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Abstract—The distance between wireless sensors in random fields is crucial for performance analysis and sensor
network deployment. However, the exact distribution models are normally of great complexity and can hardly lead
to closed-form analytics for most cases. In this study, we investigate the inter-sensor distance distribution in random
fields, propose a polynomial inter-sensor distance distributional substitute, and develop two strategies for distributional
parameter mapping for different application scenarios. Simulation results presented in this paper verify the effectiveness
and efficiency of the low-complexity distributional substitution technique. The verified analyses given in this paper can
help to provide mathematically tractable performance metrics for wireless sensor networks (WSNs) where sensors are
randomly distributed over two-dimensional space.

Index Terms—Inter-point distance distribution, distributional substitution, wireless sensor network, random field.

I. INTRODUCTION

Wireless sensor networks (WSNs) introduce unprecedented dy-
namism, driven by the mobility and agility of wireless sensors,
leading to frequent fluctuations in network topology. This dynamism
is particularly accentuated in short-range WSNs and drone-assisted
WSNs. The associated complexity necessitates a modeling approach
that is both flexible and adaptive. In this context, stochastic geometry
has been proven to be an indispensable tool, offering unique
capabilities to tackle the distinctive analytical challenges of WSNs
[1]. It provides a flexible and accurate framework for modeling,
analyzing, and optimizing the performance of WSNs [2]. Among
the broad range of studies on stochastic WSNs, investigations into
distance distributions of point processes are particularly significant for
advancing research in remote sensing and data communications [3].
The inter-sensor distance distribution of wireless sensors distributed
in random fields dominates the reliability of WSNs and suggests how
wireless sensors shall be deployed. The pioneering examination of
distances in uniformly random networks is documented in [4], where
the distance distribution of the nearest neighbor to a random point
in the Poisson field is elucidated. Exploring inter-node distance, [5]
considers a fixed number of nodes independently distributed over a
ball of arbitrary dimensions. Additionally, [6] delves into the distance
distribution towards a reference point in the Poisson field. As part of a
comprehensive investigation, [7] surveys and summarizes the distance
distributions inherent in commonly used spatial point processes.

While closed-form probability density functions (PDFs) and
cumulative distribution functions (CDFs) for the exact distance
distribution model between two random points have been derived
for some stochastic point processes [8], leveraging these exact
distribution models for performance analyses and optimization for
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WSNs is rather tricky and often leads to mathematical intractability
[9]. The inherent difficulty arises from the intricate forms of the PDFs
and CDFs of these exact distance distributions, which incorporate
inverse trigonometric functions and other specialized mathematical
functions. Consequently, the integral forms of analytical results are
seldom closed. Therefore, they can hardly yield substantial insights
into the studied WSNs and fail to explicitly unveil the relation
between network performance and sensor deployment strategies.
To address these challenges, approximation techniques, e.g., Taylor
series expansions and asymptotic analysis have been widely adopted
[3], [10]. However, Taylor series based approximations necessitating
numerical methods to determine the number of summative terms
are less feasible for modeling the real-time dynamism of practical
WSNs, while asymptotic analysis often fails in modeling moderate-
sized networks due to edge effects and may produce invalid probability
measures, limiting their practical utility.

In this regard, this paper aims to enhance the mathematical tractabil-
ity of analyses and optimization for stochastic WSNs by proposing
an approximate distance distribution model in the polynomial form,
which can effectively capture the statistical characteristics of a variety
of exact distributions of inter-sensor distances. Unlike asymptotic
analysis that relies on idealized conditions and may lose accuracy
in finite-scale scenarios, the proposed polynomial model directly
approximates exact distributions across the entire parameter range.
For the polynomial model, we propose two strategies tailored to
different application scenarios for distributional parameter mapping.

II. PRELIMINARIES OF INTER-SENSOR DISTANCE
DISTRIBUTION AND ITS SUBSTITUTION

In this paper, we assume that an undetermined number of random
points, representing wireless sensors, are distributed over a finite
disk centered at the origin with radius 𝑅, denoted as C𝑅 ⊂ R2. The
location generation of these random points abides by a homogeneous
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two-dimensional Poisson point process (PPP) with constant density
𝜆, which is denoted as Π(C𝑅) and is a first-order approximation
of the spatial distribution of nodes in WSNs where the heights
of deployed sensors are negligible compared to the perimeter of
WSN. For simplicity, we denote the undetermined number of random
points by 𝑁 , which is a random number distributed by the Poisson
distribution: Poisson(𝜆𝜋𝑅2). For 𝑛 ∈ N = {1, 2, . . . , 𝑁}, we denote
the location of the 𝑛th point as p(𝑟𝑛, 𝜃𝑛) through the two-dimensional
polar coordinate, where 𝑟𝑛 ∈ [0, 𝑅] is the distance from point 𝑛 to
the origin, and 𝜃𝑛 ∈ [0, 2𝜋) is the angle of the link connecting
point 𝑛 and the origin relative to the horizontal. In accordance with
the homogeneity and isotropy of PPP, the PDFs and CDFs of both
distance 𝑟𝑛 and angle 𝜃𝑛 to the origin are given by 𝑓𝑟 (𝑟) = 2𝑟/𝑅2

