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Abstract 29 

Predictions of hydrological regimes at ungauged sites are required for various 30 

purposes such as setting environmental flows, assessing availability of water resources or 31 

predicting the probability of floods or droughts. Four contrasting methods for estimating 32 

mean flow, proportion of flow in February, 7-day mean annual low flow, mean annual high 33 

flow, the all-time flow duration curve and the February flow duration curve at ungauged sites 34 

across New Zealand were compared. The four methods comprised: 1) an uncalibrated 35 

national-coverage physically-based rainfall-runoff model (TopNet); 2) data-driven empirical 36 

approaches informed by hydrological theory (Hydrology of Ungauged Catchments); 3) a 37 

purely empirically-based machine learning regression model (Random Forests); and 4) 38 

correction of the TopNet estimates using flow duration curves estimated using Random 39 

Forests. Model performance was assessed through comparison with observed data from 485 40 

gauging stations located across New Zealand. Three model performance metrics were 41 

calculated: Nash-Sutcliffe Efficiency, a normalised error index statistic (the ratio of the root 42 

mean square error to the standard deviation of observed data) and the percentage bias. Results 43 

showed that considerable gains in TopNet model performance could be made when TopNet 44 

time-series were corrected using flow duration curves estimated from Random Forests. This 45 

improvement in TopNet performance occurred regardless of two different parameterisations 46 

of the TopNet model. The Random Forests method provided the best estimates of the flow 47 

duration curves and all hydrological indices except mean flow. Mean flow was best estimated 48 

using the already published Hydrology of Ungauged Catchments method.  49 

 50 

Key words: hydrological indices; flow duration curves; ungauged sites; rainfall-runoff model; 51 

random forests. 52 

  53 
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1. Introduction 54 

River water provides a valuable resource for out-of-stream water use as well as for 55 

supporting in-stream environmental values. Alteration of natural river flow regimes is 56 

increasing globally as water is taken for human, agricultural and industrial use and power 57 

production, threatening both river biodiversity and security of human water use (Vörösmarty 58 

et al., 2010). Globally, this has led to a variety of legislative processes aimed at promoting 59 

prudent and rational use of natural water resources which seek to judge the trade-off between 60 

economic development and impact to the natural environment (e.g. EC, 2000; New Zealand 61 

Government, 2011). For example, default limits to water resource use for all rivers in New 62 

Zealand must comprise at least a minimum flow (the flow below which no water can be 63 

abstracted) and an allocation limit (a limit on the amount of abstraction taken from the 64 

resource) (New Zealand Government, 2011; Snelder et al., 2013).  65 

Information summarising natural flow regimes is therefore required to assess both the 66 

in-stream environmental and out-of-stream economic effects of potential alterations to flow 67 

regimes. This information may take the form of various hydrological indices describing 68 

different aspects of the flow regime such as low flows, high flows or flow variability (Olden 69 

and Poff, 2003; Poff et al., 2010). Flow duration curves (FDCs) may also be utilised for 70 

various purposes including low flow analysis (Smakhtin, 2001), quantifying reliability of 71 

water supply (Snelder et al., 2011) and quantifying alterations to hydrological regimes (Vogel 72 

et al., 2007). This type of hydrological information is ideally derived from observed flow 73 

time-series at the site, or sites, of interest. However, flow time-series are only available at a 74 

small number of locations where flow gauges have been maintained and operated. 75 

Hydrological estimates are therefore often required at ungauged sites across a catchment or 76 

landscape (Sivapalan et al., 2003).  77 
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A variety of approaches can be used to provide estimates of hydrological indices at 78 

ungauged sites. In theory, these approaches range from purely physically-based to purely 79 

empirically-based. Physically-based approaches have also been referred to as deterministic 80 

(Chow et al., 1988), distributed (Beven and Binley, 1992), physics-based (Pechlivanidis et 81 

al., 2011), process-based or Newtonian (Yaeger et al., 2012). Empirically-based approaches 82 

have also been referred to as stochastic (Chow et al., 1988), metric (Pechlivanidis et al., 83 

2011) data-based or Darwinian (Yaeger et al., 2012). Physically-based approaches are those 84 

that aim to estimate streamflow by utilising a conceptual understanding of the physics 85 

describing various parts of the hydrological cycle by approximating physical processes such 86 

as interception, evaporation, and storage (e.g. Beven and Kirkby, 1979; Clark et al., 2008). 87 

However, assumptions about physical processes are necessarily required to apply this 88 

understanding (Beven, 1997). For example, assumptions about continuity of volumes, 89 

discretisation of governing equations and some form of spatial averaging may be required for 90 

a physically-based approach to be spatially-distributed (Beven, 1989; Bloschl and Sivapalan, 91 

1995; Singh and Frevert, 2006). Similarly, time dependence must be represented by updating 92 

state variables through a sequence of time steps (Singh, 1995). Physically-based approaches 93 

may also require spatially distributed input data such as information on soil characteristics 94 

such as water holding capacity, rainfall time-series or temperature time-series (e.g. Clark et 95 

al., 2008). This has led to much analysis and debate relating to data needs, parameter 96 

calibration and uncertainty in physically-based hydrological models (Beven, 1997; Beven, 97 

1989; Singh and Woolhiser, 2002; Gupta et al., 2006).  98 

Empirically-based approaches are those that seek to estimate hydrological indices by 99 

quantifying patterns between observed hydrological indices and catchment characteristics. 100 

These patterns can be quantified using a variety of techniques including linear regression 101 

(e.g. Engeland and Hisdal, 2009), or machine learning techniques (e.g. Booker and Snelder, 102 
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2012). One advantage of empirically-based approaches is that their relative simplicity has 103 

allowed them to be transferred to ungauged catchments by way of regionalisation (e.g. 104 

Castellarin et al., 2004), generalisation or dissimilarity modelling (e.g. Booker and Snelder, 105 

2012).  106 

In practice, many physically-based models have empirical components and many 107 

empirical models incorporate some level of knowledge about physical processes. A balance 108 

between model complexity and data availability must be found for both physically-based 109 

(Fenicia et al., 2008) and empirically-based (Jakeman and Hornberger, 1993) approaches. All 110 

physically-based approaches require some parameterisation, and are known to perform best 111 

when calibrated against observed data (e.g. Clark et al., 2008; McMillan et al., 2013). 112 

Similarly, the independent variables used in empirically-based approaches are often chosen 113 

after consideration of physical principles and the form of fitted empirical relationships can 114 

also be interrogated to ensure consistency with physical principles (e.g. Booker and Snelder, 115 

