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Coarse-to-fine Robotic Pushing
using Touch, Vision and Proprioception

Bowen Deng1, Yijiong Lin1, Max Yang1, Nathan F. Lepora1

Abstract—Robotic pushing can be a complicated process that
is indicative of the techniques needed for general object manip-
ulation. Here we propose a novel coarse-to-fine approach that
combines visual localization with a pushing strategy using tactile
and proprioceptive feedback. In the coarse control stage, visual
feedback continuously adjusts the relative pose between the end-
effector and the object. This serves as an operational point to start
the fine control. In the fine control phase, relative sensor-object
pose information from tactile sensing is used to accurately control
the end-effector to push the object to the target pose. The visual
and tactile feedback are integrated into a multi-stage control
process so that the object can be moved to a target position and
orientation; in contrast, using only a single-stage pushing method
does not permit control of object orientation. Our study confirms
that combining tactile and visual approaches is more efficient and
accurate for a fairly complex manipulation task. We expect that
related methods will extend to more challenging prehensile object
manipulation tasks to improve dexterous capabilities of robots.

Index Terms—Force and Tactile Sensing, Deep Learning in
Grasping and Manipulation

I. INTRODUCTION

The application of tactile feedback to facilitate robot-object
physical interaction is becoming recognized as essential for
many robotic fine manipulation tasks. Tactile feedback has
the advantages of being precise, flexible and responsive [1].
However, the applicability of tactile feedback is limited to
when the sensor and object are in contact. Human daily
interactions with objects usually involve a more coordinated
use of hand-eye movements. Therefore, combining visual with
tactile methods will be essential for achieving human-level
dexterity. Combining tactile and visual feedback can inform
about the state of an object relative to its spatial environment,
which is critical for many manipulation applications.

When using robots to manipulate objects, various opera-
tions such as grasping, pushing, pulling and rolling may be
employed. In contrast to grasping, pushing is a more effective
method for relocating heavy or bulky objects, intricate objects
with challenging geometries that are difficult to grasp, and
manipulating multiple objects concurrently [2], [3]. However,
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Figure 1: Experimental setup for coarse-to-fine robotic pushing. Top:
The coarse control phase uses a camera mounted on the end effector
to visually guide the tactile sensor onto the side of the object. The
fine control phase uses tactile servoing and target alignment control to
push the object to a target position. Bottom: example task where three
objects are pushed successively into an enclosure (last one shown).

pushing can be a complicated process: traditional methods
involve the manual design of states and controllers, which
requires heuristic engineering tailored to specific tasks that
makes the methods less adaptable to new scenarios [4]. Re-
cently progress in using tactile and proprioceptive information
in a feedback controller has demonstrated accurate pushing of
unknown objects to known target positions [5], [6]. However,
those methods were limited by having no way to localize the
object to make the initial push, and by only being able to push
the object to a target position, not orientation.

Here we propose a novel coarse-to-fine approach [7] to
address these limitations that combines visual localization with
a pushing strategy that incorporates tactile and proprioceptive
feedback. Vision enables the robot to find a good position on
the object to push, and tactile feedback enables an accurate
pushing motion. In the first phase, which is referred to as
coarse control and uses visual feedback, the controller contin-
uously adjusts the relative pose of the end-effector as it moves
towards the object to reach a bottleneck point that constitutes
an operational point to start the fine-control pushing phase. In
the second phase, which is referred to as fine control and uses
tactile and proprioceptive feedback, our controller uses relative
pose information from the tactile sensing to accurately control
the end-effector to push the object to the target pose.

More specifically, the coarse control phase of reaching the
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object frames the entire process as a state-estimation problem,
as previously discussed [7]. Through self-supervised learning,
a model is trained to predict the object’s pose based on
images captured by a camera fixed near the robotic arm’s
end effector. We extend existing methods that are scenario-
specific (only recognising one object) to generalise the model’s
prediction of pose to a wide range of different objects. Then
for the fine control phase of pushing the object, we use
tactile and proprioceptive feedback to achieve fine pushing, by
accurately predicting the object’s pose to determine specific
pushing actions. The application of tactile sensing enables
rapid response to changes in object pose through the complex
pushing dynamics. We also integrate visual methods and tactile
feedback to enable multi-stage control, thereby allowing us to
control the object’s position and orientation, which could not
be achieved in previous work without vision [6].