and 𝐹𝑟 (𝑟) = 𝑟2/𝑅2, where 𝑟 ∈ [0, 𝑅], and 𝑓𝜃 (𝜃) = 1/(2𝜋) and
𝐹𝜃 (𝜃) = 𝜃/(2𝜋), where 𝜃 ∈ [0, 2𝜋) [6].

From the formulations given above, for two randomly selected
points in C𝑅 , say point 𝑛 and 𝑘 , the Euclidean distance between them
can be expressed by the law of cosines as 𝐿𝑛,𝑘 = 𝐿𝑘,𝑛 = | |p(𝑟𝑛, 𝜃𝑛)−
p(𝑟𝑘 , 𝜃𝑘) | | =

√︃
𝑟2
𝑛 + 𝑟2

𝑘
− 2𝑟𝑛𝑟𝑘 cos(𝜃𝑛 − 𝜃𝑘), which is termed the

inter-point distance and is obviously a dependent random number
distributed over [0, 2𝑅] on the other two independent random numbers
involved. The distribution of distance 𝐿 between a pair of random
points has been extensively studied in different subjects. Resorting
to Croften’s fixed-point theorem and the mean value theorem, the
exact CDF and PDF of 𝐿 in the homogeneous Poisson field have
been derived to be [11]
𝐹𝐿 (𝐿) = 2

𝜋
arcsin

(
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2𝑅

)
− 𝐿

√
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𝐿
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]

(1)
for 𝐿 ∈ [0, 2𝑅]. Due to the complexity of the inter-point distance
distribution given in (1), it is a great challenge to have closed-
form performance analysis and optimization when applying these
exact expressions. Thus, it brings difficulties in revealing the relation
between performance metrics and network parameters in WSNs.

Enlightened by the observation that most integrable functions
multiplying a polynomial will still be integrable [12], we employ the
distributional substitution technique and propose polynomial forms
of CDF and PDF to approximate the original inter-point distance
distribution formulated in (1). The polynomial approximation is
developed from the perspective of CDF and PDF in the forms of{

�̂�𝐿 (𝐿) =
∑𝑇

𝑡=1 𝜑𝑡

(
𝐿

2𝑅

) 𝑡
𝑓𝐿 (𝐿) = d�̂�𝐿 (𝐿)

d𝐿 =
∑𝑇

𝑡=1
𝑡𝜑𝑡

2𝑅

(
𝐿

2𝑅

) 𝑡−1 , (2)

for 𝐿 ∈ [0, 2𝑅], and {𝜑𝑡 }𝑇𝑡=1 are 𝑇 constrained parameters subject to∑𝑇
𝑡=1 𝜑𝑡 = 1 to guarantee the normativity of a legitimate distribution

model. These 𝑇 constrained parameters can be adapted in a way that
fits different distribution models with closed set [0, 2𝑅]. The number
of constrained parameters 𝑇 in itself can also be used to manage
the trade-off between approximation accuracy and computational
complexity. It is apparent that a larger 𝑇 results in more accurate
results, but requires more computing resources as there exist more
polynomial terms that need to be processed. However, owing to
the special feature of polynomial, increasing 𝑇 does not affect the
mathematical tractability of the distributional substitute. Therefore,
with the tractable approximate distribution, the researchers interested
in the inter-sensor distances will only need to consider how to figure

out the 𝑇 constrained parameters {𝜑𝑡 }𝑇𝑡=1 to approximate the exact
distributions more accurately.

III. DISTRIBUTIONAL PARAMETER MAPPING

The accuracy of substitution in our formative polynomial PDF and
CDF is contingent upon the judicious configuration of 𝑇 constrained
parameters {𝜑𝑡 }𝑇𝑡=1. In the sequel, we introduce two strategies for
different application scenarios to establish the mapping relationship
between the original distribution and the substituted distribution.