2012). Hybrid metric-conceptual models are those that seek to combine the strengths of 116 

empirically-based and physically-based conceptual models (Pechlivanidis et al., 2011). 117 

Despite the variety of approaches available for estimating hydrological conditions at 118 

ungauged sites, few studies have compared estimates calculated using contrasting 119 

approaches. The aim of this work was to compare a variety of available methods for 120 

estimating several hydrological indices and flow duration curves at ungauged catchments 121 

across New Zealand. These methods employed a range of approaches from a physically-122 

based rainfall-runoff model to empirically-based regressions. The primary aim was to 123 

objectively judge which method was best able to estimate several hydrological indices across 124 

New Zealand given current climatic and landcover conditions. The secondary aim was to 125 

assess the advantages of combining two approaches by correcting physically-based estimated 126 

time-series using empirically-based estimated FDCs.  127 
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2. Data Description 128 

a. Flow time-series 129 

A flow time-series database was collated that comprised mean daily flows observed at 130 

485 gauging stations with available records of 5 full years or longer. Available mean daily 131 

flow time-series from the National Institute of Water and Atmospheric Research’s (NIWA) 132 

national database were collated alongside data supplied by particular regional councils 133 

(Northland Regional Council, Auckland Council, Waikato Regional Council, Greater 134 

Wellington Regional Council, and Environment Canterbury). The time-series database 135 

contained only sites that were not affected by large engineering projects such as dams, 136 

diversions or substantial abstractions, according to information given by each data provider. 137 

See Snelder et al. (2005) and Booker (in press) for further details on gauging station 138 

selection. These gauging stations were located throughout New Zealand (Figure 1) and 139 

represented a wide range of hydrological conditions (Table 1). The observed time-series did 140 

not all cover the same time periods. 141 

It is known that hydrological regimes may not be stationary (constant mean and 142 

constant variance through time; Hamilton, 1994) due to the presence of trends and temporal 143 

autocorrelations (Milly et al., 2008). This is because hydrological regimes may be influenced 144 

by a variety of factors including land cover change (e.g. Fahey & Jackson, 1997), inter-145 

decadal climatic patterns (e.g. Kiem et al., 2003) and longer-term climate shifts (Parry et al., 146 

2007). However, the purpose of this study was to compare the ability of various approaches 147 

to characterise differences in flow regimes between sites across New Zealand given current 148 

climatic and land cover conditions rather than to characterise differences through time. For 149 

empirically-based methods it was therefore assumed that differences in hydrological regimes 150 

between sites far exceeded any differences in hydrological regimes that may have occurred 151 

due to differences in observation periods (which were different for each observed time-series) 152 
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despite some evidence for inter-decadal patterns in some, but not all, indices for particular 153 

regions of New Zealand but not others (e.g. McKerchar and Henderson, 2003; Booker, in 154 

press). 155 

b. Observed hydrological indices 156 

Several hydrological indices were calculated for each observed flow time-series 157 

(Table 2). These indices were chosen because they represent a range of hydrological 158 

conditions including floods and droughts, can be used to estimate water resource availability, 159 

and are used in environmental flow setting procedures. Mean flow, Qbar, represents total 160 

potential water availability, is used for scaling of dimensionless metrics such as standardised 161 

flow duration curves (e.g. Booker and Snelder, 2012) and may be used when comparing sites 162 

for ecological studies (e.g. Leathwick et al., 2005). The proportion of flow in each month 163 

may be of interest when investigating seasonality of flow. The proportion of flow in 164 

February, QFeb, was chosen as an example because the mid-summer month of February 165 

represents a generally dry month in which both irrigation demand (the largest consumptive 166 

water use in New Zealand) and ecological stress are likely to be high. The 7-day mean annual 167 

low flow, QMALF, is often used as an indicator of low flow in ecological studies (e.g. Caruso, 168 

2002; Suren and Jowett, 2006) and to represent one component of the flow regime in 169 

environmental flow assessments (e.g. Richter et al., 1997; Poff et al., 1997). Since limits to 170 

water resource use may be expressed as proportions of QMALF, this index is of particular 171 

interest in New Zealand (MFE, 2008). Mean annual flood, QF, may be used for flood risk 172 

assessment and flood design, but may also be used as a surrogate for physical disturbance 173 

(e.g. Poff and Ward, 1989; Poff, 1996) especially when compared to geomorphological 174 

characteristics such as sediment grain size and channel slope (Clausen and Plew, 2004). All 175 

four of these hydrological indices may also be used for data driven environmental 176 

classifications (e.g. Snelder and Booker, 2012). Many further hydrological indices could have 177 
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been compared, but it was desirable to provide an expedient analysis and there is known to be 178 

a high degree of covariance within sets of these indices (Clausen and Biggs, 1997; Olden and 179 

Poff, 2003).  180 

In order to minimise the likelihood of low flow periods crossing years, each day in 181 

each observed time-series was assigned to a water year starting on the 1st of October. Water 182 

years with more than 30 days of missing data were excluded from the analysis. Calculations 183 

of (QMALF), and mean annual flood (QF) were based on water years. QMALF was calculated as 184 

being the mean of the 7-day running average annual low flow in each water year. 185 

Many hydrological indices are scale-dependent; bigger catchments have larger values 186 

of Q5, QMALF, QF and Qbar than smaller catchments. The values for these indices were 187 

therefore standardised by dividing by catchment area. Further transformations were then 188 

applied in order to more closely approximate normal distributions (Table 2).  189 

c. Flow duration curves 190 

FDCs represent the relationship between magnitude and frequency of flow by 191 

defining the proportion of time for which any discharge is equalled or exceeded (Vogel and 192 

Fennessey, 1994; Vogel and Fennessey, 1995). Flow duration curves are a useful tool for 193 

quantifying flow regimes for both resource availability (Snelder et al., 2011) and for 194 

departure from a reference state (Vogel et al., 2007). For each flow time-series two observed 195 

FDCs were calculated from mean daily flows. FDCs were calculated from: a) mean daily 196 

flows in all months of the year; and b) mean daily flows in February. These two FDCs 197 

represent the probability distribution of flow over all-time and the probability distribution of 198 

flow for the month of February over all years. As above, February was chosen to represent a 199 

dry month in which both irrigation demand and ecological stress are likely to be high.  200 