In summary, we propose a novel coarse-to-fine approach
that integrates vision, touch and proprioception to improve
dexterous robot operations and achieve more general robotic
pushing tasks. Our main contributions are:
(1) We use multi-stage visual, tactile and proprioceptive con-
trol for robotic pushing an unknown object to a target position
and orientation. This builds on a previous tactile pushing
method that could only reach a target position, not orientation.
(2) This method is demonstrated on a variety of unknown
objects both in simulation and reality, showing the control is
effective over varied object shapes.
(3) To show the utility of this method, we demonstrate it
on a realistic task in which three distinct objects are pushed
consecutively into a box, where the limited space within the
box requires the objects to be closely arranged to fit.

II. BACKGROUND AND RELATED WORK

A. Coarse-to-Fine approach

The process of designing robots typically involves the
integration of both coarse and fine controllers, as discussed
extensively in [8], [9]. For example, Lu et al. [10] introduce
a Coarse-to-Fine Visual Servoing (CFVS) method for Peg-In-
Hole insertion tasks. This method is composed of two primary
components: an Object-Agnostic Keypoint Network (OAKN)
for open-loop control and an Offset Prediction Network (OPN)
for visual servoing. The two networks combine to achieve
the entire process from guiding the end effector to inserting
the peg into the hole. Additionally, in a similar peg insertion
problem examined by Lee et al. [11], the operational process is
divided into regions guided by model-based methods and those
that require reinforcement learning strategies. This hybrid
approach combines the strengths of both methods, ensuring
both precision and efficiency in the operation. Further, Paradis
et al proposed a coarse-to-fine strategy [12] for surgical robots,
utilizing a visual servoing system and open-loop control to
handle segments of the task that did not require high precision.

However, existing coarse-to-fine methods do not consider
tasks in which dynamic changes or disturbances may occur
during the fine phase. Our proposed method addresses this
issue by employing a tactile-based precise feedback control
approach to push an object to a target.

B. Tactile servo control

Tactile servo technology employs tactile feedback to dy-
namically adjust the pose or velocity of a robot’s end-effector
in real-time, enabling precise control of the end effector as
it changes contact with the environment [6], [13], [14]. The
use of optical tactile sensing in servo control enables the use
of high spatial-resolution information to accurately perceive
the relative sensor-object state, such as relative pose, using
methods developed for computer vision, e.g. convolutional
neural networks. Optical tactile sensors can be divided into
two main types: marker-based optical tactile sensors, such as
the BRL TacTip [15], [16], and reflection-based optical tactile
sensors, exemplified by the MIT GelSight [17].

When designing tactile servo control methods, robot simu-
lation is a pivotal tool for data-driven manipulation tasks [18].
Learning-based tactile perception and control methods have
demonstrated considerable success in extracting task-relevant
representations compared to traditional approaches, as they
leverage data-driven techniques to extract such representations
[19]–[21]. However, collecting data from real robots and tactile
sensors in a real environment can be time-consuming and may
damage both the robots and sensors. A common strategy to
address this data collection challenge is to initially train robots
in a simulated environment and subsequently transfer their
capabilities to real-world setups (known as Sim2Real) [22].
For example, Lin et al. [23] developed the Tactile-gym sim-
ulator that incorporates three optical tactile sensors (TacTip,
DIGIT, and DigiTac), and utilized a low-cost desktop robotic
arm to perform three physical interaction tasks of edge-tracing,
surface-following and ball-rolling using tactile perception.
This setup will also be used in the present work.

