, we will develop a model of a single TIDA neurone

oscillation and neuronal interactions of all kinds are ignored. We make this simplification before

using the model to investigate how a combination of coupling and conductance mechanisms

may generate network-wide oscillations (Chapter 5).

The remainder of this chapter is dedicated to finding a mechanistic description of the

membrane processes that give rise to the oscillations summarised in Figure 4.1. As such,
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a conductance-based (Hodgkin-Huxley) model is constructed that incorporates INaP and a

calcium-activated outward K+ current, IKCa, as the basis for generating slow subthreshold

oscillations. We require that this model generates activity similar to spontaneously recorded

male TIDA neurones, namely, subthreshold oscillations with a period of approximately 23 s that

have rising, spiking, and relaxed phase durations of approximately 9, 7 and 5 s, respectively

(Figure 4.1B). Additionally, the subthreshold waveform should oscillate between -60 mV and

-40 mV, action potentials should fire between -55 mV and 40 mV, and there should be around

23 action potentials per burst. The precise details of action potentials are not the focus here;

however, it is important that simulated bursts have a larger ISI towards the start and the

end of the burst (Figure 4.2). The heterogeneity observed in the data, particularly in Figure

4.1B, should also be captured by a suitable parameter variation in the model. Finally, certain

pharmacological manipulations discussed above should be replicated by the model.

4.3 Numerical simulations

Numerical integration of all differential equations in this chapter and in Chapter 5 was performed

using the SciPy (Pyhton) function solve ivp and the ‘Radau’ solver for stiff differential

equations [116]. The default absolute tolerance was 10�6 and the default relative tolerance was

10�3. These tolerances were chosen to achieve acceptable run times for the highly stiff systems

that are simulated. Where necessary, tolerances were decreased to check the repeatability of

the results. Numerical continuation was performed using MatCont with the default parameter

values [75]. In some cases, to detect Hopf bifurcations the range of step sizes in parameter space

was reduced.

4.4 The bursting Morris-Lecar model

We start our construction of a TIDA model using a modified Morris-Lecar (ML) model.

Cathy Morris and Harold Lecar originally developed their simple conductance-based model

of excitability to describe the variety of electrical patterns observed in giant barnacle muscle

fibres [221]. Since then, it has become a cornerstone of mathematical neuroscience due to the

ability of the model to capture biophysical processes while remaining analytically tractable

[81]. For those reasons, we start with an ML-inspired model and sequentially modify it to

describe the physiology of the TIDA membrane. An approach to facilitate bursting in the ML

model is to include a calcium-activated potassium current, IKCa, along with the dynamics

of intracellular calcium ion concentration ([Ca2+]) [81, Chp.5]. When [Ca2+] is high, a larger

fraction of IKCa channels are opened and the K+ efflux causes increased hyperpolarisation, while

when [Ca2+] is low, so is the amplitude of IKCa and the cell experiences less hyperpolarisation.

A slow oscillation in [Ca2+] will slowly change the depolarisation of the cell, which may cause

oscillations in action potential firing. The bursting Morris-Lecar (BML) equations that describe
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this are given by

CmV̇ = I � IL(V )� IK(V; n)� ICa(V )� IKCa(V; c);(4.1)

ṅ =
�

�n(V )
(n1(V )� n);

ċ = �(��ICa(V )� kCac);

where V is the cell’s membrane potential, n is the gating variable for the K+ current and

c is the concentration of intracellular ions ([Ca2+]). In addition, IL(V ); IK(V; n); ICa(V ) and

IKCa(V; c) are the leak, potassium, calcium and calcium-activated currents, respectively. Cm
is the specific capacitance and I is the applied current. In Lyons’ data (Sec. 4.2.1, [184]) no

holding current was applied but we use I to model the TRPC current. While evidence suggests

that TRPC current remains relatively constant during the silent phase of bursts [189], there

is a lack of literature supporting its constancy during neural firing. Nevertheless, we assume

that the TRPC current is constant throughout the burst cycle to facilitate a simple initial

model of TIDA bursting. Given that the model we are constructing is the first of its kind for

TIDA neurones, we believe this is an acceptable assumption. That being said, future models,

especially if they are being used to study properties of TIDA action potentials or spike timing,

should incorporate a more realistic TRPC model, such as in [167].

Each current term is given by

IL(V ) = ḡL(V � VL);(4.2)

IK(V; n) = ḡkn(V � VK);(4.3)

ICa(V ) = ḡCam1(V )(V � VCa);(4.4)

IKCa(V; c) = ḡKCaz(c)(V � VK);(4.5)

where ḡi are the maximum conductances (i = L;K;Ca;KCa) and Vi are the reversal potentials

(i = L;K;Ca). Activation of the potassium and calcium conductances is voltage-dependent and

the proportion of their channels open at any given voltage is

n1(V ) =
1

2
(1 + tanh((V � Sn)=kn));(4.6)

and

m1(V ) =
1

2
(1 + tanh((V � Sm)=km));(4.7)

respectively. Si are the half-maxima of the sigmoidal activation functions and ki determines the

slope (Figure 4.3A). The potassium channels take a finite time to respond to the membrane

potential, as described by

�n(V ) = 1= cosh((V � Vmax)=2�);(4.8)
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Figure 4.3: The steady-state activation functions, voltage-dependent timescales and bursting
solutions to system (4.1). (A) The potassium (blue) and calcium (orange) steady-state activation
functions, given by equations (4.6) and (4.7) respectively. (B) The intracellular [Ca2+]-dependent
activation function of the calcium-activated potassium current (IKCa), equation (4.9) (C) The
voltage-dependence of the potassium gating variable timescale, equation (4.22). (D) Solutions
to equation (4.1) with the parameters in Table 4.1.

where the potassium n-gate is slowest to respond at Vmax and the gating timescale at different

voltages depends upon � (Figure 4.3C). � scales the whole n timescale. The calcium current

activation gate is much faster than the potassium and its dynamics are assumed to be instanta-

neous, hence the lack of an m variable in (4.1). Assuming instantaneous dynamics due to large

differences in timescales is a method we will use regularly throughout this thesis.

Ca2+ enters the cell via membrane Ca2+ channels, with � being the current-to-concentration/time

conversion factor. All processes that remove Ca2+ from the cytoplasm are lumped into one

linear removal term, which has a rate kCa. � is the ratio of free Ca2+ to total calcium ions and

since calcium is highly buffered, � is small. The smallness of � will be crucial later. Calcium

ions activate IKCa according to

z(c) =
cr

cr + 1
;(4.9)

where a value of Hill coefficient r = 9 was found to be convenient, as in [108]. Similar to other

conductance gates, z is the probability of the IKCa channels being open.

The dynamics of the BML system (4.1) is summarised in Figure 4.3. We shall use this as a

suitable starting point for a TIDA model because it is simple, yet it has a number of valuable

features: a conductance-based model that includes IK and ICa currents, slow calcium dynamics,

and a calcium-activated potassium current. Furthermore, for certain parameter regimes, the

BML exhibits burst oscillations similar to TIDA oscillations: a slow rising phase followed by a
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Parameter Value Parameter Value Parameter Value

ḡKCa 0.6 mS/cm�2 km 18 mV � 0.24 ms
� 2� 10�4 ḡK 8 mS/cm�2 ḡL 2 mS/cm�2

� 0.01 mol/C�m Sn 12 mV VK -84 mV
kCa 1 s�1 kn 17.4 mV VCa 123 mV
ḡCa 4 mS/cm�2 Vmax 12 mV I 45 �A/cm2

Sm -1.2 mV � 17.4 mV Cm 20 �F/cm2

Table 4.1: Initial parameters of the BML model (4.1) [81] that have been tuned to produce
TIDA-like activity [108].

brief period of spiking at a depolarised mean membrane potential, then finally a rapid return to

the oscillation nadir (Figure 4.3D). The parameters of system (4.1), fully detailed in Table 4.1,

were found in collaboration with Grant de Torres [108], and can be traced back to Ermentrout

and Terman [81].

Despite being a robust model for bursting with properties that broadly resemble TIDA

cells, there are a number of weaknesses. These include the absence of spike-generating Na+

currents, the inability to explain the dependence of bursting on persistent sodium currents, its

inability to generate realistic subthreshold waveforms, and shorter ISIs in the middle of a burst.

The goal of the rest of this chapter is then to refine (4.1) and the parameters in Table 4.1, in

order to develop a model that is capable of explaining these features and those summarised in

Section 4.2.

4.5 Fast-slow analysis

Fast-slow analysis is a technique that takes advantage of large differences between the timescales

within a system. It is hardly surprising, owing to the vastly different timescales of different ion

channels, that such timescale separation should be a key feature of mathematical neuroscience.

In fact, we have already appealed to such timescale separation when making the quasi-steady

assumption m = m1(V ) (see Eqn. (4.4)). John Rinzel was the first to use this approach to

study the burst mechanism of the Chay-Keizer model of pancreatic �-cells [261], and since

then, slow-fast analysis has proven to be a useful tool for understanding a range of neural

activity patterns other than bursting [23]. To demonstrate fast-slow analysis, consider a system

of coupled differential equations in which n variables evolve on a much faster timescale than m
variables. Then the system can be written as

ẋ = f(x; y);(4.10)

ẏ = �g(x; y);

where x 2 Rn are the fast variables and y 2 Rm are the slow variables. The parameter 0 < �� 1

leads to timescale separation because ẏ is much less than ẋ. For our purposes, n is either 2 or
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3 and m is either 1 or 2. The analytical power of this approach is realised in the limit �! 0

where the two subsystems can be analysed semi-independently. Taking this limit in Equation

(4.10) leads to ẏ = 0 and the slow variable becoming a constant y = ỹ, which can be treated

as a parameter of the fast system ẋ = f(x; ỹ). As we shall see later, representing the slow

system as parameters of the fast system is a fruitful approach to understanding the details of

the bursting dynamics. The key idea is that the fast system may have geometrically distinct

states for different values of ỹ, such as quiescence and spiking, and slow modulation of ỹ can

transition the fast system between these states. The slow system can be studied in a similar

way by rescaling time such that � = �t, leading to

�
dx
d�

= f(x; y) = 0;(4.11)

dy
d�

= g(xS(y); y);

where x = xS(y) is the solution to f(x; y) = 0. The rescaled slow system dy=d� = g(xS ; y)

can now be studied almost independently of the fast system. Of course, the slow system still

depends on the steady state of the fast system.

To illustrate how fast-slow analysis can be applied to bursting cells, we take the 3-variable

system given by (4.1). The fast system is described by the two variables of the original ML

model, x = (V; n),

CmV̇ = I � IL(V )� IK(V; n)� ICa(V )� IKCa(V; c);(4.12)

ṅ = �(n1(V )� n)=�n(V );

and the calcium dynamics becomes the slow system, y = c,

ċ = �(��ICa(V )� kCac):(4.13)

Setting � = 0 we can use z = z(c) 2 [0; 1] as a parameter in (4.12), where it acts as the

conductance of IKCa. Here and in what follows, we shall drop the˜on quasi-static variables, for

convenience, whenever the meaning is clear.

Continuation of the fast system solution in the slow parameter z produces the Z-shaped

equilibria manifold in Figure 4.4A (blue). For small z, the system sits at a positive resting

membrane potential, which becomes unstable at a subcritical Hopf bifurcation, z = zHB.

Unstable limit cycle solutions emanate from the Hopf point until a fold of limit cycles at zLCF
changes the stability of the solution and stable limit cycles emerge. The amplitude of the

limit cycle increases as z increases until the lower branch of the oscillation collides with the

saddle manifold at a homoclinic bifurcation point zHO. The critical feature of this diagram is

that for a certain range of z 2 [zLFC ; zHO] there exists bistability in which a branch of stable,

low-voltage equilibria coexists with stable limit cycles. Now that we understand the fast system

for constant z, we consider the case where z is dynamic, as is the case in the full system (4.1).
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Figure 4.4: Fast-slow analysis of the bursting Morris-Lecar system. (A) The bifurcation diagram
of the fast system (4.12) continued in z. Blue curves indicate equilibria and green curves are the
limit cycles max/min. The stability of each is shown by either solid (stable) or dashed (unstable)
curves. In orange is the c-nullcline (ċ = 0). In grey is the trajectory of the full bursting system
projected onto the V � z plane. In this figure, and in all bifurcation diagrams henceforth, filled
circles represent fold (blue), Hopf (magenta) and homoclinic (red) bifurcations. In (Ai), the
period of the stable limit cycle solution is plotted. As z approaches the homoclinic point, the
period diverges. (B) The voltage dynamics (B), potassium activation dynamics (C) and the
[Ca2+] dynamics (D) during bursting.

Starting on the hyperpolarised stable equilibria branch, there will be a negligible [Ca2+] influx

since V is far below the activation threshold of ICa, therefore c (and z) will decrease due to

internal [Ca2+] removal. The solution remains on the stable manifold with increasing V until

the stable state disappears at the fold point (zF ) and the solution jumps towards the upper

equilibria. In doing so, the c-nullcline is crossed and z starts to increase. Biophysically, this is

due to [Ca2+] increasing rapidly with each spike and slowly accumulating over the course of a

burst. Spiking persists with a period that approaches infinity as the trajectory approaches the

homoclinic bifurcation, after which the limit cycle ceases to exist, forcing the trajectory down

to the hyperpolarised stable manifold. Once again, the c -nullcline is crossed, the evolution of z
changes direction, and the cycle repeats.

Following the fast-slow burster nomenclature proposed by Izhikevich [132] and Bertram

[24], the bursting of (4.1) as illustrated in Figure 4.4 is an example of a fold/homoclinic

burster. This classification system characterises burst oscillators by the bifurcations in the fast

system that initiate and terminate spiking. Different bursters can have different subthreshold

dynamics, spiking patterns, and neurocomputational properties [131]. Although there are

numerous different classes of bursters with one-dimensional slow systems, as we shall see (see

Section 4.8 later), we will require two slow parameters to capture the parabolic ISI profile of a
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TIDA burst (Figure 4.2, [262]).

4.6 Incorporating the transient sodium current

One of the key features of TIDA neurons, and neurons in general, is the presence of a transient

sodium current which we introduce in (4.1) through an additional current, INaT , such that

CmV̇ = I � IL(V )� IK(V; n)� ICa(V )� IKCa(V; c)�

INaT (V;n)z }| {
ḡNaT s1(V )3(�1 � �2n)(V � VNa);

(4.14)

ṅ =
�

�n(V )
(n1(V )� n);

ċ = �(��ICa(V )� kCac);

The parameter ḡNaT is the maximum conductance, VNa is the sodium reversal potential, s1(V )

is the steady-state sodium activation function given by

s1(V ) =
1

2
(1 + tanh((V � Ss)=ks));(4.15)

and plotted in Figure 4.5A. Ss is the half-maximum and ks is the slope of s1(V ) at Ss. We

have assumed here that instantaneous activation, s1, replaces a dynamic sodium activation

variable because the sodium current activates much faster than the potassium current [131].