For calculation of each FDC, mean daily flows for each gauging station were sorted 201 

lowest to highest and then interpolated onto percentile values from 0 to 100 in intervals of 1 202 
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to determine the proportion of the time that each flow was not exceeded. Each FDC was 203 

therefore characterised using the same number of data points (101), providing for a balanced 204 

study design in further statistical analysis. All daily flows were divided by catchment area to 205 

allow modelling of differences in mean flow whilst standardising for differences in catchment 206 

size. This was in contrast to the method of Booker and Snelder (2012) which investigated 207 

only the shapes of FDCs after having standardised by Qbar.  208 

d. Catchment characteristics 209 

A GIS representation of the New Zealand river network comprising 550,000 segments, their 210 

unique upstream catchments and an associated database of catchment characteristics were 211 

used to provide information for each gauging station. The catchment characteristics include a 212 

range of categorical and continuous variables (Snelder and Biggs, 2002; Snelder et al., 2004; 213 

Leathwick et al., 2011). The GIS river network and associated databases have previously 214 

been used to define a hierarchical classification of New Zealand’s rivers called the River 215 

Environment Classification (REC; Snelder and Biggs 2002). These databases provide 216 

inventories for river resource analysis and management purposes (Snelder and Hughey, 2005; 217 

Leathwick et al., 2011; Clapcott et al., 2010; Clapcott et al., 2011). They have also been used 218 

to create nationwide models for estimating flow statistics such as flood flows (Pearson and 219 

McKerchar, 1989), low flows (Pearson, 1995), mean flow (Woods et al., 2006) and shapes of 220 

FDCs (Booker and Snelder, 2012) at ungauged sites using relationships between these 221 

hydrological metrics and catchment characteristics. Snelder et al. (2005) showed that 222 

grouping river segments by nested categorical subdivisions of climate and topography, 223 

known as the Source-of-Flow grouping factor (Table 3), provided an a priori hydrological 224 

regionalisation. 225 
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3. Estimation methods 226 

For this study four methods for calculating hydrological indices and FDCs at 227 

ungauged locations were compared (Figure 2). Method 1 used a physically-based approach. 228 

Method 2 used a data-driven empirical approach that was informed by hydrological theory to 229 

estimate each hydrological index separately. Method 2 can be classified as being a hybrid 230 

metric-conceptual approach under the classification proposed by (Pechlivanidis et al., 2011). 231 

Method 2 was named after a sequence of projects collectively known as the Hydrology of 232 

Ungauged Catchments (HUC) projects. Method 3 used an empirically-based regression 233 

approach. Method 4 combined a physically-based and empirically-based approach. All 234 

methods were able to produce estimates for all reaches that comprise the NZ river network 235 

and were therefore applicable to ungauged sites across New Zealand. 236 

a. Method 1 TopNet 237 

Topnet is a spatially distributed time-stepping hydrological model which combines 238 

TOPMODEL concepts of sub-surface storage controlling the dynamics of the saturated 239 

contributing area and baseflow recession (Beven and Kirkby, 1979; Beven et al., 1995) with 240 

submodels for snow and plant canopies, and a kinematic wave channel routing algorithm 241 

(Goring, 1994). See McMillan et al. (2013) for further detailed description and Clark et al. 242 

(2008) for complete model equations.  243 

TopNet has two fundamental components: (i) simulating the water balance over sub-244 

catchments throughout a river basin, and (ii) routing streamflow from each sub-catchment to 245 

the basin outlet. The water balance model includes simulating the storages and fluxes of 246 

water in the canopy, snowpack, unsaturated and saturated soil zone. TopNet also accounts for 247 

time delay due to flow routing within each sub-basin. Runoff from each sub-basin flows into 248 

a digital stream network and is routed through the river network. For this application TopNet 249 

models used daily precipitation and temperature data from the New Zealand Virtual Climate 250 
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Station Network (Tait, 2008, Tait et al., 2006), which was then disaggregated to hourly 251 

resolution using stochastic disaggregation for precipitation (Rupp et al., 2009). Additional 252 

model boundary conditions were estimated directly from GIS data on topography, soil and 253 

vegetation (Clark et al., 2008; McMillan et al., 2013).  254 

For catchment specific applications TopNet parameters can be calibrated to optimise 255 

model performance (e.g. Bandaragoda et al., 2004; McMillan et al. 2013). However, in this 256 

case uncalibrated national TopNet models of New Zealand (Henderson et al., 2011) were run 257 

using an hourly timestep over the period 1973-2010. Two different versions of TopNet were 258 

available. National TopNet Version 0 was discretised using Strahler-1 sub-catchments from 259 

the REC. The typical catchment area of a Strahler-1 catchment is 0.7 km
2
. This version had a 260 

spatially uniform value for the parameter, f, which represents the decline in saturated 261 

hydraulic conductivity of the soil with depth (Clark et al., 2008). This parameter effectively 262 

controls responsiveness of river flow to rainfall. National TopNet Version 1 was discretised 263 

using Strahler-3 sub-catchments from the REC. This version had a spatially distributed set of 264 

values for f. The f parameter took different values according to the hydrological 265 

regionalisation described by Toebes and Palmer (1969), ranging from values more than 8 m
-1

 266 

for steep catchments in the Southern Alps to less than 1 m
-1

 in flat catchments on the volcanic 267 

plateau in the central North Island (see Figure 1 for place names). Where flow time-series 268 

were required for Strahler-1 and Strahler-2 catchments flow data were downscaled by 269 

multiplying flows from the nearest available Strahler-3 node in the REC network by the ratio 270 

of the catchment area of the required location with that of the substitute location. For both 271 

Version 0 and Version 1 hourly data for the river reach in which each gauging station was 272 

located were averaged over each calendar day to obtained mean daily flow time-series. 273 

Hydrological indices were then calculated using the same algorithms as were applied to the 274 

observed flow time-series.  275 
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Ideally both observed and estimated time-series would be available for a very long 276 

period (e.g. 100 years). However, the available observed flow time-series did not all cover the 277 

same period, and TopNet data were available for a uniform time period (1973-2010). This 278 

provided the opportunity to test the sensitivity of correspondence between observed and 279 

estimated hydrological indices to synchronisation of the observed and TopNet estimated 280 

time-series. Observed and TopNet Version 1 estimated indices were compared using two 281 

different procedures. For the first procedure, indices calculated from all available observed 282 

flows (5 years or more) were compared with those calculated from all available TopNet 283 

Version 1 estimated flows (1973-2010). Essentially this procedure assumed that, when 284 

averaged over time, both the observed and TopNet estimated time-series represented the long 285 

term hydrological conditions (i.e. that both observed and TopNet estimated time-series were 286 

stationary and that records were sufficiently long to characterise long term conditions). For 287 

the second procedure only the time period for which both observed flows and TopNet 288 

estimated flows were available was identified for each gauging station. Observed indices for 289 

this period were then compared with TopNet Version 1 estimated indices for the same period 290 

at each gauged location. Better fit between synchronised observed and estimated values (the 291 

second procedure) in comparison to non-synchronised (the first procedure) would indicate 292 

non-stationarities in the observed hydrological regimes that were detectable in the TopNet 293 

time-series. Some observed time-series fell completely outside of the TopNet time-series. 294 