C. Robot Pushing

Robot pushing, if examined analytically, can involve com-
plex physical analysis and assumptions of uniform, isotropic
and steady-state friction that may not be applicable to certain
material surfaces [24]. Therefore, data-driven techniques have
become popular, such as using deep learning to simulate the
forward/reverse dynamics of rigid body motion in pushing sce-
narios [25], [26] or end-to-end pushing control strategies [27]–
[29]. However, while data-driven methods offer flexibility by
reducing assumptions, they may face challenges related to
accuracy, data efficiency, and generalizability [3].

Lloyd and Lepora [6] used tactile sensing and servo con-
trol methods to implement fast-reacting and adaptive robotic
pushing based on the estimation of surface contact poses. This
approach exhibits strong robustness and is applicable to objects
of varying shapes, operating effectively to push objects over
both planar and curved surfaces.

Yang et al. [30] proposed a deep RL-based object pushing
approach with tactile sensing, demonstrating its generality
and capability to model complex relationships [30]. However,
most RL research on pushing relies on vision-based systems,
whether for direct policy training [31] or to provide object-
centric information [32]. These systems may suffer from low
accuracy and occlusion issues [33]. Therefore, Yang et al. [30]
employed tactile sensing without visual input, introducing a
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goal-conditioned formulation that enables both model-free and
model-based RL to accurately push objects towards a goal.

However, both of these tactile-pushing methods were only
able to push an object to a target position, not control its pose.
By using vision and tactile in a sequential task we will here
push an object to both a desired target position and orientation.

III. METHODOLOGY

A. Preliminaries
1) Object localization: In typical object manipulation tasks,

the end effector initially approaches the object in a coarse
manner through free space. To do this, Johns [7] introduced an
innovative visual approach that models the visual observations
along a linear path: by automatically moving the camera
mounted on the end effector around the object, observations
are collected from multiple viewpoints, which enable self-
supervised model generalization within the task space.

Several coordinate frames define the data collection: the
robot’s base coordinate frame R, the end-effector coordinate
frame of the robot E, and the bottleneck coordinate frame of
the object B (Fig. 2). The bottleneck coordinate frame serves
as a ‘virtual’ frame that represents the operational point of the
end-effector. This ensures that all trajectories converge to this
bottleneck point. Relative to the object, the B frame can be
considered fixed, and the homogeneous transformation matrix
TEB represents the transformation from frames B to E.

Since the camera is mounted on the end effector and the
bottleneck is fixed relative to the object, the visual image
depends on the relative pose between the end effector and
the bottleneck. Therefore, by moving the robotic arm’s end
effector autonomously along straight lines in the space above
the bottleneck, it can create a dataset using camera images
and their corresponding TEB transformations. This dataset can
then be used to train a neural network model to predict the de-
sired motion to the bottleneck TEB from visual observations.

2) Tactile servoing and pushing: Lloyd and Lepora in-
troduced a fast-reacting and adaptive pushing controller [6]
based on tactile contact pose estimation [14]. Three surface
pose components represent the normal contact depth and the
two orientation angles with respect to the surface normal,
and the other pose components are set to zero (for example,
the position on the surface, which cannot be measured from
a uniform surface). The tactile sensor images are processed
through a PoseNet model [6] to predict the three non-zero
components of surface contact pose, which are used as feed-
back signals in a controller to push the object to the target
position. The controller has two parts (Fig. 3): 1) a tactile
servoing controller, which tries to ensure that the robotic arm’s
end-effector (the tactile sensor) remains perpendicular to the
object’s surface, and 2) a target alignment controller, which
uses proprioceptive knowledge of the end-effector pose and
target position to push towards the target.

3) Real-to-sim: In this paper, we take advantage of a real-
to-sim approach in which tactile images can be transformed
from reality to simulation using a Generative Adversarial
Networks (GAN) (Fig. 3, right component), trained on paired
images. We use the methods and network architecture from
[21], which we refer to for analysis of the performance.

Figure 2: Coarse training and control. (a) The blue region corre-
sponds to a large region above the object from which dataset D of
visual observations is taken; the green region is immediately above
the object for a finer determination of object pose. (b) Methodology
for fitting a minimum bounding rectangle around objects of various
shapes and sizes. (c) The dimensions of this bounding rectangle
determine the ‘bottleneck’ position and orientation of the object. The
bottleneck point is positioned above the center of the object, precisely
on the green plane. Our primary objective is to achieve alignment
between the End Effector frame and the Bottleneck frame.