The transient sodium current is inactivated at high voltage, which is described by the term

(�1 � �2n). In its original form derived from Hodgkin and Huxley’s work [125], the INaT
inactivation dynamics would be described by its own variable; however, for simplicity, we

describe this process as the reverse of potassium activation, where �1 = 0:89 and �2 = 1:1.

This simplification follows from the simulations of Krinskii and Kokoz [154] and the analysis

of Izhikevich [131, pg.148]. It introduces the biophysically unrealistic possibility of the Na+

inactivation varible becoming negative, however 0:89 � 1:1n > 0 in all final solutions (Figs.

4.14, 4.16 and 4.19-4.21) of the model (see Appendix Figure A.7). While this simplification is

useful for reducing the complexity of the INaT model, it requires the assumption that the INaT
inactivation threshold is the same as the IK activation threshold, which is probably not the

case. The dynamics of the channels governing INaT inactivation and IK activation are complex

and distinct from one another, and making this assumption may sacrifice detailed behaviours of

the Na+ channel that could be important for modelling TIDA action potential properties. Since

we are primarily concerned with the dynamics of the subthreshold oscillation in this work, we

will proceed with the naive assumption. If future work should use this model to examine TIDA

action potential properties, a more detailed INaT model should be developed (see [275]). The

initial parameters for the INaT model come from [275] and can be found in Figure 4.5.

Simulating (4.14) with the parameters given in Figures 4.3 and 4.5 fails to produce limit

cycle solutions associated with regular spiking (Figure 4.5B), which is a prerequisite for bursting.

84
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Figure 4.5: Including an INaT model and simulating equation (4.14) leads to a stable-steady
state. (A) The INaT model includes an activation gate, for which the steady-state is given in
solid green, and an inactivation gate, the steady-state of which is given by �1 � �2n1. Here,
�1 = 0:89; �2 = 1:1; Ss = �25; ks = 30 and the parameters for n1(V ) are as in Figure 4.3. (B)
Simulations of equations (4.14) with 10 random initial conditions and parameters given above
and in Figure 4.3 lead to a single, depolarised steady-state.

Unsurprisingly, adding an ‘out-of-the-box’ INaT model to an established bursting model does

not give us the activity profile we require. To understand why and show how to restore bursting,

it is useful to decompose our system into a fast component and a slow component.

A limit cycle (repetitive spiking) in the fast system, (V; n), of (4.14) is required for bursting

in the full system, at least for some values of the slow parameter z. Examining the phase space

of the fast system answers our question. In Figure 4.6A we see the nullclines and a limit cycle of

the fast system before including INaT (ḡNaT = 0). Note that the n-nullcline intersects the cubic

V -nullcine on the middle branch. Adding INaT (with parameters from Figure 4.5) shifts the

cubic nullcline upward in n and, more importantly, results in the single intersection point being

a stable spiral on the right-hand branch of the cubic curve (Figure 4.6B). For a limit-cycle

solution to exist in this system, an intersection of the two nullclines must occur on the middle

branch of the cubic curve. A simple geometric approach to restore this condition is to shift the

ṅ = 0 curve left, as in Figure 4.6C. Since the n-nullcline is simply the n steady state, (4.6), a

shift to the left corresponds to a reduction in the half-maximum parameter Sn. Reducing Sn
from 12mV ! 0mV is sufficient to restore a limit-cycle solution to the fast system. The new

parameters of our model are given mostly in Figure 4.3, with the INaT parameters in Figure

4.5 and the updated IK parameters in Figure 4.6.

So, with minor alterations, the BML+NaT model has action potential limit cycles. Unfortu-

nately, solving one problem has led to another: The limit cycle solution is stable across the

whole dynamic range of z ([0,1]), and bursting does not occur. We saw above that bursting

requires bistability in the fast subsystem with bifurcations that initiate and terminate spiking

as z is varied within [0; 1]. We continue the limit cycles of the fast system, (V; n), of (4.14),
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Figure 4.6: Explaining using phase-plane analysis how to restore bursting in the BML+NaT
model. In each panel the V - and n-nullclines (V̇ = 0; ṅ = 0, respectively) of the fast system
(V; n) of (4.14) are plotted along with a representative trajectory. Pale curves represent a
nullcline before the system is altered. Parameters are as in Figures 4.3 and 4.5, unless otherwise
stated, and z = 0:3. (A) The fast system with ḡNaT = 0 has a limit cycle solution around the
fixed point at the crossing of the middle branch of the cubic V -nullcline with the n-nullcline.
(B) Adding INaT (ḡNaT = 10) shifts the V -nullcine towards higher n (compare the pale blue
with the blue curve, where the pale blue is identical to V̇ = 0 in A). (C) Spiking is restored by
hyperpolarising the potassium gating threshold. The adjusted parameters of the IK model are
Sn = 0 and Vmax = 0, where Vmax is also changed to keep the timescale maximum aligned with
the gating steady-state half-maximum.

Figure 4.7: The bifurcation diagram of the fast-system, (V; n), of (4.14) continued in the
slow-system parameter, z. Equilibria (blue) and the limit cycles min/max (green) are plotted.
Grey vertical lines indicate the range that z = z(c) can take in the full model. These plotting
conventions will be used throughout this chapter. The fold point here is also a saddle-node of
infinite period (SNIP) [161, Chp.7], which explains why the limit upper part of the limit cycle
branch seems to end ‘in mid-air’.
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with parameters as in Figure 4.6C, and find that spiking is the only stable state of the system

for z between approximately �2 and 1 (Figure 4.7), and there is a lack of any bistability.

Consequently, in the full system where z 2 [0; 1] spiking is the only possible solution. To achieve

bursting, we require a fast system with bifurcations that initiate and terminate the action

potential at values of z within [0; 1].

Altering the parameters of the fast system can change the positions of the bifurcations in

Figure 4.7, as well as creating and destroying other bifurcations. The fast system of (4.14), with

parameters described in Figure 4.6, was continued in z and one other parameter for a large

set of free parameters. This resulted in a large number of two-parameter bifurcation diagrams

illustrating how the Hopf and fold bifurcations change their position as another parameter is

varied. Figures 4.8 show examples of such diagrams for the parameters ḡK (A) and ḡKCa (B).

In Figure 4.8Aa, increasing ḡKCa from its initial value of 0:6 (lower grey line) draws the Hopf

and fold/SNIP towards similar values of z. At ḡKCa = 2 (higher grey line) we see that the

Hopf and the SNIP are closer together and zSNIP 2 [0; 1]. However, this parameter change is

insufficient to produce bursting because bistability is still absent (Figure 4.8Ab). Decreasing

the fast potassium conductance parameter, ḡK , shifts the Hopf bifurcation to a higher z and

introduces a homoclinic bifurcation at zHO (Figure 4.8Bb; red dot). The termination of the

limit cycle via a homoclinic bifurcation versus a SNIP is important here because it introduces

bistability into the fast system, i.e., between zfold and zHO there exist both a stable equilibrium

and a stable limit cycle. Even with this necessary property, bursting is still unachievable

because the bistable region is outside of [0; 1]. Changing both parameters simultaneously so

that gKCa = 0:6! 2 and gK = 8! 5 results in a fast system that is bistable over a range of

z 2 [0; 1] (Figure 4.8C) and produces burst oscillations (Figure 4.8D)

4.7 Correcting the reversal potentials

The whole-cell voltage clamp recordings [184] that we compare our TIDA model to are conducted

using extra- and intra-cellular recording media with precise concentrations of ionic species and

hence precise reversal potentials. The methodology used to obtain these recordings is similar to

[190] with the extracellular recording solution containing (in mM): 154 Na+, 2.1 K+ and 2.4

Ca2+. The intracellular recording solution contains (in mM): 4 Na+ and 150 K+, and Ca+2+

is absent. Using the Nernst potential [131, Eqn. (2.1)] we calculate the reversal potentials of

sodium and potassium as

ENa = �
RT
zF

ln
4mM

154mM
= 93mV;

and

EK = �
RT
zF

ln
150mM

2:1mM
= �109mV:

Since extracellular [Ca2+] is much larger than intracellular [Ca2+], we keep the large positive

reversal potential in the BML (VCa = 123 mV). Making these parameter adjustments does not
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Figure 4.8: Bursting can be restored in the BML+NaT model by ensuring the fast-system of
(4.14) is bistable in a physiological range of z. (Aa) and (Ba) are two-parameter bifurcation
diagrams of the fast system, with parameters as in Figure 4.6C, that show how the Hopf
(magenta) and fold (blue) bifurcations change position in parameter space. Grey lines indicate
initial parameter values and the adjusted values used in subsequent simulations. (Ab) and
(Bb) show one-parameter slices through their accompanying two-parameter diagrams. The red
dot indicates a homoclinic bifurcation. (C) The bifurcation diagram of the fast-system with
ḡKCa = 2 and ḡK = 5 and a representative trajectory overlaid in grey, and plotted over time in
(D).
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4.8. ADDING A PERSISTENT SODIUM CURRENT

significantly alter the solution described above.

4.8 Adding a persistent sodium current

As described in the Introduction to this chapter, the persistent sodium (NaP) current appears

to be important for burst activity in TIDA neurones. Blocking the NaP current with the

antagonist riluzole depolarises neurones and often invokes sustained spiking (see Fig. 4.19Aa).

The application of the NaP agonist veratridine also affects the slow oscillation by hyperpolarising

its nadir. Manipulations of this current profoundly affect the bursting waveform, including a

complete abolishment of the oscillation when the current is removed. Therefore, we view the

NaP current as an essential component of the TIDA burst generation mechanism.

The NaP current is known to be an important current underlying the oscillatory mechanism

in neurones of the pre-Boltzinger complex (pBC), where burst firing is associated with regular

movement patterns. We initially include the NaP current using a model derived from pBC

neurones [42], where the parameters are estimated from layer 2/3 neocortical cells [36, 91].

The Butera et al. NaP model includes both an activation gate, p, and an inactivation gate, q.
The description of this current as persistent is by convention only, since it inactivates at high

voltages.

Our hypothesis is that the slow activation of the NaP current is partly responsible for the

slow increase in voltage observed in TIDA neurones [190]. To assess whether this mechanism

can drive slow oscillations, we slow the time scale of the activation dynamics (�p = O(102)) and

assume that the inactivation dynamics is instantaneous such that q(t) = q1(V ). We assume

that the timescale of the activation dynamics is independent of voltage, in part due to a lack of

appropriate data for the TIDA neurones and also to keep the system mathematically tractable.

This results in the NaP timescale being controlled by a single parameter �p. The NaP current

is included in the model as the term

(4.16) INaP (v; p) = ḡNaP pq1(V )(V � VNa);

where p has dynamics governed by

(4.17) ṗ = (p1(V )� p)=�p;

and the steady state (in-)activation functions are given by sigmoidal functions

(4.18) x1(V ) =
1

2
(1 + tanh((V � Sx)=kx));

where x = fp; qg. Adding the NaP current to the BML+NaT model (4.14) gives us a four-
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Figure 4.9: NaP model parameters can be fit using an NaP I-V relationship. (A) The voltage-
dependent NaP current recorded from male rat TIDA neurons in [183] (grey), the Butera
et al. [42] model (blue) and a tuned INaP model (purple). (B) The activation (solid) and
inactivation (dashed) steady states for the TIDA-tuned INaP model in (A) with parameters:
Sp = �37; kp = 5; Sq = �20; kq = 40 (all in mV).

dimensional system, referred to as the BML+NaTP model, described by the following equations:

CmV̇ = I � IL(V )� IK(V; n)� INaT (V; n)� ICa(V )� IKCa(V; c)� INaP (V; p)(4.19)

ṅ =
�
�n

(n1 � n)

ċ = �(��ICa � kCac)

ṗ = (p1 � p)=�p;

where the fast-subsystem is x = (V; n) and the slow system is y = (c; p).

We can find suitable parameters for the NaP model by using the I-V relationship calculated

for the NaP current in TIDA cells. Details of this are shown in Figure 4.9 in which we compare

the simulated NaP I-V curve with that observed from the experimental data in [183]. This

current is calculated experimentally by subtracting the current response of patch-clamped TIDA

cells to a slow, subthreshold voltage ramp in the presence of TTX, from the same response

in cells without TTX treatment. TTX blocks the NaP channel, and a subthreshold voltage

range ensures that only the NaP channels, and not higher voltage-activated channels, are

activated. Subtraction of current responses should then leave only the current response of the

NaP channel (Figure 4.9A, black). The original Butera et al. model does not compare well with

the experimental TIDA NaP I-V curve, as shown in Figure 4.9A (blue). The TIDA NaP current

peaks close to -30mV and there is very little current below approximately -45mV. Increasing

the half-maximum inactivation, Sq, from -48mV to -20mV shifts the peak current to around

30mV. Then decreasing kp from 12mV to 5mV and increasing kq from 12mV to 40mV lead to

the sharp increase and slow decrease in current observed in the TIDA I-V curve (Figure 4.9A,

orange).
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Adjusting the reversal potential parameters and including a realistic NaP current leads to

the familiar scenario in which our model does not burst, even after perturbing a few select

parameters and varying the initial conditions. We can once again turn to fast-slow analysis to

understand why bursting is not observed. The difference compared to the analysis in Figure

4.8 is that the bursting should depend on two slow variables, p and c, rather than only c.
The analysis is identical, but now our fast subsystem depends on two slow variables, p and

z. The spiking solution of the full model with INaP oscillates in p and z around 0:3 with a

small amplitude for both quantities, so in the fast system we take p = 0:3 and z = 0:3 to

be the default parameters to represent repetitive spiking in the full model. Continuation in p
and z indicates that the fast system is capable of supporting the bursting solutions that we

would like to find. Parabolic bursting, in which the spike frequency is lower at the start and

end of the burst, requires that the slow variables periodically cross a SNIP bifurcation [262].

The fast subsystem has SNIP bifurcations within the dynamic ranges of both p and z when a

continuation is performed in the other parameter (Figure 4.10A, B; blue dots and the blue curve

in C). This suggests that bursting could be restored to the model by altering the dynamics of

the slow variables. Conveniently, many of the parameters that underlie the slow dynamics have

been set by the NaP I-V curve, leaving only a handful of parameters, mostly regarding [Ca2+]

dynamics, to tune. Specifically, we have the calcium timescale, �, the current conversion, �, the

calcium removal rate, kCa and the NaP activation timescale, �p free to tune the slow dynamics.