This reduced the number of time-series available for the second procedure compared to the 295 

first. 296 

b. Method 2 HUC 297 

The approach used to estimate Qbar for Method 2 (HUC) is described in Woods et al. 298 

(2006). Woods et al. (2006) evaluated four simple models of mean annual runoff throughout 299 

New Zealand, predominantly based on precipitation information and estimated 300 
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evapotranspiration. Model results were compared to observed data and synthesised estimates 301 

of catchment runoff. The preferred model of Woods et al. (2006) subtracts an estimate of 302 

annual actual evapotranspiration from a precipitation surface. Annual actual 303 

evapotranspiration is estimated according to the ratios of potential evapotranspiration with 304 

annual precipitation, and a single water balance parameter which is estimated by independent 305 

calibration. This method applies a regional bias correction to the results of a previously 306 

uncorrected model. 307 

The approach used to estimate QFeb for Method 2 was to employ a regionalisation of 308 

QFeb based on Source-of-Flow groupings in the REC and New Zealand island (i.e. North 309 

Island or South Island, Figure 1), where Source-of-Flow is a combination of the climate and 310 

topography classes of a catchment (Table 3). For each region QFeb was the mean of the QFeb 311 

for all observed flow records that belong to that class in that island. For cases where no 312 

measured flow was available, expert judgement was applied to make use of data from other 313 

classes.  314 

The approach used to estimate QMALF for Method 2 is described in Henderson et al. 315 

(2004). Figure 3 shows a schematic description of the model and its parameters. These fall 316 

into three categories: a) climate parameters (T the average length of a dry season, N the 317 

number of rain events in that season, P the amount of rain in the dry season); b) flow 318 

parameters (Qmean the mean flow, Q0 the average flow at the start of the dry season,  the 319 

fraction of that rain that affects the streamflow); and c) catchment parameters that describe 320 

the way in which water is released from catchments during the dry season (b and T*). 321 

Estimates of all these input parameters have previously been developed for all of New 322 

Zealand (Henderson et al, 2004). The parameter Q0 corresponds to the average flow at the 323 

start of the dry season. The predictions are most sensitive to the value of the b parameter, 324 

which describes the type of river flow recession. For example, catchments in dry catchments 325 
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typically have b values near 1, hill country catchments typically have b values near 2, and 326 

catchments with volcanic geology typically have b values of 3 or larger. 327 

The approach used to estimate QF for Method 2 is described in Pearson and 328 

McKerchar (1989) and McKerchar and Pearson (1989). Essentially, these estimates are 329 

gained from interpolation onto ungauged sites from a contour map of QF which was itself 330 

derived from a spatial interpolation of observed data. Since this approach used instantaneous 331 

flow data to calculate QF, rather than mean daily values, it was anticipated that the approach 332 

would overestimate QF in comparison to observed values derived from mean daily values. 333 

However, the estimates were still included in the analysis. 334 

The approach used to estimate FDCs for Method 2 was to assume a log-normal 335 

probability distribution as a model of the flow duration curves. This is a log transformation of 336 

        2

212
21exp21,   xxg ,     Equation 1 337 

which has two parameters, 1 and 2. It was further assumed that 1 could be estimated as the 338 

mean flow (Qbar from Method 2) and that 2 would be estimated as a linear function of the b 339 

parameter, which was also used to calculate QMALF for Method 2. The approach used to 340 

estimate FDCFeb was to scale the estimated FDC for Method 2 by the estimated QFeb for 341 

Method 2.  342 

c. Method 3 Random Forests 343 

A regression technique called Random Forests was used to apply a regression of each 344 

observed hydrological index (Table 2) and each of the three parameters describing a GEV 345 

distribution of the all-time FDC and the FDC for February as a function of available 346 

catchment characteristics (Table 4). This method uses machine-learning by combining many 347 

regression trees into an ensemble to produce more accurate regressions by drawing several 348 

bootstrap samples from the original training data and fitting a tree to each sample (Breiman, 349 

2001; Cutler et al., 2007). Random forest models fitted using catchment characteristics have 350 
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previously been shown to be able to explain variation in hydrological patterns such as 351 

parameters describing FDCs (Booker and Snelder, 2012), the frequency of events that exceed 352 

three time the median flow (Booker, in press) and various other hydrological indices (Snelder 353 

and Booker, 2012). Each random forest was developed by growing 500 trees. As the number 354 

of trees (k) increases the generalisation error always converges and it was assumed that use of 355 

500 trees was sufficiently high to ensure convergence. 356 

The predictions from random forest models were tested using a leave-one-out cross 357 

validation procedure referred to here as jack-knifing (Efron, 1982; Booker and Snelder, 358 

2012). This cross-validation procedure was applied by leaving out all data associated with 359 

each of the 485 sites and then estimating each hydrological index for the left-out site from all 360 

remaining sites. The results from this procedure produced estimates as if each site were 361 

ungauged (Ganora et al., 2009). Comparison between observed and jack-knifed values 362 

allowed an assessment of both the robustness and reliability for estimation at ungauged sites 363 

(Castellarin et al., 2004). 364 

For each time-series, the parameters describing a GEV distribution,  365 

      3
1

213
1exp,

  xxG ,      Equation 2 366 

were fitted to all observed mean daily flows and all observed mean daily flows in February. 367 

In both cases observed mean daily flows were divided by catchment area for each gauging 368 

station prior to fitting the GEV parameters. The GEV distribution is described by three 369 

parameters and has shown to represent the range of shapes of standardised FDCs found 370 

across New Zealand. See Booker and Snelder (2012) for further discussion of estimating 371 

standardised FDCs at ungauged sites across New Zealand using various statistical techniques 372 

to generalise parameters describing various probability distributions.  373 
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d. Method 4 TopNet Corrected 374 

FDCs calculated using the jack-knifed Random Forests method represent a unique 375 

FDC at any location in the New Zealand river network as if each location were ungauged. 376 

This provided the opportunity to correct for bias in the TopNet estimated FDCs using the 377 