Figure 3: Fine pushing based on [6]. The controller combines tactile
servoing with target alignment to push objects to a target position. The
servo control uses the surface contact pose, which is here determined
from simulated tactile images: either in simulation, or in reality using
a GAN to translate a real tactile image to the simulated representation.

An advantage of this real-to-sim approach is that we can
train the PoseNet model solely on simulated data, using the
same neural network architecture and training as the real
data [6]. This model can then either be used in simulations of
robot pushing (see later results), or applied to the real robot
after the real tactile images are passed through the real-to-
sim image translation. We see this generality, which can in
principle be trained on various simulated tasks, as a strength
of the method. It also allows for a more direct comparison of
real and simulated performance.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER 2024

Figure 4: Overall visual and tactile workflow. First, vision is used to coarsely guide the end effector above the object. Second, the tactile end
effector is moved to the initial push pose using the estimated object height and width which are obtained by processing the image captured
at bottleneck position. Third, the object is pushed nearby the target (shown in red), stopping along a line aligned to the target orientation.
Then the tactile end effector is moved again to make the final push.

B. Coarse control phase

1) Coarse to fine approach: In contrast to Johns [7], our
focus is primarily on anticipating an object’s positional coor-
dinates and rotational angles within the plane, but otherwise
the method is the same. As shown in Fig. 2, during the data
collection phase, the dataset D is gathered from a large 3D
space above the object (coloured in the blue), which is used
to train a model that predicts relative positions when the end
effector is within this 3D space. As the end effector descends
and reaches a height near the top of the object (green plane),
the predictions use a model trained on the dataset G collected
from that plane. This last step is referred to as the last-inch
approach, and gives more precise object localization [7].

Consequently, the robotic arm’s end effector can gradually
move towards the target based on the predictions made by the
model f (trained on D). Once the height reaches that of the
dataset G, the model g (trained on G) guides the robotic arm’s
end effector to its final position at the bottleneck. For specific
details of the neural network used for training and prediction,
we refer to the original article [7].

2) Image pre-processing: Before feeding the collected vi-
sual images of the object into the models, we first binarize the
images to distinguish the target object from the background.
This also allows us to fit minimal bounding rectangles to the
object shape (using the OpenCV library), as shown in Fig. 2,
which enables estimation of the length and width of the fitted
region. With the shape information of the target object, our
method can automatically define the orientation of the object
at the target location, as shown by the dotted line in Fig. 2(c).

Given the position and orientation of the target, we must
find how to move the end-effector of the robotic arm from
the bottleneck to the initial push pose. Here we aim for the
shortest pushing trajectory. Therefore, as shown in Fig. 2(c),
we choose the vertical side of the object as the contact surface
when the horizontal distance between the target position and
the predicted object position is large, and the horizontal side
when the vertical distance is large.

C. Fine control phase

To push an object to a goal position, we use a method
based on that of Lloyd and Lepora [6], which we refer to
the technical details and give only a quick summary of that

Figure 5: Stages of tactile control. Stage 1 tries to push the object to
the target (shown in red) In stage 2, within a radius R of the target
position (green disk), this changes to pushing the object vertically in
the figure, stopping when the object is parallel to the target orientation
(two possible trajectories shown). In stage 3, the end-effector pose is
adjusted for the final push to the target position and orientation.

methodology here. We note that using this pushing strategy
alone, while effective in relocating the object to the target
position, does not control the object’s orientation. Therefore,
we propose a novel multi-stage control here to adjust the object
to a target pose with specified position and orientation. The
overall tactile and visual workflow is illustrated in Fig. 4.