We found that no single parameter induces bursting, and out of the possible combinations

of the four parameters, three were found to have INaP dependent bursting solutions (orbits

and inserts in Figure 4.10C). Although other combinations produce bursting solutions, only

the bursting that depends on INaP (identified by varying ḡNaP ) is of interest to us. Common

among these solutions is a significant reduction in the rate of intracellular [Ca2+] removal

(from 1 to 0.15). To restore bursting to our TIDA model, we choose to set kCa = 0:15 and

�m = 200ms (previously 700ms). The solution of (4.19) for these parameters is shown in orange

in Figure 4.10C and again in Figure 4.12. This solution is chosen because of the slow rise and

rapid relaxation of the subthreshold oscillation since TIDA oscillations have similar waveform

characteristics.

4.9 Adding the hyperpolarisation-activated current

The final current we shall add to our model is the hyperpolarisation-activated current, Ih. This

current does not appear to be a necessary component of the oscillatory mechanism in TIDA

cells, since blocking it with the antagonist ZD7288 (50 �M) [295] does not abolish the burst

oscillation, indicating that the core burst mechanism is Ih independent. ZD7288 significantly

increases the period of the TIDA oscillation by increasing the length of the rising phase [184]

and similar frequency modulating effects of Ih have been observed by other groups [258, 295].
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Figure 4.10: Bifurcation analysis of the fast subsystem, (V; n), of the BML+NaTP model
(4.19) shows that bursting is restored by altering slow-system, (c; p), parameters. (A) and (B)
show SNIP bifurcations within the physiological ranges of the slow parameters (set to their
quasi-steady values of p = 0:3 and z = 0:3, respectively). (C) Two parameter bifurcation
diagram of (4.19)-fast overlaid with slow-variable trajectories of bursting solutions to equations
(4.19). Parameters are the same as in Figure 4.8F and Figure 4.9B, with �p = 700ms, unless
stated in the legend.

Given that the objective of this investigation is to elucidate the core mechanism underlying

the TIDA oscillations, we could easily omit this current and in Section 4.11 we explain the

rhythmogenesis of TIDA bursting in the absence of Ih. Despite this, we include the current

into our model now to facilitate investigation of the current’s effects at a later point.

The description of Ih we will use is taken from Izhikevich [131], which originates from

McCormick, Pape and Huguenard’s work on thalamic relay neurones [208]. The Ih model states

that

(4.20) Ih(v; h) = ḡhh(V � Vh);

where Vh = �25 and ḡh is a free to tune. Since Ih is expected to play a role in the regulation of

slow oscillation and the dynamics of Ih have been observed to be slow, we include a description

of the dynamics of the activation variable, h, given by

(4.21) ḣ =
h1(V )� h
�h(V )

;

92



4.9. ADDING THE HYPERPOLARISATION-ACTIVATED CURRENT

where

(4.22) �h(V ) = Cbase + Camp exp
�(Vmax � V )2

�2 :

The steady-state function, h1(V ), takes the same sigmoidal form as previously described for

other gating variables. Both h1(V ) and �h(V ) are depicted in Figure 4.11, together with their

parameter values.

Figure 4.11: (A) The steady-state activation function, h1(V ), and, (B) the gating timescale,
equation (4.22), of the Ih model. The parameters are taken from [131] and are shown in Table
4.2

There is no explicit I-V curve for Ih in TIDA neurones and the time course of the current

at different holding potentials has not yet been studied. Due to the paucity of specific TIDA-Ih
data, we shall keep the parameters set by the model and acknowledge that there is leeway for

tuning these parameters.

Adding the Ih current and the dynamic variable h into system (4.19) leads to the five

dimensional model given by

CmV̇ = I � IL(V )� IK(V; n)� INaT (V; n)� ICa(V )� Ih(V; h)� IKCa(V; c)� INaP (V; p)
(4.23)

ṅ = �(n1 � n)=�n

ḣ = (h1 � h)=�h

ċ = �(��ICa � kCac)

ṗ = (p1 � p)=�p:

The solution to this system with parameters as described in Figure 4.11 and ḡh = 10 leads to a

bursting solution much like the solution without Ih.
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Figure 4.12: Voltage trace of the TIDA
model (4.23) before parameters are
tuned. Parameter values: ḡL = 2; ḡK =
5; ḡCa = 4; ḡKCa = 2; ḡNaT =
10; ḡNaP = 0:45; Sn = 0; kn =
17:4; Vmax = 0; � = 17:4; � =
0:24; Sm = �1:2; Sk = 18; Ss =
�25; ks = 30; �1 = 0:89; �2 =
1:1; Sp = �37; kp = 5; Sq = �20; kq =
40; Sh = �75; kh = �11; Cbase =
100; Camp = 1000; Vmax = �75; � =
15; � = 2x10�4; � = 0:01; kCa =
0:15; VL = �60; VK = �109; VCa =
123; VNa = 93; Cm = 20 and I = 45.
Units are the same as in Table 4.2

4.10 Qualitative parameter �tting to experimental data

Our TIDA model now contains all the currents that we believe are essential to generate the

slow oscillation. Fast sodium and potassium currents generate action potentials, assisted by

a high-voltage activated calcium current. The calcium current provides an influx of calcium

ions, the intercellular dynamics of which form one part of the slow subsystem alongside the

slow dynamics of the NaP activation gate. A full description of the burst mechanism will be

postponed until the model has been qualitatively fit to patch clamp data.

At this stage, we replace a rigorous attempt at model fitting with intuition-driven parameter

tuning alongside a comprehensive simulation and analysis of the slow waveform. The benefit

of this is that one develops a deeper understanding of the system by understanding how its

behaviour depends upon parameters. The parameter-fitting description that follows is not

rigorous in the sense that it mathematically defines some difference between simulation and

data (i.e. a loss function) because we do not require a closely fit model to elucidate the minimal

mechanism that drives the oscillation. Instead, we will manually manipulate the parameters

on-at-a-time to adjust the simulated oscillation properties to their experimental values, which

are given in Figure 4.1. This step-by-step parameter fitting is useful for several reasons. First, it

allows us to systematically isolate the effects of individual parameters on the model behaviour,

providing a clear idea of how cellular processes affect the simulated TIDA oscillation. Second,

the TIDA model (4.23) is a complex and highly nonlinear system of equations and adjusting

parameters individually avoids unintended changes to the model solution that could be caused by

adjusting multiple parameters simultaneously. Finally, we aim to preserve the INaP -dependent

bursting solution found in Sec. 4.8, and automated parameter fitting approaches could focus

their optimization on different, INaP -independent bursting solutions, such as in Figure 4.10.

Hence, a simple step-by-step, manual parameter tuning is performed below. Future work

94



4.10. QUALITATIVE PARAMETER FITTING TO EXPERIMENTAL DATA

Figure 4.13: Parameter tuning of system (4.23) to match the simulated voltage oscillation
to the voltage recordings in [184]. In each panel, the grey trace shows the sample voltage
recording presented in Figure 4.1A. Dashed lines indicate the mean value of the subthreshold
maximum (D) and minimum (A) and the spike maximum and minimum (B), calculated in
Figure 4.1. Parameters are largely the same as in Figure 4.12 and in each panel, a select number
of parameters are tuned. The parameter manipulations from one panel are carried through to
the next, such that the solution in (D) contains all the manipulations listed below. Specifically,
the parameter manipulations are: (A)I : 45 ! 30; ḡL : 2 ! 0:5 and ḡNaP : 0:45 ! 0:7; (B)
ḡKCa : 2! 1:2; � : 0:24! 0:14; (C) kCa : 0:15! 0:25; (D) Ss : �25! �15 and ḡKCa : 1:2! 1.
All units are the same as in Table 4.2.

should consider extending this process to take advantage of automated parameter optimization

techniques (see Sec 4.14).

We start with the solution to (4.23), where the voltage trajectory and the parameters

are given in Figure 4.12. First, we note that the slow oscillation minimum of this solution is

depolarised compared to the average experimental nadir of -60 mV calculated in Figure 4.1D

and plotted in dashed grey in the current figure. To hyperpolarise the TIDA neuron we reduce

I from 45 to 30, ḡL from 2 to 0.5 and increase ḡNaP from 0.45 to 0.7. These modifications were

chosen because they influence the resting membrane potential directly: reducing I decreases the

depolarizing current, reducing ḡL lowers the leak conductance, and increasing ḡNaP enhances

the persistent sodium current, which is active at subthreshold potentials. These adjustments

collectively reduce the subthreshold nadir to just below -60 mV.

Next, we aimed to increase the number of spikes per burst and their amplitude. To achieve

this, we decreased ḡKCa (from 2 to 1.2) and � (from 0.24 to 0.14). Decreasing ḡKCa was

chosen because it reduces the amplitude of the inhibitory calcium-activated potassium current,

leading to a longer spiking phase with more spikes. Targeting ḡKCa was an obvious first choice

for increasing the number of spikes because IKCa is crucial for burst termination. Decreasing

� effectively increases the delayed rectifier gating timescale, which slows the fast potassium
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Figure 4.14: A selection of parameters tune the temporal properties of the TIDA oscillation. The
top row (A, B, C) shows the effect of a single parameter variation on the solution to (4.23) with
parameters as in Figure 4.12. (D) A representative TIDA voltage recording (grey) alongside
the simulated solution of (4.23) with parameters as in Figure 4.12 and kCa = 0:15; �p = 900
and ḡCa = 3:8. The simulated duration of the rising, spiking and relaxing phases are Tri =
10:9s; Ts = 7s and Tre = 3:6s, respectively, and the number of spikes in a burst is Nsb = 24:

conductance. This slower response prolongs the action potential upshot before the outward

potassium current terminates the action potential, resulting in a higher maximum spike voltage.

The net effect is an increase in the amplitude of the spikes, which matches the experimental

averages (Figure 4.13B; grey dashed lines).

To increase the duty cycle of the burst (the proportion of the cycle spent spiking), we

focused on reducing the duration of the rising phase. Our experimental analysis shows that the

rising phase is only slightly longer in duration than the spiking phase (Figure 4.1B). To reduce

the rising phase duration, we increased the calcium removal rate, kCa, from 0.15s�1 to 0.25s�1

(Figure 4.13C). This parameter was targeted because increasing kCa speeds up the removal of

intracellular calcium, reducing the inhibitory effect of calcium-activated potassium currents

more quickly and thus allowing the burst to start sooner.

The maximum of the slow oscillation, equivalent to the spike threshold, was lower than the

experimentally calculated -40 mV. To increase this threshold, we raised the threshold of the

INaT gate, Ss, from -25 mV to -15 mV. This adjustment was aimed at shifting the activation

of transient sodium channels to more depolarized potentials, thus raising the spike threshold.

Additionally, to further increase the number of spikes per burst, we decreased ḡKCa from 1.2 to

1, which reduces the inhibitory effect of calcium-activated potassium currents during the burst

phase. The results of modifying both Ss and ḡKCa are shown in blue in Figure 4.13D.

Next, we turn our attention to the temporal tuning of the TIDA simulation. It is clear
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from Figure 4.13 that the simulated solution is much faster than the experimental average,

represented by the grey trace. In addition to slowing down the model solution, we also require

that the resting, spiking, and relaxing phases and the number of spikes per burst are comparable

to experimental observations (see Figure 4.1). To tune these properties, we track how they

change in our simulations as a single parameter is varied. This approach was extended to

investigate the sensitivity of the bursting solution to parameter perturbations and the results

can be found in Section 4.12.

To obtain a solution that is comparable to the average TIDA cell, as summarised in Figure

4.1 and the grey trace in Figure 4.14D, we adjust the values of three parameters that are shown

to be effective in tuning the properties of the bursts (Figure 4.14 A-C). First, ḡCa was reduced

from 4 to 3.8 to slightly lengthen the entire oscillation, as the calcium conductance plays a crucial

role in the depolarization phase and overall cycle duration. Next, kCa was decreased from 0.25

to 0.15 and �p increased from 400 to 900 to increase the rising and spiking phases, respectively.

These parameters were chosen because kCa influences how quickly calcium is removed from the

cell, affecting the duration of the rising phase, while �p modulates the timescale of persistent

sodium current dynamics, impacting the firing rate and calcium accumulation rate within a

burst, which impacts the spiking phase duration. The result is a simulation that is qualitatively

similar to the experimental observations.

Recall that the experimental trace shown in Figure 4.1D is chosen because the duration

of the three burst phases is closest to the population average. Other parameters of the slow

system also tune the temporal aspect of the oscillation well, such as reducing � to slow the

entire oscillation and increasing � to increase the number of spikes per burst. These variations

of �p; kCa and ḡCa in Figure 4.14 performed best in fitting the average temporal properties of

the simulation to the data.

4.11 Single cell oscillatory mechansim

We have arrived at a mathematical description, (4.23), of the core conductance mechanisms

that are believed to be critical to generating oscillatory bursting activity in TIDA cells. This

includes an action potential generating system comprised of a fast, transient sodium current and

a slower delayed rectifier potassium current (a typical Hodgkin-Huxley spike generating system).

A calcium conductance activated around 0 mV provides an influx of calcium ions that slowly

accumulate within the cell during spiking and activate an inhibitory potassium current (IKCa).
A depolarising sodium current activates at subthreshold voltages and responds slowly to voltage

changes (INaP ) and a mixed cationic current activated by hyperpolarised membrane potentials

(Ih) is also included. Together, this set of currents can drive membrane potential oscillations

that closely resemble the membrane activity recorded from TIDA cells ex vivo (Figure 4.14D).

In this section, we will delve into the mechanism responsible for the slow oscillation. To do
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Figure 4.15: The development of the TIDA model (4.23). Starting from the bursting Morris-
Lecar model (described in [81]), three extra currents and two additional variables are added to
the model. As currents are added, the parameters of the model are adjusted to ensure that
bursting solutions exist. Once INaP is included in the model, parameters are chosen such that
an INaP -dependent bursting solution is present. Green (solid) boxes show currents added to the
model, and magenta (dashed) boxes show parameter changes. Arrows indicate the chronological
order in which developments were made. Parameter units are the same as in Table 4.2

this, we make use of fast-slow analysis (cf. Section 4.5), which relies upon a separation of

timescales between the fast action potential generating system and the slow system underlying

the subthreshold oscillation. The Ih current is removed in this section because the activation

timescale (102-103 ms; Figures 4.11B and (4.22)) is intermediate between the timescales of the

fast system (O(10�1 ms)) and the slow system (O(104 ms)), hence including this current could

break the assumption that timescales are sufficiently separated. Considering this and that Ih is

not essential for the bursting [184, 295], we set ḡh = 0 for the remainder of this section, unless

otherwise stated.