A. Moment Matching Method

We can determine {𝜑𝑡 }𝑇𝑡=1 by the moment matching method [13].
Specifically, from (1), we can first derive the 𝑚th moment of 𝐿

abiding by the exact distance distribution, denoted as E
𝐿∼ 𝑓𝐿

{𝐿𝑚}:

E
𝐿∼ 𝑓𝐿

{𝐿𝑚} =
∫ 2𝑅

0
𝑓𝐿 (𝐿)𝐿𝑚d𝐿 =

2𝑅𝑚Γ (2 +𝑚)
Γ

(
2 + 𝑚

2

)
Γ

(
3 + 𝑚

2

) , (3)

where Γ(𝑥) =
∫ ∞

0 𝑧𝑥−1 exp(−𝑧)d𝑧 is the gamma function, representing
the Euler’s integral of the second kind.

Proof: By (1), the 𝑚th moment of the exact distance distribution
𝐿 can be expanded as

E
𝐿∼ 𝑓𝐿

{
𝐿𝑚

}
=

∫ 2𝑅

0
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(
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(4)

By expanding the integral expression, integrals 𝐼1 and 𝐼2 can be
evaluated separately in order to obtain the closed form expression of
(4). Through the method of integration by substitution for definite
integrals, we can substitute 𝜙 = 𝐿/(2𝑅) into 𝐼1 to obtain the following
expression in closed form:

𝐼1 =
2𝑚+4𝑅𝑚

𝜋

∫ 1

0
𝜙𝑚+1 arccos(𝜙)d𝜙 (a)

=
2𝑚+4𝑅𝑚Γ

( 3+𝑚
2

)
√
𝜋 (𝑚 + 2)2Γ

(
1 + 𝑚

2

) , (5)

where the integral solved through (a) is obtained by combining Eqs.
(4.523.3) and (4.523.4) in [12]. In a similar way, we can substitute
cos(𝜛) = 𝐿/(2𝑅) into 𝐼2 to obtain the closed form of 𝐼2 as

𝐼2 = − 2𝑚+4𝑅𝑚

𝜋

∫ 𝜋
2

0
(sin(𝜛 ) )2 (cos(𝜛 ) )𝑚+2d𝜛

(a)
= − 2𝑚+3𝑅𝑚

𝜋
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3
2
,

3 +𝑚

2
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2𝑚+2𝑅𝑚Γ
( 3+𝑚

2
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√
𝜋Γ

(
3 + 𝑚

2

) ,

(6)

where the integral solved through (a) is in accordance with
Eq. (3.623.1) in [12], and B(·, ·) is the beta function, representing
the Euler integral of the first kind; (b) can be deduced by the
relation between the beta function and the gamma function, i.e.,
B(𝑥, 𝑦) = Γ(𝑥)Γ(𝑦)/Γ(𝑥 + 𝑦), and identity Γ(3/2) =

√
𝜋/2.

Adding (5) and (6) together and performing algebraic manipulations
give the closed-form expression of E

𝐿∼ 𝑓𝐿

{
𝐿𝑚

}
= 𝐼1 + 𝐼2 as in (3).

Similarly, the 𝑚th moment of 𝐿 abiding by the polynomial
distributional substitute, denoted as E

𝐿∼ 𝑓𝐿

{𝐿𝑚} can be derived as

E
𝐿∼ 𝑓𝐿

{𝐿𝑚} =
∫ 2𝑅

0
𝑓𝐿 (𝐿)𝐿𝑚d𝐿 = (2𝑅)𝑚

(
𝑇∑︁
𝑡=1

𝑡 𝜑𝑡

𝑚 + 𝑡

)
. (7)
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Remark 1: As shown in (7), the 𝑚th moment of 𝐿 abiding by
the polynomial approximate distance distribution can be derived in a
closed and polynomial form without any special function, ∀ 𝑚 ≥ 1,
which is a computing advantage brought by the proposed polynomial
distributional substitution technique.

Solving the moment matching equation set given as{
E

𝐿∼ 𝑓𝐿

{𝐿𝑚} = E
𝐿∼ 𝑓𝐿

{𝐿𝑚}
}𝑇−1

𝑚=1
and

𝑇∑︁
𝑡=1

𝜑𝑡 = 1 (8)

directly yields the solution of {𝜑𝑡 }𝑇𝑡=1:
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.
.

𝜑𝑇


=



1
2

2
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4 . . . 𝑇
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.

.

.
. . .

.

.

.
1

(𝑇−1)+1
2

(𝑇−1)+2 . . . 𝑇

2𝑇−1
1 1 . . . 1



−1 

Γ (3)
Γ( 5

2 )Γ( 7
2 )

Γ (4)
2Γ (3)Γ (4)

.

.