Random Forests estimated FDC at each site as if it were an observed FDC. Therefore the 378 

jack-knifed Random Forests FDCs were used to calculate a correction factor for each 379 

percentile, i, of the TopNet FDC for each site, j.  380 

TopNet Correctedij = TopNetij * (Random Forestij / TopNetij) Equation 3 381 

Since the exceedance percentile of each datum in each TopNet time-series was known, these 382 

corrections could also be applied to each TopNet time-series. This allowed re-calculation of 383 

each hydrological index from each corrected time-series. This procedure was repeated 384 

separately for TopNet Version 0 FDCs and TopNet Version 1 FDCs.  385 

4. Observed versus predicted values 386 

Scatterplots of observed versus predicted values after having standardised and 387 

transformed each index (Table 2) were plotted for each index for each method. These 388 

scatterplots were overlaid with a linear regression with observed values on the y-axis as 389 

recommended by Piñeiro et al. (2008). Following the suggestion of Moriasi et al. (2007), 390 

three model performance metrics were calculated for each set of observed versus predicted 391 

values: Nash-Sutcliffe efficiency (NSE); percent bias (pbias); and ratio of the root mean 392 

square error to the standard deviation of observed data (RSR). NSE is a dimensionless metric 393 

that determines the relative magnitude of the residual variance (“noise”) compared to the 394 

observed data variance (“information”) (Nash and Sutcliffe, 1970). NSE values of 1 indicate 395 

a perfect match between estimates and observations, whereas values of 0 indicate 396 

performance equal to estimating the mean observed value across all observations. pbias 397 

measures the average tendency of the simulated data to be larger or smaller than their 398 
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observed counterparts (Gupta et al., 1999). Negative pbias values represent overestimation 399 

and positive values indicate underestimation. RSR standardises RMSE using the observations 400 

standard deviation, and it combines both an error index and the additional information 401 

recommended by Legates and McCabe (1999). Lower RSR values indicate better model 402 

performance, with 0 indicating perfect correspondence between estimates and observations. 403 

See Moriasi et al. (2007) and references therein for full details of these performance 404 

evaluation metrics. The same metrics were applied to 101 points representing log specific 405 

(flow per unit catchment area) FDCs for each site for each method for the February and all-406 

time FDCs separately.  407 

5. Results 408 

a. Hydrological indices 409 

Synchronisation of TopNet Version 1 with the observed time-series made little impact 410 

on the performance metrics (NSE, RSR and pbias) when compared to using the full TopNet 411 

time-series (Table 5). This was especially the case for Qbar, QMALF and QF. For Qbar, 412 

synchronisation marginally reduced an overestimation bias, but also resulted in a small 413 

reduction in performance in terms of NSE and RSR (reduced NSE, increased RSR). For 414 

QMALF, synchronisation resulted in increased overprediction bias, but marginally improved 415 

performance in terms of NSE and RSR. The process of synchronisation did alter performance 416 

for QF as synchronisation improved performance in terms of NES and RSR, but substituted 417 

an overprediction bias with an underprediction bias of the same magnitude. These results 418 

indicate that it was not the case that there were non-stationarities in observed hydrological 419 

regimes that were generally detectable in the TopNet time-series for Qbar, QMALF or QF. This 420 

may not have been the case for QFeb. This is an understandable result as Qbar, QMALF and QF 421 

will be less sensitive to inter-annual variability than QFeb. This is because Qbar is an average 422 

calculated over all the record, and both QMALF and QF are both averages of indices calculated 423 
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for each year of record, whereas QFeb is calculated over a smaller time-window in each year 424 

of record.  425 

Overall there was more difference in performance between TopNet Version 0 and 426 

TopNet Version 1 than there were differences between synchronisation and non-427 

synchronisation of TopNet Version 1. This indicates that TopNet results are more sensitive to 428 

changes to the TopNet f parameter than to either the assumption that the 1973-2010 time-429 

series represent the long-term flow regime, or any non-stationarities combined with relatively 430 

short records in the observed time-series.  431 

When compared to TopNet Version 0, TopNet Version 1 reduced an overestimation 432 

of Qbar, but reduced performance in terms of NSE and RSR. For QFeb, TopNet Version 1 433 

marginally improved NSE, reduced an overestimation pbias, but increased RSR. For QMALF, 434 

TopNet Version 1 dramatically improved NSE, improved RSR and replaced a large 435 

overestimation with an underestimation of lesser magnitude. For QF, TopNet Version 1 436 

reduced performance of all metrics when compared to TopNet Version 0. This indicates that 437 

high flows were not better predicted following the regionalisation of the TopNet f parameter. 438 

However, over all four indices there were greater differences between methods (TopNet, 439 

HUC and Random Forests) than there was between the two TopNet versions (Table 5, Figure 440 

4).  441 

The TopNet time-series was corrected using the jack-knifed Random Forests FDC 442 

estimates and then used to estimate the hydrological indices. For all indices and both TopNet 443 

versions, corrected estimates improved performance in terms of NSE and RSR when 444 

compared to the uncorrected TopNet estimates. Corrected estimates produced less bias as 445 

indicated by smaller magnitude pbias when compared to uncorrected estimates from both 446 

TopNet versions for all indices except QFeb for Version 1 and QF for version 0. Correction of 447 

TopNet Version 1 caused an increase in overprediction of QFeb. Correction of TopNet 448 
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Version 0 caused an overprediction to change to an underprediction of greater magnitude. 449 

Overall, correction greatly reduced differences in performance between the two TopNet 450 

versions (Table 5, Figure 4).  451 

For Qbar and QFeb there was more difference between TopNet Version 0 and TopNet 452 

Version 1 than there was between TopNet Version 1 and TopNet 1 Corrected. After 453 

correction, the performance of Qbar estimated from both TopNet versions matched the 454 

performance of those estimated using Random Forests. This was because the correction 455 

procedure forced the TopNet corrected estimated FDCs to match jack-knifed Random Forests 456 

estimated FDCs and therefore TopNet corrected Qbar matched jack-knifed Random Forests 457 

estimated Qbar. 458 

NSE was positive (negative values indicate that the mean observed value is a better 459 

predictor than the simulated value) for all indices for all methods except QF for Method 2 460 

HUC (Table 5). This indicates that, except for QF from the HUC method, all methods 461 

provided some degree of useful information about patterns in the estimated values. In this 462 

comparison HUC estimates of instantaneous QF were compared with observed QF calculated 463 

from mean daily flow data. Poor performance and, in particular, overestimation of QF for 464 

Method 2 HUC was therefore not surprising. In fact, McKerchar and Pearson (1989) 465 

previously showed that the method was able to explain a substantial fraction of the observed 466 

variation in QF when compared to observed values calculated from instantaneous flow data.  467 

For Qbar the HUC method performed best in terms of both NSE and RSR. This is the 468 

method already recommended by Woods, et al. (2006). For QMALF, QF and QFeb the Random 469 