Starting at the nadir of the voltage oscillation (t = 0 in Figure 4.16 A), we observe that the

slow increase in voltage in the rising phase is accompanied by a slow clearance of intracellular

[Ca2+] and an approximately constant p = 0. As the concentration of calcium ions decreases,

the inhibitory IKCa is inactivated and the membrane slowly depolarises. It is clear from Figure
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Figure 4.16: Analysis of the oscillatory mechanism for a single TIDA cell (4.23) with parameters
in Table 4.2 and ḡh = 0.(Aa) The voltage, (Ab) the intracellular [Ca2+] and (Ac) the INaP
activation plotted for a single oscillation cycle. (D) Two-parameter bifurcation diagram of the
fast system, (V; n), of (4.23), with the slow system nullclines (ċ = 0: red, ṗ = 0: grey) projected
onto the (z; p) plane. The trajectory of z = z(c) and p from (A) is also projected onto the
two-parameter diagram, where different colours correspond to different phases of the oscillation.
The dark blue curve shows the SNIP bifurcation. Inserts zoom-in on sections of the trajectory
that cross the slow nullclines.

4.16A that the rising phase of the oscillation is driven purely by the steady reduction of [Ca2+].

After sufficient depolarization of the membrane, INaP is activated, which is shown in insert

Dii as the trajectory crosses the p-nullcline approximately halfway through the rising phase of

the oscillation. INaP initially has a small effect due to the slow response of p and the decay of

[Ca2+] continues to drive membrane depolarization. Eventually, INaP gains sufficient amplitude

to help depolarise the membrane and initiate the first spike. In 4.16D and 4.16Dii we see

that the trajectory crosses the SINC curve as p increases sharply, marking the transition of

the fast system from a stable steady state across a degenerate homoclinic point and into a

large-amplitude limit-cycle oscillation. Immediately after crossing this SNIC boundary, the

c-nullcine is crossed and it is not crossed again until spiking is terminated, which means that

[Ca2+] increases monotonically during spiking. This can also be observed in 4.16Ab. Both p
and c gradually accumulate during repetitive firing, and the trajectory closely follows the SNIC

curve. The two slow processes appear to be in a delicate balance during spiking, with INaP
increasing just enough to counteract the increasing inhibition from IKCa, thus keeping the cell

spiking. As firing continues, the solution moves closer towards the SNIC curve, and the last few
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spikes of the burst are very close to a degenerate homoclinic orbit of an infinite period, which

explains the significant reduction of firing frequency towards the end of the burst. Following

the final spike of the burst, the SNIC curve is crossed and the system moves towards the stable

manifold of the fast system. The p-nullcline is also crossed, which prevents any further increase

in INaP . Without the calcium influx from further action potentials [Ca2+], and therefore z,
starts to decay (c-nullcline is crossed in Dii). The relaxing phase of the burst is driven by a slow

decay in p until INaP reaches a negligible amplitude and the slow decay of [Ca2+] can once

again drive the rising phase.

The mechanism described above implies that a burst is generated by the decaying activation

of an outward current driven by slow Ca2+ dynamics. Reduced activation of IKCa depolarises

the membrane to potentials sufficiently to activate sodium channels and initiate spiking. The

termination of a burst is due to the inactivation of the inward INaP since crossing ṗ = 0

marks the end of the spiking phase. This provides a satisfactory explanation of how a selection

of currents known to exist in TIDA neurons can generate activity similar to experimental

recordings. However, this is by no means a complete description. In the following section, we

will investigate the robustness of the model to parameter perturbations and in the next section,

we will see how the in silico TIDA neurone compares with the ex vivo neurone under various

pharmacological manipulations. The conclusion from these sections is that the above-proposed

mechanism may provide an adequate description of the conductance processes at play during

the TIDA oscillation, but there may be different mechanisms that offer an explanation more

consistent with the data.

4.12 Model sensitivity to parameter petubations

To examine the robustness of the model solution to (4.23) with the final parameters in Table

4.2 we investigate the oscillation period and the waveform as a single parameter is varied.

The durations of the rising, spiking, and relaxing phases (which sum up to the period) and

the number of spikes per burst are shown in Figure 4.17 as a parameter is varied. Not all

parameters of the model are shown, parameters that were set by data, such as those that

determine steady-state functions for INaP were not investigated. The limits of the parameter

variation were determined by the form of the solution. In some cases (indicated by a red line)

the bursting solution ceased to exist for further variation in a given direction, in other cases

the oscillation became very fast or lost its spikes to resemble a relaxation oscillation.

One point to note is that several of the default model parameters are close to a bifurcation

(ḡKCa; ḡNaP ; ḡNaT ; I; kn; Ss and VL). All of these bifurcations transform the system from bursting

to tonic firing, and considering how common such a transition is for TIDA neurones [187], it

is potentially interesting that the model has been unintentionally tuned towards this critical

point. The most extreme case is for ḡKCa, the maximum conductance of the Ca2+-activated K+
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Parameter Original value Final value Unit
ḡNaP 0.7 mS/cm2

Sp -40 [42] -37 mV
kp 12 [42] 5 mV
Sq -48 [42] -15 mV
kq -12 [42] -60 mV
�p 900 ms
ḡKCa 0.6 [108] 1 mS/cm2

� 2� 10�4 [108] 2� 10�4

� 0.01 [108] 0.02 mol/C�m
kCa 1 [108] 0.15 s�1

ḡCa 4 [108] 3.8 mS/cm2

Sm -1.2 [108] -0.5 mV
km 18 [108] 18 mV
ḡK 8 [108] 5 mS/cm2

Sn 12 [108] 0 mV
kK 17.4 [108] 17.4 mV
Vmax 12 [108] 0 mV
� 17.4 [108] 17.4 mV
� 0.24 [108] 0.14 ms
ḡNaT 10 mS/cm2

Ss -25 [275] -15 mV
ks 30 [275] 30 mV
�1 0.89 [131] 0.89
�2 1.1 [131] 1.1
ḡh 5 mS/cm2

Sh -75 [131] -75 mV
kh -11 [131] -11 mV
Cbase 100 [131] 100 ms
Camp 1000 [131] 1000 ms
V h
max -75 [131] -75 mV
�h 15 [131] 15 mV
ḡL 2 [108] 0.5 mS/cm2

VNa 90 mV
VK -84 [108] -110 mV
VCa 123 [108] 123 mV
Vh -25 [108] -25 mV
I 45 [108] 30 �A/cm2

Cm 20 [108] 20 �F/cm2

Table 4.2: Parameter values of the TIDA model (4.23). Original values are also shown along
with their source studies.
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Figure 4.17: The duration of the rising, spiking and relaxing phases and the number of spikes
per burst depends upon model parameters. In each panel, a single parameter of (4.23) is varied
whilst all others are kept at the value in Table 4.2. Grey dashed lines indicate the parameter
value in Table 4.2. Red lines indicate the parameter value near which the solution bifurcates
into either tonic firing or quiescence. See Appendix Figure A.8 to see the sensitivity analysis
plotted against the percentage change relative to the default parameter.
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Figure 4.18: The diversity of model (4.23) solutions due to the parameter variations in Figure
4.17. Boxes show the median, interquartile range and the range of a given quantity with outliers
plotted as diamonds.

current, where ḡKCa = 1 in the model and the transition to tonic firing occurs for ḡKCa � 0:98.

Thus, for some parameters, the bursting solution is not robust to parameter perturbations. In

most cases, parameter variation leads to a near-monotonic change in a number of oscillation

properties. The number of spikes per burst is sensitive to changes in almost all parameters,

leading to a wide variety of spikes per burst when all parameter variations are considered,

which compares well with experimental recordings (Figure 4.18B). The duration of the relaxing

phase, however, is less sensitive to parameter perturbation and remains small throughout the

simulations. This quantity also remains small and unchanged during numerous pharmacological

manipulations performed experimentally [295]. All measurements of oscillator properties shown

in Figure 4.17 can be combined to indicate the heterogeneity of the model. In Figure 4.18

we see that the properties of the oscillation due to many parameter variations capture the

heterogeneity of real TIDA cells. The rising and spiking phases, and the number of spikes per

burst, have similar averages and wide distributions, whereas the relaxing phase is small and

tightly distributed.

While the sensitivity analysis conducted here provides valuable insights into the effects

of individual parameter variations on the oscillatory behaviour of the model, it is important

to acknowledge several limitations. Firstly, we have employed a one-at-a-time parameter

variation method, which may overlook potential interactions among parameters. Secondly,

only local parameter sensitivities were investigated because in many cases, a large parameter

change destroyed the bursting solution. This restricted the exploration of parameter space to a

narrow region where the oscillatory behaviour remained observable. Lastly, the highly nonlinear

dynamics of the model mean that complex interactions between parameters are likely, which
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may mean our one-at-a-time approach may be overly simplistic. Future studies could address

these limitations by employing more comprehensive sensitivity analysis techniques, such as

global sensitivity analysis [118], to explore multiple parameter interactions across a wider range

of parameter space.

4.13 Model comparison to pharmacological manipulations

Figure 4.19: The TIDA neurone response to INaP antagonist riluzole (A) and INaP angonist
veratridine (B). (Aa) Representative current clamp recording of a TIDA neurone during
application of riluzole (10�M) which prevents the termination of the spiking state [183]. Scale
bar: 20 s, 20 mV. (Ab) The effect of riluzole is simulated by hyperpolarising the half-maximum,
Sq, of the NaP inactivation function h1(V ) (shown in insert (Abi)). (Ba, left) Representative 1
Hz low-pass filtered current clamping recordings of a TIDA neurone during control (green) and
veratridine application (500nM; orange). Scale bar: 5 s, 30 mV. (Ba, right) Change in membrane
voltage (1 Hz low-pass filtered) plotted against the membrane voltage for the recordings in (Ba,
left). (Bb) The model analogue to (Ba) where veratridine is simulated by increasing ḡNaP . All
simulations of (4.23) use the parameters described in Table 4.2 unless stated otherwise in the
figure.

We start by comparing the model to experiments in which the NaP conductance is enhanced

or blocked, which will soon be published in [183]. The typical response of an oscillating TIDA

neurone (in male Sprage-Dawley rats) to the application of riluzole (10 �M), a persistent sodium

channel antagonist, is shown in Figure 4.19Aa. Riluzole dramatically changes the cell’s activity

by preventing the termination of the spiking state and increasing the time spent spiking. In

some cases, bursting is replaced by tonic spiking. The NaP current is an inward current that

depolarises the cell; therefore, it is curious that blocking this current depolarises the cell and
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encourages spiking. The effect of Riluzole can be simulated in the model by hyperpolarising

the inactivation threshold, Sq, of the NaP current [248, 291]. Figure 4.19Abi shows how the

inactivation steady state, q1(V ), is altered by hyperpolarisation Sq. The voltage trajectories for

successively more hyperpolarised Sq in Fig.4.19Ab show the transition from a burst oscillation to

a tonic firing state. As Sq is reduced, the interburst interval shortens, the duration of the spiking

state decreases, and the subthreshold oscillation progressively depolarises. When Sq = �70 mV

(Fig.4.21Ab; green) the cell tonically fires with a resting membrane potential identical to the

raised potential of the spiking state, as in ex vivo experiments.

The NaP agonist veratridine (500 nM) alters the waveform of the TIDA oscillation by

hyperpolarising the subthreshold nadir, depolarising the subthreshold maximum and increasing

the rate of voltage change before and after spiking (Fig.4.19Ba). The right-hand plot of Figure

4.19Ba shows these effects by plotting the rate of voltage change against the voltage, where

the signal has been filtered at 1 Hz to remove action potentials. To simulate INaP agonism in

the model, ḡNaP is increased, and the effect of an increase of 1.4% in ḡNaP is shown in orange

in Figure 4.19Bb. The simulated veratridine treatment is similar to experiments in the sense

that the subthreshold nadir is reduced and the rising phase is lengthened; however, the spiking

state is also lengthened by the NaP enhancement. Increasing ḡNaP by much more than 1.4%

of its control value leads to the oscillation being replaced by tonic spiking. It is clear from

this result, and the proximity of the p-nullcline to the SNIC curve in Figure 4.16, that the

solution to (4.23) with parameters in Table 4.2 is not robust to parameter perturbations in

ḡNaP . The future development of this model should aim to rectify this, possibly by modifying

the parameters in p1 so that the slow nullcline ṗ = 0 is further away from the SNIC curve

(Fig. 4.16B). It remains to test whether similar modifications could lead to a reduction in the

duration of spiking after increasing ḡNaP .

Next, we interrogate the model’s response to perturbations involving calcium. First, we

investigate the effect of a low concentration of Ca2+ in the extracellular recording medium,

which has been found to significantly increase the duration of the spiking state [295]. We

simulate a low [Ca2+] solution by decreasing the calcium reversal potential by ∆VCa, which is

related to f , the reduction in extrcellular [Ca2+], by the Nersnt equation [131, Eq. 2.1] which

says f = exp(�∆VCa=0:012755). A 20% reduction in extracellular [Ca2+] (VCa = 120 in Figure

4.20A) increases the duration of the rising and spiking phases, leading to a slower oscillation.

These effects are exacerbated after further reduction in extracellular [Ca2+], and after a 65%

reduction (VCa = 110 mV) the cell fires tonically. Indistinguishable results are obtained by

reducing the maximum calcium conductance ḡCa (Figure 4.20B), although reductions in ḡCa of

only 10% were tolerated before the oscillation gave way to tonic firing. The increased duration

of the spiking phase caused by lower VCa and ḡCa is due to the reduced Ca2+ influx during

spiking and therefore less inhibition from IKCa. In Figure 4.20C we see that reducing ḡKCa
invokes changes similar to 4.20A and 4.20B. The lengthening of the spiking phase occurs in ex
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Figure 4.20: Membrane volt-
age traces of the TIDA model
(4.23) under succesivly lower
extracellular [Ca2+] (A), the
maximum conductance of
ICa (B), and the maximum
conductance of IKCa. Dashed
grey lines indicate -60 mV.
All parameters, unless varied
in the panel, are the same as
Table in 4.2

vivo TIDA neurones during low Ca2+ solution, L-type calcium channel antagonist application,

and BK channel antagonist application (cf. [295, Fig.4]). The effects of these manipulations

on the duration of the rising phase do not appear to be present in vivo, although it was not

specifically examined. This may indicate that the rising phase driven by IKCa in our model

may not represent the processes underlying this phase in TIDA neurones. Note that in Figure

4.20C only a 2% decrease in ḡKCa is required to induce tonic firing.