.
Γ (2+(𝑇−1) )

2(𝑇−1)−1Γ(2+ 𝑇−1
2 )Γ(3+ 𝑇−1

2 )
1


.

(9)

Remark 2: As shown in (9), taking advantage of the explicit form
of the higher moments, the computational complexity predominantly
comes from inverting a 𝑇 × 𝑇 square matrix for solving the linear
equation system. It also becomes clear from (9) that the moment
matching method is suited for being used by computers for application
scenarios where the explicit expressions of higher moments exist,
and the only challenge is to invert a 𝑇 ×𝑇 matrix. The 𝑇 ×𝑇 matrix
contains the coefficients as the constraints for matching the moments
of the original and approximate distributions and is non-singular.
There exist developed algorithms to invert matrices in this form.
Assuming the classical Gauss-Jordan elimination technique is used
to invert the matrix, the computational complexity is O

(
𝑇3) .

B. Empirical Evidence Based Method

The moment matching method relies on the prior knowledge of the
original distance distribution, i.e., (1). However, this prior knowledge
might not always be accessible in real-world WSNs [14]. In order
to generalize the proposed polynomial distributional substitution
technique and enhance its practicality, we propose the generic resort
termed the empirical evidence based method in this subsection, which
is suited to be applied for cases where the original distance distribution
is unknown or is too complex to process. Specifically, the prerequisite
of using the empirical evidence based method is the availability of
plenty of samples drawn from the original distance distribution, which
can be collected by inspecting a stochastic WSN when the number
of wireless sensors is large. Given a stochastic WSN consisting of 𝑁
sensors, there exist (𝑁 − 1)2 inter-sensor distances {𝐿𝑛,𝑘}𝑛,𝑘∈N,𝑛≠𝑘 ,
and 𝐿𝑛,𝑘 = 𝐿𝑘,𝑛. Subsequently, we can randomly take 𝜖 independent
samples from these (𝑁 − 1)2 distances without replacement to form
a sampling vector s = [𝑆1, 𝑆2, . . . , 𝑆𝜖 ]𝑇 , where1 𝜖 ≤ (𝑁 − 1)2. With
s = [𝑆1, 𝑆2, . . . , 𝑆𝜖 ]𝑇 , we can construct the 𝑚th sample moment
by 𝐴𝑚 = (1/𝜖)∑𝜖

𝑖=1 𝑆
𝑚
𝑖 , which can be used to estimate E

𝐿∼ 𝑓𝐿
{𝐿𝑚}

without bias, ∀ 𝑚 = 1, 2, . . . , 𝑇 −1 and imitate the moment matching
method when the exact expressions of moments are not obtainable.

1On the other hand, if 𝑁 is small in very special cases or sampling is too difficult
to conduct, we can rely on the parametric bootstrapping technique to mimic
the sampling process. As the formalism of the polynomial substitution model
is known, the parametric bootstrapping technique can generate 𝜖 ≥ (𝑁 − 1)2

dependent samples from the (𝑁 − 1)2 independent samples and form a re-
sampling vector with 𝜖 elements.
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Fig. 1. PDF and CDF yielded by the distributional parameter sets via
the moment matching method, given different setups of 𝑅 and 𝐿.

Consequently, solving the equation set for matching the approximate
expressions of moments and the sample moments yields the empirical
solution of {𝜑𝑡 }𝑇𝑡=1 through the 𝜖 collected samples:
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.
.

𝜑𝑇


=
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.
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.
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𝑇
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2𝑇−1
1 1 . . . 1



−1 
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𝐴2
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.
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1


. (10)

Remark 3: The computational complexity is comprised mainly
of the computation of sample moments and the inverse of the
𝑇 × 𝑇 square matrix. Again, assuming the schoolbook elementary
operations are applied, the former renders O

(
𝑇𝜖𝜍2 · 2⌈log(𝑇−1)⌉ ) ,

where 𝜍 is the maximum number of digits of precision, at which
the exponentiation is to be computed. The latter results in O

(
𝑇3) ,

same as the moment matching method. Consequently, the overall
computational complexity is O

(
𝑇3 + 𝑇𝜖𝜍2 · 2⌈log(𝑇−1)⌉ ) .

Remark 4: Note that the empirical evidence based method does not
rely on the formalism of the original inter-sensor distance distribution,
i.e., 𝐹𝐿 (𝐿) and 𝑓𝐿 (𝐿), and is thereby a generic method suited for
any spatial distribution for wireless sensors in random fields as
long as a set of observed samples are available. This method can
thus generalize the proposed polynomial distributional substitution
technique to other complex circumstances. Without loss of generality,
when the distribution space is not a disk, distance distribution limits
of 0 and 2𝑅 can be replaced by 𝐿min and 𝐿max that are the minimum
and maximum distances between two sensors in the random field.