Forests method performed best in terms of both NSE and RSR. The Random Forests method 470 

also gave the lowest magnitude pbias for QF and QFeb but not for QMALF (Table 5). These 471 

findings correspond well with visual inspection of observed against predicted values, which 472 
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indicated that the Random Forests method reduced scatter and produced unbaised estimates 473 

for all four indices but was out-performed by Method 2 HUC for Qbar (Figure 4).  474 

b. Flow duration curves 475 

More sites had better performance as indicated by higher NSE values, lower RSR 476 

values and lower magnitude pbias for all-time FDCs compared to February FDCs regardless 477 

of estimation method (Figure 5). This indicates greater uncertainties associated with 478 

estimation of February FDCs compared to all-time FDCs. More sites had better performance 479 

in terms of NSE, RSR and pbias for TopNet Version 1 in comparison to TopNet Version 0 480 

for the all-time FDC and the February FDC in particular. Negative pbias values for many 481 

TopNet Version 0 estimated February FDCs indicated consistent underestimation. This 482 

consistent underestimation was not present for TopNet Version 1, which showed an equal 483 

likelihood for either underestimation or overestimation of the February FDC. This indicated 484 

that regionalisation of the TopNet f parameter improved flow estimation, particularly in 485 

February.  486 

Both the HUC and the Random Forests methods performed better than either of the 487 

uncorrected TopNet methods for both the all-time and February FDCs. Both all-time and 488 

February FDCs had more sites with higher NSE, lower RSR and lower magnitude pbias when 489 

estimated using the Random Forests method compared to the other methods. Since the 490 

TopNet 1 Corrected estimated all-time FDC was corrected using the jack-knifed Random 491 

Forests estimated FDC, performance of the TopNet 1 Corrected estimated all-time FDC was 492 

the same as the jack-knifed Random Forests estimated FDC.  493 

c. National estimates for New Zealand 494 

All methods were able to provide predictions for ungauged sites across New Zealand 495 

which reproduced the major regional variations in observed QMALF (Figure 6). These 496 

geographical patterns included a strong east-west gradient in the South Island as well as the 497 
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influence of the Southern Alps (see Figure 1 for place names). As they cross the eastern 498 

plains of the South Island, large mountain-fed rivers with markedly higher QMALF stand out 499 

against a background of comparatively lower-yielding lowland streams. To the northeast of 500 

the central North Island, the rivers draining a volcanic plateau have relatively high QMALF, 501 

with large storage capacity in the thick pumice and ash layers sustaining low flows (Mosley 502 

and Pearson, 1997). Both Random Forests (Figure 6c) and TopNet (Figure 6d) predicted 503 

lower values of QMALF than HUC (Figure 6b) for the south west coast of the South Island, but 504 

predicted slightly higher QMALF for most other locations in comparison with HUC. It should 505 

be noted that none of the methods were designed to take account of large engineering 506 

schemes such as those currently in place on several of New Zealand’s large rivers (e.g. the 507 

Waikato, Rangitata, Waitaki, Clutha and Waiau rivers).  508 

6. Discussion 509 

A limited set of hydrological indices along with both the all-time and February FDCs 510 

were investigated (Table 2). This set of hydrological indices included those representing both 511 

high and low flow extremes as well as an aspect of seasonality. These indices are commonly 512 

used for water resource planning in New Zealand, however not all aspects of the flow regime, 513 

such as the frequency of mid-range flows, were represented. This aspect of the flow regime 514 

could have been included by calculating various additional indices such as the number of 515 

events exceeding three times the long-term median flow (FRE3; Biggs 2000), but no HUC 516 

method was available for estimating this index. National estimates of FRE3 using random 517 

forests, including comparison with observed values, were calculated and compared with 518 

observations by Booker (in press). 519 

For the Random Forests method FDCs were described using the three parameter GEV 520 

distribution. Other distributions could have been used including log Pearson Type III (LP3; 521 

Ganora et al., 2009) or a mixed gamma distribution (Cheng et al., 2012). Booker and Snelder 522 
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(2012) showed that, although the LP3 distribution may provide better fits to observed FDCs 523 

when standardised by mean flow, uncertainties in generalising the LP3 parameters from 524 

catchment characteristics meant that a method using the GEV distribution to parameterise the 525 

shape of the FDC gave better performance for prediction at ungauged locations.  526 

The same set of independent variables was used to model all four hydrological 527 

indices. Procedures designed to optimise the set of independent variables such as the Model 528 

Improvement Ratio (Murphy et al. 2010) were not employed to optimise the predictor data 529 

set. This approach may not have provided optimal Random Forest models in all cases as one 530 

would expect different sets and different numbers of independent variables to best predict 531 

each dependent variable. For example, summer temperature might be expected to be related 532 

to low flows, but not flood flows. Despite this the Random Forests method still outperformed 533 

the other methods even when a leave-one-out cross validation procedure was applied to allow 534 

for independent assessment of estimation performance against observed data.  535 

Although many performance metrics are available to assess model performance, NSE, 536 

RSR and pbias were used as recommended by Moriasi et al., (2007). Although these three 537 

metrics are designed to quantify different aspects of model performance, they often gave 538 

consistent information regarding model performance.  539 

The aim of this work was to assess the ability of various methods to estimate 540 

hydrological conditions for ungauged catchments in the absence of major hydrological 541 

alterations such as that caused by abstraction, storage or diversion. The ability to estimate the 542 

effects of either climate change or land cover change were not assessed. It may be necessary 543 

to assess the potential effects of climate change (Zemansky et al., 2012; Earman and 544 

Dettinger 2011), land use change (Scanlon et al., 2007) or their combined effects (Brekke et 545 

al., 2004) on flow regimes to develop rational management strategies. Both TopNet and the 546 

Random Forests models described above have inputs that could be changed to assess the 547 
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impacts of climate change. However, the validity of this approach was not tested here. It 548 

should be noted that there are several issues relating to model structure and parameterisation 549 

that would need to be resolved when using physically-based models to predict the 550 

hydrological impacts of environmental change (Wagener, 2007). Similarly, when using 551 

flexible empirically-based models such as Random Forests to predict outside of the fitted 552 

model domain it is important to understand how the algorithms perform when projected into 553 

the new environmental conditions (Elith and Graham, 2009).  554 

These results indicate that Random Forests outperformed both TopNet versions for all 555 

four hydrological indices as well as for FDCs. This finding corresponds well with the 556 

findings of others. For example, Parkin et al. (1996) found that streamflow predictions from 557 

an a priori parameterised physically-based model contained considerable uncertainty. It 558 

should be noted that, although TopNet Version 1 arguably represents the best currently 559 

available physically-based approach for application to ungauged sites across New Zealand, 560 

this method was uncalibrated. It is known that calibration of TopNet parameters can 561 

significantly improve estimation performance by optimising model performance against 562 

observed flows (e.g. Bandaragoda et al., 2004; McMillan et al., 2013). Calibration procedures 563 

are only possible for catchment specific applications with available flow data. It is possible to 564 

transfer calibrated parameter sets to ungauged sites (e.g. Yu and Yang, 2000) given a suitable 565 

regionalisation procedure (McDonnell and Woods, 2004; Li et al., 2010; Olden et al., 2012; 566 