Finally, we assess the role that Ih plays in the burst oscillation. Blocking Ih in rats using

the HCN channel antagonist ZD7288 (Fig. 4.21Aa) has been shown to increase the duration

of the rising phase [183, 295], thus increasing the period. A larger Ih amplitude has also been

associated with faster bursting in lactating mice [258], suggesting that Ih accelerates the TIDA

rhythm. In our model, Ih does exactly the opposite. The Ih decelerates the simulated TIDA

rhythm, which is illustrated by removing Ih in Figure 4.21Ab (ḡh = 0, blue trace). The reduced

period by the Ih block is accompanied by a hyperpolarised nadir and a steeper voltage change

in the rising phase. To align our simulations better with the experimental observations, we

attempted to tune various parameters of the Ih model, but to no avail - Ih always slows down

the oscillation. In a previous iteration of the model with the same equations (4.23), but different

parameters, Ih increased or decreased the oscillation frequency depending on its effect on

intracellular [Ca2+], and tuning Ca2+-related parameters could tune the effect of Ih. In the

current model, the same Ca2+-related parameters did not have the same effect. While Ih is not
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Figure 4.21: Blocking Ih with the Ih channel blocker ZD7288 (5 �M) (Aa) increases the period
of the burst oscillation whereas blocking Ih in the model (ḡh = 0; Ab) reduces the period.
(Aa) Representative current-clamp recording of a TIDA neurone treated with ZD7288 (5 �M)
[184]. Scale bar: 20 s, 10 mV. (Ab) Simulations of (4.23) with (grey) and without (blue) the Ih
current. Parameters of both simulations are in Table 4.2.

a core burst generation current, it does have important consequences for the properties of the

TIDA network. Future studies should attempt to incorporate an Ih model that agrees with the

experimental findings.

4.14 Discussion

This chapter has demonstrated the construction of a minimal mathematical model that explains

the generation of burst oscillations in TIDA neurones. A Hodgkin-Huxley-style model describing

only the most important ionic conductances leads to sustained bursting in a single cell. Our

current understanding of TIDA membrane physiology suggests that slow processes involving

Ca2+ and the persistent Na+ current are responsible for the subthreshold membrane potential

oscillation. Furthermore, Ca2+-activated K+ currents regulate the duration of the spiking phase

and play a pivotal role in other bursting neurones, hence we started with a Morris-Lecar model

in which IKCa drives bursting. Additional membrane components were then added to the

model in order to capture specific TIDA neurone physiology. We find that a bursting solution

driven by INaP and IKCa (and therefore Ca2+ ions) is plausible and can be tuned to provide

membrane potential oscillations that have all the key features of those that have been observed

experimentally in TIDA neurones. The final model we arrive at, (4.23), is given by

CmV̇ = I � IL(V )� IK(V; n)� INaT (V; n)� ICa(V )� Ih(V; h)� IKCa(V; c)� INaP (V; p)

ṅ = �(n1 � n)=�n

ḣ = (h1 � h)=�h

ċ = �(��ICa � kCac)

ṗ = (p1 � p)=�p;
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and only has five variables, namely the membrane voltage V , the intracellular Ca2+ concentration,

c, and the values of three ionic gating variables, n, p and h for IK , INaP and Ih, respectively.

As is common in neural models, there are numerous parameters that need to be tuned, in

our case the 37 separate parameters listed in Table 4.2. If Ih is ignored, there are only four

variables and 30 parameters. Careful tuning of the model facilitated a close similarity between

in silico and ex vivo TIDA neurones, and the simulated response to several pharmacological

manipulations mirrors the physiological analogue.

We believe this is the first comprehensive attempt to produce a mathematical model for

the TIDA neurone electrical activity, and our quest for simplicity has left numerous areas for

improvement. A first weakness is the strong dependence of the oscillation on the slow activation

of IKCa and INaP (Figure 4.16). Simulating INaP antagonism/agonism is well reflected in

the model, whereas similar modifications involving Ca2+ are not (Figure 4.20). The burst

mechanism of the model is highly dependent on IKCa, and indeed Figure 4.16 shows how the

rising phase is driven by intracellular Ca2+ removal. The BK channel antagonist charybdotoxin

(ChTX) was observed experimentally in [295] to moderately lengthen the duration of the spiking

state in male rats, and does not alter the duration of the rising phase [295]. The simulation

of ChTX in our model increases the durations of both the spiking and rising phases (Fig.

4.20C). Furthermore, the simulated removal of extracellular Ca2+ also increases the duration of

the rising phase, whereas, in analogous experiments, the rising phase decreases [295]. These

comparisons point toward the possibility that the role of IKCa in our model is misplaced

or overstated. Specifically, it may not be the case that the slow increase in voltage during

quiescence is driven by the inactivation of IKCa. The mechanism of the current model should

be studied in more detail to explore whether INaP can participate in driving the rising phase.

More generally, it is interesting to speculate whether alternative Ca2+ dependent mechanisms

may underlie TIDA neurone activity. A Ca2+ dependent INaP has been implicated as a core

burst-generating conductance in other neural populations [176, 309]; and low extracellular Ca2+

has been shown to upregulate INaP by hyperpolarising the half-maximum activation in spinal

cord neurones [309] and hypothalamic neurones [176]. In both simulations (Fig. 4.20) and

experiments [295, Fig. 4] low-Ca2+ recording solution increases the spiking state duration and

can lead to tonic firing in TIDA cells. In our simulations, upregulating INaP also causes a switch

to tonic firing, although this is yet to be replicated experimentally [183]. If the TIDA INaP is

upregulated by low extracellular Ca2+, then it may be possible that this current is the principal

driver of the slow oscillation. Such a mechanism may work as follows. During quiescence,

intracellular Ca2+ steadily declines and as a result, INaP is upregulated which drives membrane

depolarization. IKCa may also assist in membrane depolarization. If the INaP activation gate

dynamics were fast, compared to Ca2+, there could be a period of fast depolarisation (observed

in TIDA recordings [190, 295]) due to V approaching the INaP activation threshold. Sufficient

depolarisation would activate the spike-generating mechanism and intracellular Ca2+ would
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accumulate during the burst and the INaP would be downregulated. Several processes could

terminate the burst, for example, rising Ca2+ could activate IKCa, or if the INaP activation

was a slow process (as in [248]), then the depolarised membrane could inactivate INaP . It may

also be possible for rising Ca2+ to downregulate INaP enough to terminate the burst. This

would lead to a single slow variable ([Ca2+]), meaning that parabolic bursting would be lost

but this may still be useful as a model reduction technique. Understanding this alternative

mechanism requires further numerical analysis and more data regarding the NaP current. The

mechanism proposed in Section 4.11 is equally as plausible as the above mechanism given the

data available, but in truth, the physiological TIDA oscillation may arise from an interaction of

multiple theoretical mechanisms.

While there is no direct evidence for the slow inactivation of INaP , it has been proposed

as the core process for bursting in pre-Bötzinger complex neurons in the brainstem [42, 248].

Presently, the timescales of INaP activation and inactivation are unknown for TIDA cells. The

assumption of slow activation and fast inactivation is due to personal communications with

Lyons. It may be the case that the inactivation of INaP is slower than, or at least comparable

to, its activation, such as in brainstem bursting neurones [42, 248]. If this were the case, a slow

system consisting of INaP activation (p) and inactivation (q) could drive the parabolic bursting

displayed by TIDA cells. Including a Ca2+ dependence on NaP conductance (as described

above) or a Ca2+-activated K+ current could also account for the effect of low extracellular

Ca2+. It is unclear whether our model fully reflects the role that INaP plays in the oscillation

due to the paucity of data regarding the current in TIDA neurones and because of the sensitivity

of the bursting solution to parameter perturbations. INaP could not be upregulated by more

than 1.4% in our simulations before the bursting solution was lost to tonic firing (Fig. 4.19Bb).

Thus, the role of INaP in our model, and in alternative TIDA oscillation models, should be

more thoroughly investigated in future work.

There may be several mechanisms that are consistent with the current data. The true power

of the relatively simple modelling approach we’ve used here is when it is used synergistically

with experimentation. Future attempts to identify the core oscillation mechanism should take

into account the above proposals, as well as in Section 4.11. It would be constructive to model

several different TIDA burst mechanisms and determine experimentally testable predictions

that could be used to rule out or confirm a given mechanism. This approach was successfully

used by Butera et al. in a series of papers [42, 68] to identify the cellular and synaptic processes

that give rise to pre-Bötzinger complex bursting. Given that our understanding of the TIDA

burst process is still in its infancy, this may be a fruitful approach.

Numerous experimental studies have found many pharmacological compounds that abolish

TIDA burst oscillations by exciting the cell and inducing tonic firing [33, 188–190, 340] or

hyperpolarsing and silencing the cell [186, 340]. It is believed that TRPC and GIRK currents are

responsible for these responses, respectively [186, 189]. The TRPC current is naively modelled
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by the constant current I in (4.23), and increasing this current does induce tonic firing (Fig.

4.12). The transition from bursting to another mode of activity corresponds to a bifurcation in

(4.23), and including more complete descriptions of the TRPC and GIRK currents could help

elucidate the role that these currents play in the robust network response observed in TIDA

neurones. In the case of hyperprolactinemia due to antidepressants, it may be beneficial to

shift the bifurcation point such that the bursting solution persists when GIRK channels are

activated (see [186]). Mathematical modelling may help formulate interventions to endow the

TIDA circuit with such resilience.

Another key weakness of our model is that whereas experimental observation suggests that

when the hyperpolarisation-activated current, Ih, is blocked in male rats the burst period is

significantly lengthened (Fig. 4.21, [184]), whereas in our simulations, blocking Ih reduces the

period. Ih tunes the period of the female TIDA network during pregnancy and lactation [258],

and it facilitates DA feedback onto TIDA neurones [295], suggesting that Ih may be important

for regulating network-wide activity. In a previous iteration of the model, whether Ih increased

or decreased the burst period depended upon Ca2+-related parameters, however, a similar

dependence could not be found in the current model. Future work should attempt to include an

Ih model that is consistent wth data. This would be aided with future electrophysiology studies

that, for example, calculate the I-V curve and gating kinematics for Ih. Additionally, extending

our model to incorporate a dendritic compartment may make it more realistic. HCN channels

are localised in the soma and dendrites of neurones [56], and given that anomalous-inward

rectification is believed to mask Ih when recording from the soma of TIDA neurones (Lyons,

personal communications), it is possible that HCN channels could be localised towards the

dendrites of TIDA neurones.

The sensitivity analysis of the proposed model indicates that several parameter values in

Table 4.2 are close to a bifurcation (Figure 4.17). This is a limitation in certain aspects. For

example, the attempt to simulate the pharmacological blockade of ionic currents in the previous

section was limited by the model switching to tonic firing. Excess sensitivity may also impair

the ability to make practical predictions. Furthermore, incorporating parameter heterogeneity,

as one may wish to do in a network study, could lead to an unintentional variety of neural

activity patterns. Thus, it may be useful to find a more robust solution to (4.23). This may

be done by further manually-tuning the parameters. As can be seen in Figure 4.17, numerous

parameters have opposing effects, and the change in activity that would result from changing

one parameter, for example, to increase robustness, could be counteracted by modification of

another parameter. Sophisticated parameter fitting techniques (described below) may also help

to find a more robust solution. A sensitive model is not necessarily a disadvantage. Perturbations

in certain parameters cause a switch from burst to tonic firing, and many compounds induce

the same change in TIDA firing activity [33, 187–190]. Therefore, the biological TIDA network

may be tuned to a state that readily switches to tonic firing.
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Throughout the model development, parameter modifications were data-driven and rooted

in physiological intuition, yet still subjective. At various stages, we chose between modifying

one parameter over another to produce the desired effect. For example, in Figure 4.10 there

are three bursting solutions with different parameters and we chose one of these solutions

to develop into the final TIDA model. An element of this subjectivity could be removed by

using automated parameter-fitting routines. The parameters of neural models are notoriously

difficult to optimize due to their complexity and nonlinearity. With the advent of modern

computing power, an ever-increasing number of algorithms are available to search parameter

space effectively [320].

Automated parameter-fitting methods offer robust solutions for optimizing neural model

parameters. Genetic algorithms are one such method, drawing inspiration from the process of

natural selection to iteratively evolve a population of candidate solutions towards an optimal

solution [80]. Genetic algorithms have been successfully applied in various neural modelling

studies, demonstrating their utility in handling complex, high-dimensional nonlinear systems

[303]. Simulated annealing is another powerful technique, inspired by the annealing process

in metallurgy [148]. This method probabilistically explores the parameter space, occasionally

allowing increases in the objective function to escape local minima, making it particularly

suitable for highly nonlinear models like ours. Other parameter optimization techniques include

particle swarm algorithms [140] and Bayesian optimization [34], which iteratively refine solutions

by mimicking the social behaviours of groups of animals or probabilistically modelling the

parameter space, respectively.

Future development of the model (4.23) would benefit from utilising such approaches to

confirm that the parameters given in Table 4.2 are optimal and searching for other regions of

parameter space that may be equally, or better, suited to describe the data. The hand-tuning

exercise performed here provides some intuition for how parameters affect the model, which

may hopefully help direct automated processes in the future. Parameter fitting could also be

guided by software tools such as Neurofitter [319], which combines several of the algorithms

described above to identify optimal parameters of neural models.

To effectively implement parameter optimization algorithms, specific types of experimental

data are required. Voltage-clamp data are essential for constraining parameters related to

ionic currents, like we did for INaP in Figure 4.9, providing detailed current-voltage (I-V)

relationships and activation/inactivation time constants for various ionic channels. To develop

a better understanding of the TIDA burst mechanism, future electrophysiological work should

focus on obtaining I-V curves and time constants for other currents, such as IKCa (IBK),

specifically in TIDA cells. Current-clamp data, capturing membrane potential changes in

response to a variety of injected currents, would also be useful for estimating parameters

related to the overall excitability of TIDA cells and also for validating model predictions. The

hypothesis that initiated our modelling study originated from data in which pharmacological
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manipulations caused disruptions to the TIDA oscillation. Blocking (or activating) specific ion

channels using drugs would generate data useful for fitting specific current models, fitting the

TIDA model to different activity regimes, such as when cells fire tonically, and also validating

our modelling predictions (Fig. 4.19). Finally, to understand the biological variability of model

parameters and ensure the model’s robustness across different cells, population data will be

critical. Obtaining this data, for example, using the multi-electrode array platform (see Chapter

4), is also a crucial step towards understanding how TIDA networks are organized (Chapter 5).

Parameter fitting approaches that would be particularly useful given the current-clamp

data presented in this chapter (Fig. 4.1) are those derived from data assimilation techniques

[46, 222]. Many conductance model parameters can be set or constrained by appropriate

voltage-clamp experiments (for example, in Fig. 4.9). In the absence of such data, parameter

optimisation must compare a single experimentally recorded variable (e.g., voltage) with the

output of a multidimensional model (4.23). Data assimilation methods routinely estimate both

the state and the parameters of a model using limited data [46], and they have been applied

successfully to neural models [14, 136, 222, 329]. In particular, two data assimilation techniques

(the unscented Kalman filter and a 4D-variational method) have recently been used to estimate

the parameters of the bursting Morris-Lecar model (4.1) in several different bursting regimes

[222]. These methods only use current-clamp recordings of spontaneous activity to fit model

parameters, which is the same type of data used in this chapter to fit TIDA model parameters

(Fig. 4.13-4.14), and the algorithms perform exceptionally well [222]. Furthermore, the authors

of this study went on to use their data assimilation techniques to successfully predict the ion

channel changes that occur from day to night in a rodent model [14].