The overall control process has three stages (Fig. 5):
Stage 1: The first control strategy is a goal-driven controller
that controls the end effector of the robotic arm to push the
object towards the target using the tactile servoing and pushing
methods described above and in [6] (Fig. 5, stage 1).
Stage 2: The second control strategy implements direction-
driven control, such that once the object has entered a region
(radius R) around the target position, the pushing policy
changes so that the target alignment controller pushes the
object in a direction orthogonal to the target orientation (shown
vertically on Fig. 5, stage 2). The pushing terminates when the
object reaches a line parallel to the target orientation (shown
horizontally on Fig. 5, stage 2). Specifically, in this stage, we
set the reference target bearing, denoted as �0 in Fig. 3, to a
fixed angle. Consequently, the observed target bearing � will
be adjusted by the controller to match �0, thereby achieving
pushing in a fixed direction.
Stage 3: Finally, there may be some translational error between
the object and target. In this case, we again utilize the
localization method used in the coarse phase to reposition the
pushing pose on the object. In practice, based on the current
position of the object, the sensor would move to the face of
the object opposite the target. The pushing control is applied
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again for the final adjustments to the target pose keeping the
object orientation (Fig. 5, stage 3).

By breaking down the pushing process into these three
stages, we ensure that the object reaches the target point
with the desired orientation. Additionally, during the coarse
control phase, we obtain the dimensions (height and width) of
the rectangular fit used for pushing the object through visual
methods. Therefore, based on the size of these dimensions,
we can control the object’s position after both stages 2 and 3,
enhancing accuracy and ensuring the object orientation.

IV. EXPERIMENTS AND RESULTS

A. Experiments

Experiments were conducted in both simulated and real
environments. In simulation, we used the Tactile Gym sim-
ulator with a pushing environment (see [23] for details) with
simulated camera resolution 256 � 256 for the coarse control
phase, and a simulated tactile sensor of resolution 256 � 256
that images a depth map of the contact. In the real environ-
ment, we used a 4-DoF desktop robot (Dobot MG400) with
RGBD camera (Realsense D435) and a TacTip 3D-printed
biomimetic optical tactile sensor (see [16] for details of the
sensor construction and operating principles).

In the real-world experiments, we used an RGBD camera
to track ArUco markers fixed on the objects’ upper surfaces
to capture their trajectories during the pushing process. The
marker’s poses in the camera frame are calculated from color
images, while the marker’s centroid position is derived from
depth images. Finally, we transform the marker poses into
the robot’s frame using the extrinsic camera parameters (de-
rived from a hand-eye calibration procedure). The calibration
achieves an accuracy of approximately 0.1-1 mm.

We used a variety of real objects of different masses, friction
coefficients and shapes to evaluate generalisation ability and
robustness, and three distinct simulated objects (Table I).

The coarse-control phase is evaluated by the accuracy of
object localisation. We conducted 10 trials for each object
randomly placed at different locations, and the mean and
standard deviation of the absolute error in the x, y, and
rotational � were recorded by comparing end-effector pose
with ArUco marker pose.

The fine-control phase is first evaluated using one stage of
tactile pushing to the goal as in [6], which is considered as
a baseline, to compare with the multi-stage control approach
shown in Fig. 4. Both the baseline which we called single-
stage control and multi-stage control approach were tested
for thirty trials on each object (ten trials per initial position),
and the mean and standard deviation of the absolute position
and orientation errors in x, y and � were derived according
to the pose of ArUco marker. Additionally, for the multi-
stage control approach, we identify some representative or
special cases and generate trajectory plots to further illustrate
its performance.

Finally, we consider a real-world task of pushing three
distinct objects into a constrained region (Fig. 1). As the space
within the region is limited and obstacles are present, this task
demonstrates the effectiveness of our approach.

Table I. Objects used in the simulated and real pushing experiments

Objects Square Hexagon Octagon

Simulation

Objects Square Hexagon Glass Jar Apple Can

Real
world

Table II. Mean and standard deviation of pose absolute error in the
coarse phase, in estimated object position (x; y) and orientation �
compared with a visually-determined ground truth.