Coopersmith et al., 2012). Although calibration procedures have been applied to TopNet for 567 

several catchments (Bandaragoda et al., 2004; Clark et al., 2008; McMillan et al. 2013), a 568 

procedure to regionalise the calibrated parameter values is not currently available. Such 569 

procedures can be hampered by issues such as equifinality within the calibration parameter 570 

sets (Beven 2006; Bárdossy, 2007).  571 
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The Random Forests method can be used to estimate a unique FDC at any location in 572 

the New Zealand river network. These estimated FDCs could be used to provide a more 573 

reliable regionalisation than would be the case using data from observed locations alone 574 

because they represent variability across all of New Zealand rather than a sample of observed 575 

FDCs (Snelder and Booker, 2012). Furthermore, the Random Forests estimated FDC’s at 576 

ungauged locations could provide the opportunity to calibrate TopNet parameters against an 577 

estimated FDC for ungauged locations in the New Zealand river network. This would require 578 

a method that allowed calibration against an observed (or estimated) FDC (e.g. Yu and Yang 579 

2000; Yadav et al., 2007; Westerberg et al., 2011). Such a method may be developed as part 580 

of future work. However, considerable improvements in performance were gained when both 581 

TopNet versions were corrected using the jack-knifed estimated FDCs from Random Forests. 582 

This indicates that TopNet performance can be increased considerably without automated 583 

parameter set calibration procedures (Yu and Yang, 2000) or increased understanding of 584 

hydrological processes controlling variability of FDCs across catchments (Yaeger et al., 585 

2012). Furthermore, the correction procedure reduced differences in performance between 586 

TopNet Version 0 and TopNet Version 1.  587 

The TopNet correction procedure tested here represents one relatively crude method 588 

of combining a process-based approach with a data-based approach. The procedure provides 589 

estimates calculated using a data-based approach to correct for bias within FDCs calculated 590 

using a process-based approach. This contrasts with alternative approaches which have 591 

augmented stochastic approaches with more process-based approaches by incorporating 592 

different components of catchment dynamic responses into stochastic models (e.g. Botter et 593 

al., 2007a, 2007b, 2009; Muneepeerakul et al., 2010; Cheng et al., 2012) or by applying a 594 

water balance modelling framework to divide the FDC into three parts (Yokoo and Sivapalan, 595 

2011).  596 
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The TopNet correction procedure provided results that matched the performance of 597 

Random Forests for Qbar and the all-time FDC, but not for QFeb, QMALF or QF. It should be 598 

noted that this procedure allowed improved estimation of the entire time-series of flows using 599 

both TopNet versions. This method has a major advantage over the Random Forest method 600 

because any required hydrological indices can be calculated from the estimated time-series. 601 

In contrast, the Random Forests method requires fitting of new models to any newly 602 

calculated indices prior to estimation of these new indices at ungauged sites.  603 

7. Conclusion 604 

Results showed the Random Forests method provided the best estimates of both FDCs 605 

and all four hydrological indices except mean flow. Mean flow was best estimated using the 606 

already published HUC method (Woods et al., 2006). Results also showed that considerable 607 

gains in estimation performance can be made by correcting estimates calculated using 608 

physically-based models with estimated values calculated using empirically-based models.  609 
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Figures 909 

 910 

Figure 1. Map showing the locations of the gauging stations used in this study. 911 

 912 

Figure 2. Schematic showing different methods used to estimate hydrological indices and 913 

flow duration curves (FDCs).  914 

 915 

Figure 3. Hydrology of ungauged catchments (HUC) low flow model and parameters. 916 

 917 

Figure 4. Observed against calculated values for each index for each method (n = 485). Grey 918 

dashed line is linear regression. Black line is 1:1 such that x-limits are equal to y-limits for all 919 

plots. Qbar is mean flow. QFeb is proportion of flow in February. QMALF is 7-day mean 920 

annual low flow. QF is mean annual flood.  921 

 922 

Figure 5. Box and whisker plots of Nash-Sutcliffe efficiency, RSR (ratio of the root mean 923 

square error to the standard deviation of observed data) and pbias (average tendency of the 924 

calculated data to be larger or smaller than their observed counterparts) at each site for all-925 

time and February flow duration curves for each method (n = 101 points at each of 485sites). 926 

 927 

Figure 6. All observations and for each method predictions of 7-day mean annual low flow 928 

(MALF) for all rivers of Strahler order greater than three. TopNet results are for uncorrected 929 

TopNet Version 1.  930 
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Figure 2. Schematic showing different methods used to estimate hydrological indices and 

flow duration curves (FDCs).  

  



 

 

 
Figure 3. Hydrology of ungauged catchments (HUC) low flow model and parameters. 

 



 

 
Figure 4. Observed against calculated values for each index for each method (n = 485). Grey 

dashed line is linear regression. Black line is 1:1 such that x-limits are equal to y-limits for all 

plots. Qbar is mean flow. QFeb is proportion of flow in February. QMALF is 7-day mean 

annual low flow. QF is mean annual flood.  

 

Calculated

O
bs

er
ve

d

log(QF/area)

T
op

N
et

 V
er

si
on

 0

root(QMALF/area)

T
op

N
et

 V
er

si
on

 0

QFeb

T
op

N
et

 V
er

si
on

 0

log(Qbar/area)

T
op

N
et

 V
er

si
on

 0

log(QF/area)

T
op

N
et

 V
er

si
on

 1

root(QMALF/area)

T
op

N
et

 V
er

si
on

 1

QFeb

T
op

N
et

 V
er

si
on

 1

log(Qbar/area)

T
op

N
et

 V
er

si
on

 1

log(QF/area)

H
U

C

root(QMALF/area)

H
U

C

QFeb

H
U

C

log(Qbar/area)

H
U

C

log(QF/area)

R
an

do
m

 F
or

es
ts

root(QMALF/area)

R
an

do
m

 F
or

es
ts

QFeb

R
an

do
m

 F
or

es
ts

log(Qbar/area)

R
an

do
m

 F
or

es
ts

log(QF/area)

T
op

N
et

 0
 C

or
re

ct
ed

root(QMALF/area)