A pertinent application of our model which would benefit from utilizing sophisticated

parameter optimization procedures is the identification of parameters that change throughout

the day. In the previous chapter, we observed that TIDA burst cycles are faster at night

compared to the day, with nighttime oscillations having shorter burst durations and shorter

periods of quiescence (Fig. 3.12). The molecular clock of the SCN drives changes in several

currents, including INaP , IBK , Ih and the L-type ICa, resulting in daily changes in neuronal

excitability [55]. Given that these currents are present in our TIDA model, it is conceivable that

changes in their parameters could explain the day-night differences observed in Figure 3.10. For

example, a small increase in the expression of IBK channels or a decrease in the expression

of INaP channels could both cause our model to generate activity representative of TIDA

nighttime recordings. A recent study combined conductance modelling, electrophysiology data

and parameter optimization using data assimilation to identify that changes in the expression

of A-type K+ channel underly the changes in neural excitability observed in a diurnal rodent

[14]. The model presented here, in combination with suitable current clamp recordings, could

be used to identify the ionic processes that generate day-night differences in TIDA activity.

The data used to fit our model (Fig. 4.1, [184]) align with other TIDA electrophysiology
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studies [187, 295], although using more data may help achieve better parameter optimisation in

future work. The ‘fast depolarisation’ phase of the oscillation observed in other TIDA recordings

[295] was observed in our data [184], but it was not obvious. Since this detail could be useful

for further determining the oscillatory mechanism, more data from a range of labs would be

beneficial. It would be particularly useful to have access to non-bursting TIDA activity, for

example when the network is excited by neuropeptides. This could help identify the mechanism

that drives drastic changes in TIDA activity in response to signalling molecules. Exclusively

male rats are used here [184], as they are in almost all other TIDA electrophysiology studies

[187]. The ARC is well known to be sexually dimorphic [53] and while a few electrophysiology

studies have incorporated both sexes [258, 340], it would be interesting to know whether the

burst oscillation differs between species. Furthermore, given PRLs’ important roles in maternal

physiological changes during and after pregnancy [89], female TIDA physiology must be explored

more.
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Chapter 5

The e�ect of electrotonic coupling in
a two-cell TIDA network

5.1 Introduction

Our ultimate aim in producing a single-cell TIDA model is to try to understand the coordination

of bursting between coupled TIDA cells and to explain some of the results we obtained from

recoding multiple cells in Chapter 3. This is a huge task, that is beyond the scope of a single

PhD thesis. Nevertheless, as a first step, we shall close this thesis by briefly introducing how

the TIDA model (4.23) can be used in future studies to understand how electrical coupling

orchestrates the behaviour of the TIDA network. Communication between neurones can be

largely attributed to chemical or electrical synaptic transmission. At chemical synapses, small

amounts of neurotransmitters are released from the presynaptic cell following an action potential,

which diffuses towards the postsynaptic cell and induces a response [280]. Chemical transmission

normally occurs at specific locations on neurones and is unidirectional, probabilistic in nature,

and occurs with a small delay [243]. Depending on neurotransmitters, chemical synapses can be

inhibitory or excitatory. Electrical synapses are formed by transmembrane proteins, called gap

junctions (GJs), which directly link the internal environment of two neighbouring cells and allow

small ions and molecules to pass between them. Electrical transmission is (usually) bidirectional,

fast, and not probabilistic [18]. Both forms of neural communication are ubiquitous in the

mammalian brain [60]. Broadly speaking, chemical transmission is associated with general

neural communication and is important for learning and memory, while electrical transmission

is essential for normal brain development and coordination of neural activity in adults. The two

forms of communication also interact in fascinating and complex ways (see [243] for a review).

It should also be noted that there are other ways in which neurones communicate [83, 343].

TIDA neurones are chemically and electrically coupled to one another and chemically

coupled to surrounding cells. Both excitatory and inhibtory postsynaptic potentials are present

in TIDA recordings [190], and TIDA neurones directly inhibit one another with GABAergic
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transmission [82, 340]. Within rats, the TIDA network is also extensivly electrically coupled

[190, 296], with GJs found in the soma and dendrites, but interestingly no such connections are

found in mice [296]. The precise role that communication plays in orchestrating the rhythm

of the TIDA network is currently unknown. Oscillations in the rat persist in the absence of

synaptic communication [190, 296], albeit at a higher frequency (Figure 3.11). Removing the

influence of electrical coupling is more challenging. In Lyons et al. [190], the GJ-blocking drugs

carbenoxolone (CBX) and 18-� glycyrrhetinic acid (18�-GA) abolished TIDA oscillations,

replacing the activity with a hyperpolarised state of quiescence. These compounds have poor

specificity and have off-target effects on K+ conductance channels and GABA receptors [58],

and we have already seen that K+ channels play an important role in controlling the TIDA

burst (see Chapter 4). It is therefore difficult to use these data directly to determine the role

that electrical coupling plays in the TIDA oscillation.

The lack of GJ coupling in mice, compared to rats, has recently been exploited to elucidate

the role of electrical coupling in the TIDA network [296]. Whole-cell recordings show that rat

TIDA oscillations are highly regular and have a tight frequency distribution (0:15� 0:01 Hz),

while mouse rhythms have an irregular waveform and a wider and slower frequency distribution

(0:39�0:05 Hz). The authors reported similar electrophysiological characteristics between mouse

and rat TIDA neurones, and numerous studies have implicated electrical coupling in slowing

and synchronising neural oscillations in the central nervous system [59, 144, 211, 282, 288, 289].

They therefore propose that electrical coupling is responsible for the species differences between

the TIDA rhythms. Further details are uncovered by recording from pairs of GJ-coupled TIDA

neurones (in the rat) whilst injecting one cell with an oscillating current that swept through

a range of frequencies. In the injected cell, the maximum voltage response aligned with a

frequency of 0.31 Hz on average, while in the post-junction cell, the maximum voltage response

occurred at an average frequency of 0.17 Hz, which is similar to the typical network frequency

[296]. This suggests that electrical coupling acts as a bandpass filter of subthreshold oscillations,

and it may determine the network frequency. It should be noted that the paired recordings

were performed in the presence of TTX, which removes the effect of INaP . Given the role that

INaP appears to have in the oscillatory mechanism (Chapter 4), this may confound the finding

of the authors of [295].

Although Stagkourakis et al. [296] provide us with the best indication of the role gap

junctions play in the TIDA network, they assume that similar processes generate TIDA rhythms

in rats and mice. This is supported by similar electrophysiological characteristics between species

[296], but there may be considerable differences, especially with respect to the burst generation

mechanism. Zhang and van der Pol [340] exclusively study mouse TIDA neurones using a TH

reporter and find that, unlike in rats, TTX blocks action potentials but not the subthreshold

membrane oscillation [340]. The mouse TIDA oscillation mechanism is hypothesised to rely

upon T-type Ca2+ and A-type K+ currents, with INaP and IBK playing only minor roles in the
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oscillation [340]. Such species differences in TIDA membrane physiology need to be investigated

further. The conclusion from Stagkourakis et al. that gap junctions synchronise and slow down

intrinsically bursting TIDA neurones also requires further investigation.

A key hypothesis we wish to explore in this chapter is whether electrical coupling between

rat TIDA cells is necessary for network rhythmogenesis. Loss of cell rhythmicity after treatment

with CBX or 18�-GA may suggest that single cells require coupling for sustained rhythmicity.

Electrical coupling-dependent oscillations exist in other cellular populations. Most notably,

insulin-producing �-cells in the pancreas form clusters of GJ-coupled, synchronised bursting

cells [210]. When uncoupled, many cells do not burst and instead fire tonically [213, 265].

Numerous studies have identified that electrical coupling is critical for bursting in these

endocrine cells [67, 210, 281, 283]. The inferior olive neurones in the cerebellum also generate

sustained oscillations, low amplitude and subthreshold in this case, that require electrical

coupling [29, 337]. Models of both systems have highlighted that gap junction coupling along

with sufficient heterogeneity between cells leads to emergent oscillations between intrinsically

nonrhythmic cells [67, 201, 283]. It is not unreasonable to assume that the TIDA network may

be similarly organised in the rat.

The role that coupling plays in orchestrating the TIDA rhythm is currently obscure and is

difficult to directly study in animals. Therefore, a pressing application of the model developed

in the preceding chapter is to explore the possible roles that coupling has in generating and

coordinating rhythmicity. Here, we begin to explore how coupling influences the activity of

coupled cells. The results we will encounter are preliminary and aimed at providing the reader

with a glimpse of future work looking at how a synchronous rhythm is maintained in TIDA

cells and the role this plays in dopamine release.

5.2 An electrically coupled TIDA neurone model

A simple network of electrically coupled TIDA cells is constructed by taking two cells (4.23)

and coupling them with diffusive electrical coupling �(Vi � Vj), which represents the current

flow into neurone i from neurone j. Throughout this chapter, electrical coupling is symmetric

and nonrectifying (independent of voltage), hence � is a constant. Modelling electrical coupling

as a simple Ohmic current is a common approach; see, for example, [62, Sec 4.4.2]. The two-cell

117



CHAPTER 5. THE EFFECT OF ELECTROTONIC COUPLING IN A TWO-CELL TIDA

NETWORK

network is given by

CmV̇i = I �
X

ionic

Iionic;i �
Iez }| {

�(Vi � Vj) where i = 0; 1(5.1)

ṅi = �(n1 � ni)=�n

ḣi = (h1 � hi)=�h

ċi = �(��ICa � kCaci)

ṗi = (p1 � pi)=�p;

where
P

ionic Iionic;i = IL(V )� IK(Vi; ni)� INaT (Vi; ni)� ICa(Vi)� Ih(Vi; hi)� IKCa(Vi; ci)�
INaP (Vi; pi). All parameters used to simulate this model are those given in Table 4.2, unless

otherwise stated. The initial conditions for all simulations in this chapter are (V 0
0 ; n0

0; h0
0; c0

0; p0
0) =

(�58:8; 0:0012; 0:052; 1:14; 0:0007) for oscillator 0 and (V 0
1 ; n0

1; h0
1; c0

1; p0
1) = (�47:6; 0:004182; 0:0074; 0:98; 0:0067)

for oscillator 1. The details of the numerical simulations are the same as in Section 4.3.

5.3 Coupling between intrinsic oscillators

In all plots, we shall use black and blue line types to indicate the two different neurons.

5.3.1 Indentical oscillators

Figure 5.1: Small electrical coupling with � = 0:01 increases the network period. (A-B) The
voltage dynamics of two intrinsically bursting TIDA cells, described by (5.1). (C) The period,
measured as the time between minima, of each oscillator in (A-B). The grey dashed line indicates
the intrinsic period of the oscillators.

We start by simulating a network of two identical oscillators that each have intrinsic

dynamics described by (4.23) with the parameter values in Table 4.2. This choice of parameter

values leads to the bursting solutions depicted in Figures 4.14D and 4.16A, which have a period

of 21.5 s. The introduction of low-amplitude diffusive coupling (� = 0:01) between two identical
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cells initially decreases the average period of both oscillators, while also causing large period

fluctuations (Figure 5.1C). This behaviour is transient and after around 500 s the network

settles to a stable state in which both cells oscillate every 25 s, indicating that gap junction

coupling slows down the network oscillation.

Figure 5.2: Similar to Fig. 5.1, but with � = 0:025 showing how the oscillation regularity is
compromised.

Increasing the coupling to � = 0:025 compromises the regularity of the oscillator system

(Figure 5.2). Each oscillator period fluctuates erratically around a mean of approximately 28 s

(Figure 5.2 C), seemingly jumping between states of the low period (around 20 s) and high

period (about 33 s). Simulations of up to 2000 s with small tolerances (relative tolerance reduced

from 10�3 to 10�6, and absolute tolerance reduced from 10�6 10�9, see Section 4.3 for details)

produce similar results. Considering that both smaller and larger coupling strengths result in

a network with a single, well-defined period (see Figure 5.4 below), it is perhaps surprising

that at this intermediate coupling strength, the network can behave so unpredictably. Another

unexpected consequence of intermediate coupling is the complete destruction of the bursting

solution, shown in Figure 5.2. Here, for � = 0:05, an initial bursting trajectory is unstable and

gives way to tonic firing for both cells.

For large coupling (� = 1) we observe synchronous subthreshold oscillations in addition to

simultaneous spiking (Figure 5.4). The oscillator periods decrease compared to their uncoupled

values, which is in contrast to the effect of small coupling. Furthermore, the periods are not

constant and instead fluctuate between 9 and 11 s.

To briefly summarise, we have seen that the GJ coupling between two intrinsically bursting

TIDA neurones (4.23) with the same period can have counterintuitive effects. Very low coupling

increases the period of the oscillating network in a coupling strength-dependent manner, with a

greater � resulting in a greater period increase (results not shown). For very large coupling,

which we quantify as � = O(1), the network period decreases with respect to the intrinsic

oscillator period, indicating a nonlinear dependence of the network frequency upon the coupling

strength. At intermediate coupling strengths, the oscillations are destabilised, which can lead
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Figure 5.3: Similar to Fig. 5.1, but with � = 0:05 showing how the bursting solution can be
replaced by tonic firing.

Figure 5.4: Similar to Fig. 5.1, but with � = 1 which decreases the collective frequency, in
contrast to � = 0:01 in Fig. 5.1, which increases the collective frequency.

to irregular oscillations, possibly indicating chaotic dynamics or a complete abolishment of the

bursting and replacement with tonic firing.

5.3.2 Non-identical oscillators

TIDA neurones with identical intrinsic periods are a mathematical idealisation that will be

useful to understand the coupling mechanism in future work. In real cells, the TIDA burst

periods are distributed over a range of values in both rats and mice [296]. We can incorporate

this heterogeneity into our two-cell model by altering the frequency of one oscillator. To do

this, we decrease the time scale of calcium dynamics in one oscillator, �1, from its original

value of 2� 10�4 to 1:5� 10�4. This results in an uncoupled simulation in which one oscillator

(i = 0) has a period of 21.5 s and the other oscillator (i = 1) has a period of 33 s. Decreasing �1
increases the period by lengthening both the rising phase and the spiking phase.