Objects x (mm) y (mm) � (degrees)

Simu-
lation

Cuboid 1:3 � 0:9 0:9 � 0:2 2:0 � 0:3
Hexagon 1:7 � 1:0 1:2 � 0:4 0:8 � 0:6
Octagon 1:8 � 1:0 1:8 � 0:6 1:2 � 0:6

Cuboid 1:9 � 1:0 1:9 � 0:3 1:6 � 0:4
Real

world
Hexagon 2:5 � 1:1 1:6 � 1:0 1:1 � 0:5

Apple 1:7 � 0:6 2:6 � 0:3 N/A
Canned Food 2:7 � 0:6 2:4 � 0:2 2:5 � 0:6

Glass Jar 1:8 � 0:7 2:0 � 0:6 1:2 � 0:6

B. Results

1) Coarse-control phase: The coarse-control method pro-
vides accurate pose predictions for the majority of objects,
both in simulated and real-world environments (Table II):
mean positional x; y errors for the tested objects do not exceed
3 mm and the mean rotation errors are less than 0:05 rad. Note
that when predicting the pose of an apple, the rotation angle
is consistently predicted as 0 rad, which we attribute to the
rectangle-fitting algorithm being unable to accurately describe
the features of this round object. The results of the coarse-
control phase determine the starting position of the fine control
phase, examined in the next section.

2) Fine-control phase: As expected, the baseline method
(just a single stage of tactile pushing) fails to maintain a
fixed orientation after pushing the object to the target position
(Table III). Conversely, the multi-stage control method ensures
that the final orientation of the object remains fixed with less
error. Furthermore, both x and y components exhibit smaller
errors compared to the baseline. We attribute accuracy of the
multi-stage approach determining termination by constraining
the coordinates of the end effector in both the x- and y-
directions, providing a more accurate determination of the
target position. In contrast, the baseline method relies only on
the distance between the end effector and the target position.

For each test object, we selected three initial positions, and
for each initial position, two different initial orientations to
generate trajectory diagrams (Table V). These encompass a
wide range of complex scenarios, including instances where
the object needs to rapidly change its orientation or cases
where the pushing point is on difficult features of the object
such as corners. The results indicate that the multi-stage vision
and tactile control exhibits robustness in almost all situations;
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Table III. Mean and standard deviation of pose absolute error in the fine phase, in estimated object position (x; y) and orientation �. Results
for the single-stage baseline and multi-stage coarse-to-fine method are reported, with p-values that the multi-stage method has smaller error.

Object x error (mm) y error (mm) � error (degrees)
Single-stage Multi-stage p-values Single-stage Multi-stage p-values Single-stage Multi-stage

Simu-
lation

Cuboid 6:0 � 3:1 3:6 � 1:6 0:0007 5:3 � 3:1 2:3 � 1:1 < 0:0001 N/A 1:5 � 0:9
Hexagon 6:4 � 3:8 3:1 � 1:0 0:0001 4:9 � 3:6 2:2 � 0:8 0:0004 N/A 2:8 � 1:0
Octagon 7:1 � 3:5 5:2 � 2:0 0:0152 6:8 � 3:0 4:7 � 1:5 0:0018 N/A 3:3 � 1:2

Cuboid 5:4 � 3:0 2:4 � 1:6 < 0:0001 6:9 � 2:5 2:9 � 1:4 < 0:0001 N/A 2:0 � 0:8
Real

world
Hexagon 4:9 � 3:6 3:2 � 1:7 0:0264 6:9 � 2:9 2:0 � 1:0 < 0:0001 N/A 2:5 � 1:1

Apple 4:8 � 3:3 2:9 � 1:5 0:0076 7:7 � 4:2 4:0 � 1:5 0:0001 N/A N/A
Can Food 10:0 � 4:5 3:1 � 1:4 < 0:0001 8:7 � 4:3 3:2 � 1:1 < 0:0001 N/A 2:8 � 1:5
Glass Jar 5:1 � 2:7 3:5 � 1:4 0:0074 6:0 � 2:2 2:0 � 1:2 < 0:0001 N/A 1:6 � 1:0

Figure 6: Demonstration of multi-stage vision and tactile pushing, where three objects are successively pushed into a constrained space.

in particular, the application of stages 2 and 3 for controlling
object orientation and constraining object position is crucial.