T
op

N
et

 0
 C

or
re

ct
ed

QFeb

T
op

N
et

 0
 C

or
re

ct
ed

log(Qbar/area)

T
op

N
et

 0
 C

or
re

ct
ed

-2 -1 0 1

log(QF/area)

T
op

N
et

 1
 C

or
re

ct
ed

0.0 0.1 0.2 0.3 0.4

root(QMALF/area)

T
op

N
et

 1
 C

or
re

ct
ed

0.0 0.5 1.0 1.5 2.0

QFeb

T
op

N
et

 1
 C

or
re

ct
ed

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

log(Qbar/area)

T
op

N
et

 1
 C

or
re

ct
ed



 

 
Figure 5. Box and whisker plots of Nash-Sutcliffe efficiency, RSR (ratio of the root mean 

square error to the standard deviation of observed data) and pbias (average tendency of the 

calculated data to be larger or smaller than their observed counterparts) at each site for all-

time and February flow duration curves for each method (n = 101 points at each of 485sites). 
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Figure 6. All observations and for each method predictions of 7-day mean annual low flow 

(MALF) for all rivers of Strahler order greater than three. TopNet results are for uncorrected 

TopNet Version 1.  



 

Tables 
 

Table 1. Codes, descriptions and numbers of sites used in the analysis. See Snelder and Biggs (2002) and 
Snelder and Hughey (2005) for full descriptions of codes. 

 
Code Description Number of sites, total 
Island   

N North Island 289 
S South Island 196 

Climate   
WD Warm-dry 18 
WW Warm-wet 152 
WX Warm-extremely wet 4 
CD Cool-dry 75 
CW Cool-wet 154 
CX Cool-extremely wet 82 

Topographic source of flow   
GM Glacial mountain 10 
H Hill 167  
L Low elevation 241 
Lk Lake 19 
M Mountain 48 

Land cover   
B Bare 16 
EF Exotic-Forest 22 
IF Indigenous-Forest 105 
P Pastoral 247 
S Scrub 17 
T Tussock  63 
U Urban 15 

  

Table
Click here to download Table: Booker_Approaches for ungauged catchments_Tables.docx

http://ees.elsevier.com/hydrol/download.aspx?id=637264&guid=e3845a01-2402-48d3-91ee-97843dfe2415&scheme=1


 

Table 2. Hydrological Indices derived from observed mean daily flows. 
  

Index Description Calculation  Standardisation  Transformation 
Qbar Mean flow over 

all time 
Mean of all daily flows  Divide by catchment 

area to get specific 
mean flow (m3 s-1 
km-2)  

Log base 10 

QFeb Proportion of flow 
in February 

Mean of all daily flows for 
each calendar month after 
having divided by the 
overall mean flow  

Divide by mean flow 
over entire record to 
get proportion of flow 
in February (unitless) 

None 

QMALF Mean of 
minimum 7-day 
flow in each year 

Mean of minimum flow for 
each water year after 
having applied a running 
7-day mean to the daily 
flows 

Divide by catchment 
area to get specific 
QMALF (m3 s-1 km-2)  

Square root 

QF Mean of 
maximum flow in 
each year 

Mean of maximum flow 
for each water year  

Divide by catchment 
area to get specific 
QF (m3 s-1 km-2) 

Log base 10 

FDC Probability 
distribution of 
daily flow 

Interpolation of the 
cumulative frequency 
distribution of daily flows 
on to 101 points (0 to 100 
in steps of 1) 

Divide by catchment 
area to get specific 
FDC (m3 s-1 km-2) 

Log base 10 

FDCFeb Probability 
distribution of 
daily flow for 
February 

Interpolation of the 
cumulative frequency 
distribution of daily flows 
for each calendar month 
on to 101 points (0 to 100 
in steps of 1) 

Divide by catchment 
area to get specific 
FDC (m3 s-1 km-2) 

Log base 10 

  





 

Table 4. Codes and descriptions of independent variables used to fit regression models. See Leathwick et 
al., (2011) for full descriptions. 

 
Variable name Description 

usPET_Q Annual potential evapotranspiration of catchment (mm) 
usRainDays10_Q Catchment rain days, greater than 10 mm/month (days/year) 
usAnRainVar_Q Coefficient of variation of annual catchment rainfall (m) 
usSteep_Q % annual runoff volume from area of catchment with slope > 30° (%) 
usCatElev Average elevation in the upstream catchment (m) 
usParticleSize_Q Catchment average of particle size (ordinal scale) 

  



 

Table 5. Various metrics quantifying correspondence between observed and predicted values for four 
hydrological indices (Table 2) using various estimation methods. 
 

Index Method n NSE pbias RSR 

log(Qbar/area) 
   

  

 
TopNet_0   485 0.73 4.050 0.523 

 
TopNet_1 Sync 456 0.70 3.138 0.552 

 
TopNet_1   485 0.71 3.469 0.537 

 
HUC   485 0.87 0.298 0.363 

 
RFjacked   485 0.80 -0.241 0.446 

 TopNet_0 Corrected 485 0.80   -0.410 0.447 

 TopNet_1 Corrected 485 0.80    -0.433 0.447 

QFeb 
   

  

 
TopNet_0   485 0.09 11.733 0.955 

 
TopNet_1 Sync 456 0.29 -2.420 0.843 

 
TopNet_1   485 0.08 2.499 0.960 

 
HUC   485 0.22 5.354 0.884 

 
RFjacked   485 0.44 0.216 0.748 

 TopNet_0 Corrected 485 0.31    2.872 0.828 

 TopNet_1 Corrected 485 0.27     3.020 0.853 

root(QMALF/area) 
   

  

 
TopNet_0   485 0.36 17.496 0.797 

 
TopNet_1 Sync 454 0.59 -11.031 0.643 

 
TopNet_1   485 0.58 -10.739 0.646 

 
HUC   485 0.71 -0.506 0.540 

 
RFjacked   485 0.75 0.157 0.499 

 TopNet_0 Corrected 485 0.66    9.132 0.587 

 TopNet_1 Corrected 485 0.67    5.923 0.571 

log(QF/area) 
   

  

 
TopNet_0   485 0.50 7.523 0.704 

 
TopNet_1 Sync 456 0.30 -36.797 0.837 

 
TopNet_1   485 0.31 -34.958 0.832 

 
HUC*   485 -0.45 73.012 1.206 

 
RFjacked   485 0.63 -0.674 0.609 

 TopNet_0 Corrected 485 0.55   -16.521 0.668 

 TopNet_1 Corrected 485 0.46  -31.733 0.734 

 
* Table footnote: In this comparison HUC estimates of instantaneous QF were compared with observed QF calculated from 
mean daily flow data.  
 