For small coupling strengths (0 < � . 0:05) the two oscillators remain similar to their
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Figure 5.5: Small coupling with � = 0:01 does not syncronise the oscillators. (A-B) The voltage
dynamics of two intrinsically bursting TIDA cells, described by (5.1) with �0 = 2� 10�4 (black),
�1 = 1:5�10�4 (blue). (C) The period, measured as the time between minima, of each oscillator
in (A-B). Dashed lines indicate the oscillator’s intrinsic period.

Figure 5.6: Similar to Fig. 5.5, but with � = 0:1 showing synchronisation between the oscillators.

intrinsic dynamics, with small fluctuations of their period about their intrinsic value (Figure

5.5). Larger coupling strengths (� > 0:1) lead to network synchronization in which individual

periods converge to the midpoint between the intrinsic periods (Figure 5.6). This behaviour

aligns with our understanding of weakly coupled oscillator networks [12, 62, 249]. For low � the

weak interactions between the oscillators cause variations in their periods that result in the

oscillators periodically becoming closer in their frequencies. At these coupling strengths, � is

below the critical value above which synchronisation is a stable state of the system. Increasing

� above its critical value (which we do not attempt to determine) results in a synchronous

solution forming after a period of transient dynamics.

However, the dynamics of this simple network are not completely obvious. As in the case of

identical oscillators, at � = 0:05 the bursting solution is replaced by a tonically firing solution

(Figure 5.7). For � < 0:05 the oscillators do not synchronise, and for � ’ 0:06 they do, hence it

could be that abolishment of bursting is due to being close to the critical � for synchrony.
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Figure 5.7: Similar to Fig. 5.5, but with � = 0:05 showing that the bursting solution is replaced
by tonic firing.

5.4 Forced oscillations

In this section, we investigate whether subthreshold oscillations and bursting can be forced

upon a non-bursting cell by coupling it to a bursting cell. We start with the case in which one

cell is bursting while the other cell fires tonically (Figure 5.8 A). Tonic firing is induced in the

second cell by reducing the value of ḡKCa;1 to 0:98, which is the only difference between the

cells (ḡKCa;0 = 1). We see that the activity of both cells is altered by small coupling (� = 0:05).

Irregular bursting is induced in the intrinsically tonic cell, which has period fluctuations of

almost 30 s. The mean period of the induced bursting is longer than the mean period of the

intrinsic burster, which is likely due to the (steep) increase in the period as ḡKCa is reduced

near 1 in Figure 4.17. The activity of the intrinsic burster also becomes irregular, although its

mean period is hardly affected (Figure 5.8C). Increasing the coupling strength regularises both

oscillations and reduces the period fluctuations (Fig. 5.8D-E), although 1:1 frequency locking

does not occur, at least for the parameters simulated. Further increase in � to 0.3 causes tight

coupling between the oscillator periods, but they are highly variable (Figure 5.8F). At � = 0:3,

an approximate 1:1 phase-locking occurs, at which both neurons fire bursts at approximately

the same time. For � < 0:3, approximate and temporary 2:1 phase-locking occurs, however, this

is not consistently maintained.

Next, we investigate whether a neurone at rest can be forced into bursting via coupling to

an intrinsic oscillator. The voltage dynamics of the two uncoupled cells are shown in Figure

5.9A, where the intrinsic burster is the familiar TIDA oscillation and the silent cell is at rest

at a subthreshold membrane potential, which is induced by increasing ḡL;1 from 0.5 to 2.27.

Coupling (� = 0:075) induces oscillations in the silent cell and alters the waveform of the

bursting cell (Figure 5.9). Furthermore, cells are synchronised so that Neurone 1 (blue) bursts

once for every two bursts of Neurone 0 (black). This is still 1:1 frequency locking because the

true oscillation of Neurone 0 is a double burst, in which one cycle consists of two bursts: one

large and one small. We see that Neurone 1 comes close to bursting during the large burst
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Figure 5.8: Burst oscillations can be induced in a tonic cell by electronic coupling with a bursting
cell. (A) Uncoupled cells are intrinsically bursting (a) or tonically firing (b; ḡKCa = 0:98). (B)
Gap junction coupling with � = 0:05 in (5.1) alters the oscillation of the intrinsically bursting
cell (a) and induces irregular oscillations in the tonic cell (b). (C) The period of the oscillations
are not equal and they fluctuate around a mean value. For the intrinsic burster, the period
fluctuates around its intrinsic period (grey line).

of Neurone 0, but falls short and bursts at every small burst of Neurone 0. The lack of 1:1

‘burst-locking’ here is because increasing ḡL;1 increases the period of the oscillator significantly

(see Fig. 4.17), and in fact, this can be seen upon close inspection of Figure 5.9Ab since there

are slow, damped oscillations before the voltage settles.

5.5 Discussion

This brief chapter presents a range of activity from a network of two electrically coupled TIDA

neurones (5.1). We started by coupling intrinsically oscillating cells, and even for the simplest

case of identical oscillators, we saw that the network behaviour depends nonlinearly upon

electrical coupling strength. Electrical coupling facilitates synchronisation between nonidentical

oscillators (Fig. 5.6) and can lead to surprising neural dynamics (Fig. 5.7). Bursting oscillations

can also be forced on tonic firing (Fig. 5.8) and quiescent cells (Fig. 5.9). The purpose of this
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Figure 5.9: Burst oscillations can be induced in a silent cell by electrical coupling with a bursting
cell. (A) Each uncoupled cell is either bursting (Aa) or at rest (Ab; ḡL = 2:27). (B) Gap junction
coupling with � = 0:075 in (5.1) leads to regular burst oscillations in both cells. (C) The period
of each cell is identical.

chapter was not to explain any of these results in great detail, although ongoing work will

attempt to do so. Instead, this chapter displays some features of a gap junction coupled TIDA

network and motivates future studies on the hypothalamic regulation of the lactatrophic axis.

Coupling between two identical, intrinsically bursting neurones is the simplest network

simulation one can perform with the model developed in Chapter 4 and our results immediately

present interesting dynamics. Weak coupling slows the frequency of the network (Fig. 5.1),

whereas large coupling increases and destabilises the frequency of the network (Fig. 5.4).

Sherman et al. [282] suggest that weak coupling between bursting neurones slows the network

rhythm because cells fire in antiphase, which reduces the rate of slow variable accumulation

and increases the burst period. In our simulations (Fig. 5.1), spikes are not antiphasic, but

they do have a nonzero phase difference while the network period is slowed (not shown). More

research is required to assess whether a similar declaratory mechanism is at play. Network

activity in the presence of larger coupling (Figs. 5.2-5.4) is more difficult to explain. The model

is sensitive to perturbations in I (Fig. 4.17) and therefore sufficient coupling may drive one

or both neurones into a state very close to a transition to tonic firing, which may explain the

quasiperiodic (Fig. 5.2) and tonic firing solutions (Fig. 5.3).

Future theoretical investigations of the TIDA network should attempt to identify the validity

of the hypothesis proposed by Stagkourakis et al. which suggests that electrical coupling slows

and narrows the distribution of rat TIDA frequencies [295, Fig. 8]. Our preliminary simulations

do not support this hypothesis since synchrony between nonidentical oscillators occurred at an
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intermediate collective frequency between the two intrinsic frequencies (Figure 5.6). However,

it is likely that after further exploration of the two-cell model (5.1), there will be solutions in

which the collective frequency is less than either intrinsic frequency. Also, simulations of larger

and more realistic networks may show different behaviour. Intrinsic cell properties interact with

electrical coupling and lead to unintuitive behaviour [144, 203, 246], and we need to explore

these interactions in the TIDA model.

The TIDA oscillation may be generated to some extent by gap junction coupling. Pharma-

cologically removing GJs abolishes the oscillation in rats [190], however, as already mentioned,

this could be due to the off-target effects of blocking agents on K+ channels [58]. Future network

simulations, with a minimum of two cells but ideally more, could be used to assess the feasibility

of emergent oscillations between two intrinsically nonoscillatory cells. This was attempted in

our study, but the brief nature of the investigation prohibited detailed simulations, and no

emergent oscillations were found. Furthermore, the effect of CBX and 18�-GA on both K+

channels and GJs could also be investigated with our model (5.1) to determine the extent to

which GJ blockade alone results in the observation of Lyons et al. [190]. Gap junction-dependent

oscillations exist in the inferior olive neurones of the cerebellum [29, 201, 337] and in the

�-cells of the pancreas [283]. The oscillations in these two systems are different in many ways,

yet theoretical studies have shown that heterogeneity between a sufficient number of cells is

a critical component for oscillation generation [201, 283]. Our model system here could be

extended to investigate similar mechanisms that give rise to coupling-dependent oscillations.

Blocking TIDA electrical coupling during an MEA recording (Chapter 3) may also provide

useful insights regarding the role of coupling in the network.

Although emergent oscillations were not identified in our study, we have shown that coupling

a bursting neurone to a tonic firing or a silent cell can result in a network bursting solution

(Figure 5.8,5.9). These processes may occur in the rat TIDA network. Non-bursting TIDA

neurones in male rats are rare, which may be due to the high prevalence of electrical coupling

[295]. In mice, approximately 30% of TIDA cells do not burst and are instead a mixture of

active and quiescent cells [340]. It is possible that a fraction of rat TIDA cells are intrinsically

nonbursting and are recruited into bursting via gap junction coupling. Populations of silent

and tonic firing cells have also been shown to cause emergent bursting as a type of compromise

between their intrinsic activity patterns [67]. Although forced oscillations are possible in our

simulations, further analysis is required to determine whether such processes occur between

TIDA cells. The simulated network activity of Figures 5.8 and 5.9 does not resemble the

tightly synchronised and regular activity typical of the TIDA network. More in-depth numerical

analysis may rectify this; indeed, there are several unintuitive effects that arise due to the

coupling between bursting cells and non-bursting cells [144]. Different parameter regions may

need to be explored and larger numbers of cells may need to be simulated to obtain more

TIDA-like activity.
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NETWORK

Since cellular heterogeneity drives other emergent oscillations [201, 283], future work will

need to incorporate many oscillating neurones. It takes an average of 120 s to numerically

integrate the two-cell network (5.1) for 1000 seconds with the default parameters in Section

4.3 on a standard PC (32.0 GB RAM and an Intel Core i7-1270P processor). To efficiently

simulate tens or hundreds of cells, a higher-power computer or a suitable model reduction

technique may need to be used. Since the slow oscillation is of primary interest, removing

detailed spike simulations from our model would eliminate the large difference in timescales

that makes equations (4.23) and (5.1) difficult to simulate. Methods in which the slow currents

and the bifurcation structure of the model are preserved would be most useful, since both

coupling and intrinsic properties can be studied together in a large network [131, 167].

We have not considered the effect of synaptic communication between TIDA cells in our

theoretical treatment of the TIDA network. TIDA cells co-express GABA [82] and mutually

inhibit one another [190, 340]. Similar networks of mutually inhibitory interneurons coupled

with GJs in the cortex have been extensively studied due to their role in coordinating cortical

oscillations [151, 289, 290, 314, 315] and pattern generation in invertebrates [115]. Further

comments on requirements for future work will be made in Chapter 6 which follows.
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Chapter 6

Discussion

6.1 Summary

Throughout this thesis, we have transversed timescales, brain regions, and species to explore

how a selection of neural oscillations are generated and how coupling coordinates their activity.

We started in the mouse brainstem, where a network of three circadian oscillators interact to

establish a spatiotemporal pattern of phase differences (Fig. 2.1). Using a simple Kuramoto

model, we inferred how the oscillators may communicate and found that their coupling may be

tuned to criticality to facilitate a flexible network. Next, we moved to the rat hypothalamus,

where we explored how the spiking activity of a population of dopamine cells is altered by the

time of day and SCN signalling peptides. We found that TIDA neurones burst faster during the

night, and that VIP, GRP and other related peptides profoundly change TIDA activity. Our

results point toward a multifaceted regulation of hypothalamic DA in which both the SCN and

circadian rhythms intrinsic to the dmARC could work together to coordinate daily changes

in DA. The remainder of the thesis explored the origins of TIDA cell ultradian oscillations.

A mathematical model was constructed to explore how a persistent Na+ current and a Ca2+-

activated K+ current could generate bursting in TIDA cells. The proposed mechanism agreed

favourably with experimental data, but our results highlighted the potential for extensive future

work. Coupling and its role in coordinating TIDA network oscillations requires clarification,

and in Chapter 5 we extended our TIDA model to a network of two electrically coupled cells.

Simulations show that even a simple network can exhibit complex dynamics and that there is

much left to understand. Despite the differences between the studies that make up this thesis,

a recurring theme is the coupling between oscillators of varying autonomy. Each chapter is

more or less a self-contained study, and as such, contains a main discussion regarding the wider

literature and future work. Here, we conclude the thesis by exploring the similarities between

the studies and highlighting future work that has not yet been mentioned.
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6.2 Common themes and future work

A commonality between TIDA neurones and DVC neurones is their daily change in neural

activity. We have shown here that TIDA bursting differs between day and night (Fig. 3.10).

Similarly, the neural activity of AP and NTS cells changes throughout the day. Chrobok et al.
report that AP and NTS firing rates are higher at night [51, 52], and NTS neurones are more

sensitive to signalling factors during the night [52], compared to day. The results of Chapter 3

for TIDA neurones are similar. Both systems would benefit from a mechanistic understanding

of how their membrane physiology changes throughout the day. This is an easier task for TIDA

cells due to the model we have developed, and future work will attempt to understand what

processes or parameters in the TIDA system (4.23) could cause the day-night difference we

have observed. A recent study combined modelling, electrophysiology, and data assimilation to

identify the currents that result in daily changes in the SCN neurones of a diurnal rodent [14].

Such an approach could be used with the TIDA model (4.23) to uncover similar membrane

changes.

Elucidating the mechanisms that cause daily changes in AP and NTS neuronal activity is

more challenging. First, each of the two regions contains several distinct neural populations,

and the neurochemical phenotype of the clock neurones is unknown. As mentioned in Chapter

2, identifying the DVC clock neurones is a paramount task for future work in this area. Once

we know the neurones that give rise to daily excitability changes, a viable mathematical model

can be developed, which would accelerate our understanding of circadian phase communication

in this network. Blocking action potentials with TTX markedly alters the oscillatory dynamics

in the DVC [52], and our phase model of the DVC (2.6) requires coupling between the AP and

NTS, which is likely mediated by action potentials and hence, membrane excitability. A model

of AP and NTS neurones membrane physiology could be used in conjunction with a generic

TTFL model, thereby linking the oscillations in PER2::LUC with neural activity oscillations,

such as in [74]. Including this extra level of detail in the AP-NTS coupling could help explain

the mysterious phase lag in our model (2.6), especially if a large number of cells are simulated.