IV. SIMULATION VERIFICATION AND DISCUSSION

First, to assess the efficacy of the moment matching method, we
present visualizations of the PDF and CDF generated by different
distributional parameter sets using this method in Fig 1. Additionally,
we conduct an asymptotic analysis for the distribution of inter-sensor
distance as 𝑅 → ∞, applying the approximations arcsin (𝑥) ≈ 𝑥 and
arccos (𝑥) ≈ 𝜋

2 as 𝑥 → 0. This yields the asymptotic CDF 𝐹𝐴
𝐿
(𝐿) ≈

𝐿2

𝑅2 − 𝐿3

2𝜋𝑅3 and the corresponding asymptotic PDF 𝑓 𝐴
𝐿
(𝐿) ≈ 2𝐿

𝑅2 − 3𝐿2

2𝜋𝑅3 .
We vary the distribution radius 𝑅 and the number of polynomial



XXXXXXX VOL. X, NO. X, XXX 202X

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Distribution radius R

10-6

10-4

10-2

100

102

104

106

108

M
e
a
n
 s

q
u
a
re

 e
rr

o
r 

(M
S

E
)

3.8329836 3.832984

5

10

15

T=9, 8, 7,...,2, 1

Fig. 2. MSE versus distribution radius yielded by the distributional
parameter sets via the moment matching method, given different 𝑇.

Fig. 3. PDF and CDF yielded by the distributional parameter sets via
the empirical evidence based method for various WSNs.

terms 𝑇 to examine their impacts on substitution accuracy. The
results presented in Fig 1 provide a direct and insightful depiction of
the moment matching method’s accuracy for various combinations
of 𝑅 = 1, 2, 5 and 𝑇 = 1, 2, 5. Notably, the proposed approach
consistently outperforms the asymptotic method, even in scenarios
with large coverage areas and a small number of polynomial terms.

Then, to quantitatively assess the efficiency of the moment matching
method, we depict the mean square error (MSE) as a function of the
distribution radius 𝑅 for varying polynomial terms 𝑇 in Fig. 2. The
results showcased in this figure distinctly reveal the impacts of both 𝑅

and 𝑇 on the efficiency of the moment matching method. Increasing
the distribution radius 𝑅 leads to a reduction in MSE, indicating more
accurate substitutions, albeit with a marginal effect. This trend can be
attributed to the sharper changes in the PDF curve within a smaller
range of 𝐿 for smaller 𝑅, making it more challenging to capture its
statistical features using the polynomial form. Conversely, the flattened
PDF curves associated with larger values of 𝑅 are more regular and
easier to mimic. Hence, elevating the number of polynomial terms 𝑇
is a beneficial strategy for achieving accurate substitutions. With an
increase in the number of terms, the MSE experiences a substantial
reduction by several orders of magnitude. However, a conspicuous
saturation phenomenon emerges, hindering further improvement in
substitution accuracy by indefinitely increasing 𝑇 .

Finally, to study the generality of the polynomial distributional
substitution technique for inter-sensor distances in complex WSNs,

we select three representative cases with the specifications as follows
to simulate the use of empirical evidence based parameter mapping:

• Homogeneous PPP over a square with diagonal length 𝐷S = 2
(an inscribed square of a disk with radius 𝑅 = 1);

• Homogeneous PPP over an annulus with internal and external
radii 𝑅min = 0.5 and 𝑅max = 1;

• Matérn cluster process over a disk with radius 𝑅 = 1, and the
diameter of circular cluster 𝐷O = 0.4.

The realizations of the above cases plus the corresponding PDFs
and CDFs yielded by fitting using the polynomial forms through the
empirical evidence based method are presented in Fig. 3. The fitted
PDFs and CDFs are also compared to the numerical benchmarks. From
the simulation results presented in this figure, we have demonstrated
the good generality of the empirical evidence based method for
complex application scenarios in practice, as the analytical and
numerical PDFs and CDFs closely match each other over large
ranges of 𝐿. Even the bimodal characteristic of the PDF for the
annulus distribution space can be accurately retained through the
proposed polynomial fitting using empirical samples.

Through the simulation results presented above, the effectiveness
and efficiency of the distributional substitution technique for inter-
sensor distances enabled by both parameter mapping strategies
have been verified, making it suitable for diverse WSN and IoT
scenarios, including environment monitoring, disaster response, and
various smart city applications. By applying this verified distributional
substitution technique, the mathematical tractability of performance
analysis and optimization for WSNs can be improved.
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