The results of our experiment were statistically analysed
using t-tests to assess whether there are significant differences
between the baseline method and our method. Each method
was evaluated with thirty independent samples. The p-values
(Table III) were compared to a significance level of 0.05. The
comparisons show that our method is significantly different
from the baseline (p-value is much less than 0.05). Although
the orientation of some objects with special shapes (apples)
cannot be changed, the multi-stage pushing constraints on the
object’s position in the x and y directions still enhances the
accuracy of the final object position.

3) Real-world demonstration: Finally, we designed a task
representative of a practical real-world scenario to test our
approach: pushing three distinct objects into a box (Fig. 6).
We achieved this task by setting different target points for
stages 2 and 3. Ultimately, we utilized the translational push
in stage 3 to navigate around obstacles at the edges of the box.
As depicted in the figure, the limited space within the box
requires the three objects to be closely arranged to fit entirely,
which further demonstrates the precision of our multi-stage
vision and tactile pushing method.

V. DISCUSSION

In this paper, we proposed a novel coarse-to-fine approach
that integrates visual, tactile and proprioceptive sensing to
accomplish the task of robot pushing an unknown object to
a target position and orientation. In the coarse phase, our
approach predicts the pose of the object using visual methods,
and in the fine phase, it employs multi-stage control to push the
object while adjusting its orientation. We conducted extensive
experiments in both real-world and simulated environments,
and the results demonstrate that our method exhibits high
accuracy and generalizability. Finally, we further validated the
practicality of our method by achieving a challenging task of
pushing multiple different objects into a confined area.

In general, recent robotic pushing methods, such as those
proposed by Lloyd and Lepora [6] and Yang et al. [30],
primarily focus on the act of pushing itself, assessing accuracy
based on the end effector’s pose. In contrast, our approach
extends pushing to the object level, employing vision to
determine object orientation. Our goal is to adjust the object’s
pose through pushing, with the object’s center position serving
as the criterion for accuracy assessment. This approach more
closely aligns with the practical application of robotic pushing
in everyday or industrial settings.

Limitations of this approach include the use of position
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Table IV. Pushing trajectories in a simulated environment. The red, blue and green arrows correspond to stages 1, 2 and 3 in Fig. 5.

Object Position 1 Position 2 Position 3
orientation 1 orientation 2 orientation 1 orientation 2 orientation 1 orientation 2

Square

Hexagon

Table V. Pushing trajectories in a real environment on a range of objects. Arrows are coloured accordings to stages 1 to 3 of Fig. 5.

Object Position 1 Position 2 Position 3
orientation 1 orientation 2 orientation 1 orientation 2 orientation 1 orientation 2

Square

Hexagon

Jar

Apple

Can
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control rather than velocity control (necessitated by using
a Dobot MG400 desktop robot arm). Consequently, objects
must be moved through discrete pushes rather than continuous
motion, resulting in a slow pushing process. Moreover, the
impact of discrete pushing on final accuracy remains to be
investigated. This limitation can be removed with another
choice of robot arm, such as in recent work on continuous
tactile pushing control [5], albeit with a larger more expensive
robot. Another limitation was that the image pre-processing
may not effectively find the pose of all objects. 3D point cloud
technology may enable more precise definition of object poses
and serve as a starting point for extending the pushing method
into three-dimensional space.

Our study confirms that combining tactile and visual ap-
proaches can be more efficient and accurate for relatively
complex manipulation tasks. The advantage of vision is that
it endows robots with the ability to perceive the environment,
while tactile sensing enables robots to perform precise object
interactions. The combination of tactile and vision could be
the key to give robots a level of dexterity that reaches human
capabilities. This approach may be applied in the future to a
variety of manipulation tasks, such as perceiving the pose of an
object through hand-eye coordination. It could even be applied
to more complex tasks that require fast dynamic responses,
such as throw-and-catch operations combining visual and
tactile sensing. In summary, the integration of touch and vision
can extend the manipulation capabilities of robots to more
complex tasks and significantly improve the dexterity of robot
manipulation.
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