The DVC and the ARC both contain ependymal cells that line the walls of the fourth and

third ventricles, respectively. In the DVC, these cells form one of the three circadian oscillators

(the 4Vep) that interact with the neuronal nuclei to establish a phase difference pattern. In the

ARC, robust PER2::LUC rhythms have been identified in the cells that line the third ventricle,

close to where TIDA neurones are located, although their identity is unknown. Tanycytes also

line the walls of the third ventricle in the ARC [338] and it has recently been shown that

signalling from the SCN regulates daily changes in tanycyte-mediated entry of glucose into

the ARC [264]. It is unclear whether circadian rhythms in non-neuronal cell activity interact

with TIDA cells. Our modelling results suggest that the 4Vep has a considerable impact on AP

rhythmicity, and similarly, non-neuronal cells in the SCN coordinate and even drive rhythms in

SCN neurones [31, 32]. Investigating the non-neuronal circadian rhythms in the ARC, and how
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such rhythms may interact with neural circadian rhythms could result in valuable information

regarding a fundamental feature of circadian rhythms in the brain.

The DVC clock network we study in Chapter 2 is from adult mice, and our current

understanding of the DVC clock network is also based on an adult network [49–51, 123, 138, 220].

An emerging interest in chronobiology is identifying the developmental trajectory of circadian

tissue - when does a clock start ticking, what are its properties, and how do they change across

development? The DCV offers a unique opportunity not just to investigate the developmental

changes in a single clock but also between a network of multiple clocks. Recent experimental

data using the same PER2::LUC recording framework introduced in Chapter 2 provide exciting

new results on the development of clock networks. Muir et al. [223] have found that DVC clocks

start ticking as early as postnatal day three (P3), suggesting that this network could play an

important role in the coordination of early physiology. During the early development, the DVC

clocks are highly synchronised and oscillate in phase with one another [223]. Throughout the

developmental trajectory, the phase difference between the AP and the 4Vep steadily widens

until it reaches the large and near antiphase separation we modelled in Chapter 2. The dynamic

phase difference between the developing AP and 4Vep is accompanied by changes in the periods

of both oscillators. Furthermore, new experiments have identified another oscillator in the

DCV network. The dorsal motor nucleus of the vagus (DMV) was previously observed to

possess transient rhythmicity [52], but the rhythms were not robust enough for inclusion in

our model. Recent experiments have clearly shown that the DMV exhibits robust oscillations

in PER2::LUC, and appears to have a dynamic period during development [223]. These data

provide an exciting opportunity to develop the DVC model (2.6) by introducing a fourth

oscillator and modelling the changes that occur throughout a critical period of life. Our model

suggests that a large AP-4Vep phase difference is facilitated by a negative coupling from the

4Vep to the AP. A smaller phase difference could be supported by reducing this coupling

strength, or by introducing positive coupling from the AP to 4Vep. Ceullar communication

is markedly altered in the brain during development, with the electrical coupling much more

pronounced [217]. Attempting to incorporate these new data into our model could uncover how

communication in this brain region changes throughout development.

Much of the work in this thesis has focused on TIDA neurones and their electrical activity.

Hopefully, the ideas, techniques, and results we have discussed relating to TIDA cells stimulate

further interest in this neurosecretory population. An aspect of TIDA physiology that remains

elusive is how DAergic output couples to electrical activity. Our results in Chapter 3, along

with other studies [187, 190], suggest that excitation of the TIDA neurones does not necessarily

translate to greater DA secretion. The relationship between spiking, or bursting, and TIDA

hormone secretion is likely highly nonlinear and difficult to predict, such as in hypothalamic

magnocellular neurones [77] or midbrain DA neurones [99]. A recent study has attempted to

elucidate this relationship in TIDA neurones by using optogenetic stimulation in combination
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with fast-scan cyclic voltammetry to measure TIDA dopamine release in the ME [294]. The

authors report that the optimal spike frequency for DA release is lower for long bouts of

stimulation (mimicking tonic firing) compared to multiple short bouts (mimicking bursting) in

mice TIDA neurones. While this a promising first step, more nuanced stimulation protocols are

required to understand, for example, the difference in DA secretion due to rapidly bursting

TIDA neurones, observed at night, compared to the slower bursting observed during the day

(Fig. 3.10).

In addition to experimental techniques, modelling will also be useful for understanding

DA release dynamics. Models of the secretory mechanism have been used to, for example,

show how intense stimulation readily depresses secretion [121]; or to analyse and predict the

results of experiments [327]. The magnocellular system that produces oxytocin and vasopressin

is perhaps the most fully understood neuroendocrine system [172], and this is partly due to

the exquisite detail in which stimulus section has been modelled [171, 193, 195, 206]. Such

models can help explain, for example, how the stimulus-secretion response of vasopressin cells is

effectively linear, despite individual cells having a highly non-linear response [195, 206]. While

many of the details required to accurately fit a TIDA dopamine secretion model are lacking

(MacGregor describes such details for magnocellular neurones in [195]), even a rudimentary

model may provide insights when used with the experimental techniques in [294]. Furthermore,

Dopamine released from the somatodendritic compartment of rat TIDA neurones [294] may

be part of a feedback loop in which the TIDA population regulates its own activity [295].

Stagakourakis et al. [295] identify several pre- and postsynaptic mechanisms by which DA tunes

TIDA activity, and many of these could be incorporated into our model. This could potentially

add another coupling mechanism by which TIDA activity is orchestrated. Autocrine coupling

in other secretory cells has been shown to result in highly robust synchrony between cells [146],

and it would be interesting to explore whether robust TIDA cell synchrony is, at least in part,

driven by similar processes.

The MEA recording platform and TIDA detection algorithm introduced in Chapter 3 have

the potential to profoundly enhance our understanding of coupling and synchrony in the TIDA

network. TIDA activity detected in MEA experiments more often than not exhibited superb

synchrony (see Fig. 6.1B). Paired patch clamp recordings show beautiful coherence between

subthreshold oscillations of neighbouring cells [190, 296] (Fig. 6.1A), but the full extent of

TIDA synchronicity is appreciated by measuring the activity of many cells simultaneously. The

MEA is an ideal platform for this. When TIDA activity was detected in a recording, there

were usually at least two cells and on average around four or five cells. Occasionally, up to 16

could be detected. It is possible, but as of yet untested, that different orientations of dmARC

slices could yield higher numbers of detected TIDA cells. Calcium imaging in the rat is limited

by the expensive transgenic animal lines required, and, as mentioned, patch clamp techniques

are limited by the high level of skill required to record from paired cells, and as mentioned
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Figure 6.1: Synchrony between TIDA oscillations. (A) Paired intracellular recordings have
detected tight phase locking between the subthreshold oscillations of TIDA neurones. Typically,
such recordings are limited to a maximum of only two cells. This panel is from Stagkourakis et
al. [296]. (B) MEA recordings can detect large numbers of TIDA cells within the same dmARC
slice (n = 16 cells here), and preliminary results indicate that synchrony is readily observable in
these extended networks. The MEA, in combination with modelling and intracellular recordings,
could uncover how TIDA network rhythms are orchestrated.

above, the number of cells that can be recorded simultaneously. In contrast, the MEA offers an

affordable and relatively easy method for recording the electrical activity of a large number of

cells. Additionally, MEA electrodes can stimulate cells, as well as record from them. Electrical

stimulation protocols and drug applications could provide ample data with which to tune a

network model.

Our motivation for constructing a single-cell model of the TIDA oscillation was to understand

the role that coupling plays in coordinating network activity. While the mouse TIDA population

lacks gap junction and has a large distribution of bursting frequencies, the rat TIDA cells are

extensively electrically coupled and their oscillations are highly synchronised [296]. This points

to gap junctions that synchronise cell bursting rhythms and modulate network frequency, which

has been documented in the experimental [59, 60] and the theoretical [129, 144, 211, 282, 315]

literature. The role of coupling may extend farther than synchrony for the rat TIDA network,

and to appreciate how the two-cell model from Chapter 5 must be developed. First, a larger

number of heterogeneous cells must be simulated to determine to what extent electrical coupling

is necessary for TIDA rhythmicity. Interactions among heterogeneous cells are crucial for other

emergent oscillations [67, 201, 283], and can lead to exotic dynamical states [94]. Second,

additional physiological details, such as inhibitory synaptic coupling and realistic electrical

coupling coefficients, should be included. Data for these details exist for TIDA neurones [295]

and they can profoundly influence the dynamics of other neural networks [115, 174, 288, 289].

The autocrine regulation by DA, discussed above, should also be considered. Clearly, there is

much left to understand about how TIDA neurones coordinate their activity. The model we

have developed here, along with our novel method for recording and detecting TIDA activity in

MEAs, has the potential to foster a deeper understanding of the neurosecretory network.
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6.3 Conclusion

As we conclude this journey through the temporal landscape of neural oscillations, we join the

threads of our distinct studies into a vista of exciting future opportunities. From circadian

oscillations in the DVC network to the ultradian dynamics of the TIDA population, we’ve

uncovered how specific biological oscillations arise and harmonize. A central motif of our

endeavours has been the dynamic interplay between oscillators. Their coupling can give rise to

synchronisation, spatiotemporal patterns, drive patterns of hormone release, and generate new

and unexpected rhythms. In reflecting on our journey, we must also look ahead. Unveiling how

circadian phase is communicated in the DVC has the possibility of deepening our understanding

of the fundamental principles that govern circadian communication. Such principles are at play

between the ARC and the SCN, and elucidating upon them could have far-reaching implica-

tions for lactotrophic and reproductive physiology. The relationship between the membrane

components of TIDA cells, the DA they secrete and the organisation of the network they form

is set to become an exciting story, full of the red hearings and convoluted narratives that make

neuroendocrinology a simulating discipline to work in. The story of the TIDA network is only

in its infancy, and its future is bright. The systems that we’ve considered have scarcely been

viewed under the modeller’s microscope, and it is a profoundly fulfilling and exciting realisation

that this thesis may serve as a launchpad for future developments in our understanding of these

oscillations.
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Appendix A

A.1 Addition �gures for Chapter 1

Figure A.1: AP-4Vep PD analysis and estimation of coupling parameters. (A) The
AV-PD dynamics of the five experiments that were selected to fit the AP-4Vep phase oscillator
model. Each data trajectory (grey) has a period of constant PD between the vertical dashed
lines, defined such that jd�av=dtj < 0:01. After estimating the parameters of an AP-4Vep coupled
oscillator model, the simulated trajectory (orange) matches well with the data. During an epoch
of constant PD, the two oscillators are approximately at the same frequency, indicated by nearly
identical period dynamics in (B). The average period over this epoch for each oscillator in all
five experiments is plotted in (C). The difference between the oscillator’s average period within
this epoch is plotted in (D). The small differences suggest that the oscillators are approximately
at the same period, hence their collective period is calculated as the mean period between the
oscillators throughout this epoch.
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Figure A.2: AP-NTS PD analysis and estimation of coupling parameters. (A) The
AN-PD dynamics of the five experiments that were selected to fit the AP-NTS phase oscillator
model. Each data trajectory (grey) has a period of constant PD between the vertical dashed
lines, defined such that jd�an=dtj < 0:01. After estimating the parameters of an AP-NTS coupled
oscillator model, the simulated trajectory (blue) matches well with the data. To estimate all
the parameters of the AP-NTS model, the linear decay rate of the PD data was estimated by
fitting an exponential curve (red dots) to the PD trajectory when it is sufficiently close to its
constant PD state. During an epoch of constant PD, the two oscillators are approximately at
the same frequency, indicated by nearly identical period dynamics in (B). The average period
over this epoch for each oscillator in all five experiments is plotted in (C). The difference
between the oscillator’s average period within this epoch is plotted in (D). The small differences
suggest that the oscillators are approximately at the same period, hence their collective period
is calculated as the mean period between the oscillators throughout this epoch.

A.2 Additional �gures for Chapter 3

A.3 Additional �gures for Chapter 4
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Figure A.3: Analysis of the stability of phase di�erences. The prominence of a peak in
the histogram of phase differences is an indication of the stability of the PD time series. The
prominence is measured using the expression in (A), which is 1 for a histogram with all its
weight within one bin (the d-distribution) and close to zero (1=N , where N is the number of
bins) when the distribution is uniform. This metric provides a measure of the stability of a
PD trajectory. Simulations of the model system (1) with realistic periods and initial conditions
(the same used in the simulations of Figure 4C and D) and zero coupling (s = 0) are shown in
(B). PD trajectories of uncoupled oscillators are linear and display no tendency to remain at a
particular PD value, which is indicated in the histograms in (C) (averaged over all simulations
in (B)). Such distributions are nearly uniform and have a low y value, indicated as ’S0’ in (Da)
and (Ea). In (Da) and (Ea), the peak prominence is displayed for all 11 experiments, and
example time series and histograms (15min-binned) are shown in parts b and c respectively.
Three AN-PD traces are multistable (red ’MS’), as shown by the trajectories in Supplementary
Figure 2.2 and their PD histograms displayed bimodality. Despite their high score for stability,
these traces could not be used to fit the model since it was ambiguous which near-constant
PD should be considered the as the steady-state. Furthermore, similar occurrences of multiple
constant PD regions arise in simulations with slowly decaying coupling (Figure 4C; black curve),
hence this could be an effect of reducing the oscillators coupling.
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Figure A.4: Comparison between patch clamp recorded TIDA cells [184] (grey distributions,
same as in Fig. 3.6) and TIDA activity detected on the MEA (green: day, magenta: night;
same activity plotted in Fig. 3.10). The p-values are the same p-values reported in Fig. 3.10
(unpaired t-test or Mann-Whitney U Test). No statistical comparison was made between the
patch clamp and MEA data.

Figure A.5: The effect of DMSO and blockade of fast synaptic transmission (see text) on TIDA
neurones (n = 36 cells; 4 animals). A high concentration of DMSO was used in SB experiments
(0.3%), hence we assessed whether TIDA activity changes due to DMSO. We found that the
activity does not change significantly due to 0.3% DMSO, compared to a baseline control (ns:
p > 0:05, paired t-test)
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Figure A.6: The change in ISI due to blocking fast synaptic transmission (SB) and VIP (600nM)
+ SB.

Figure A.7: The inactivation dynamics of the INaT channel in (4.23) with parameters given in
Table 4.2. This trace is produced from the same simulation in Fig. 4.16. The posative sign of
0:89� 1:1n, whcih describes the INaT inactivation dynamics, i9s confirmed here for the final
solution to the TIDA model of Chapter 4.
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Figure A.8: The duration of the rising, spiking and relaxing phases and the number of spikes
per burst depends upon model parameters. In each panel, a single parameter of (4.23) is varied
whilst all others are kept at the value in Table 4.2. The x-axis is the percentage change in the
parameter relative to its default value in Table 4.2. In many panels, the analysis does not span
the full -50% to 50% parameter change because the oscillatory solution is destroyed (see Fig.
4.17).
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