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Design of Geostructural Systems 

P. J. Vardanega, Ph.D., M.ASCE1 and M. D. Bolton, Ph.D. C.Eng.2 

Abstract: This paper begins with an extensive review of the literature covering the 

development of design rules for geostructural systems, beginning with traditional global 

safety factors and developing through partial factors for loads and resistances, and then 

considering the use of mobilization factors to limit soil strains. The paper then aims to 

distinguish two possible functions for geotechnical factors: to compensate for the uncertainty 

regarding soil strength, and to limit soil deformations that could compromise the associated 

structure before the soil strength can be fully mobilized, whatever it is. At present, design 

procedures generally conflate and confuse ultimate limit state (ULS) checks and serviceability 

limit state (SLS) deformation checks. Furthermore, most geotechnical engineers wrongly 

associate ULS with soil failure rather than with structural failure. The paper addresses this 

fundamental confusion by advocating mobilizable strength design (MSD), which is based on 

assumed soil-structure deformation mechanisms rather than soil failure mechanisms. It is 

argued that designs using MSD can guard against damaging structural deformations, either 

small deformations giving SLS or large structural deformations that must be regarded as ULS 

even though the associated soil strength may not yet be fully mobilized. This distinction 

effectively challenges much of the previous literature on limit state design principles for 

geotechnical applications, even where probabilistic approaches have been proposed. 

Nevertheless, the paper is informed by the concepts and techniques of decision making under 

uncertainty, and the paper concludes by considering whether MSD can also be placed in a 

reliability framework.  
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INTRODUCTION 

 

Geostructural systems are inherently variable. There is variability in load combinations and 

other actions, variability of material properties in space (heterogeneity) and with time 

(process), variability in the behavioural mechanisms that need to be invoked to predict the 

system response, and variability with respect to the consequences for human safety or 

property damage of an error in predicting that response. Furthermore, the exceptional non-

linearity of geostructural systems creates additional difficulties both for the definition of 

appropriate material parameters and for the selection of appropriate behaviour mechanisms. 

   The field of civil engineering as a whole is characterised by the great uncertainties of the 

one-off construction of expensive and extensive infrastructure schemes that depend on 

unreliable materials, weather and human behaviour for their success. Within civil engineering, 

geotechnical engineering is arguably the most susceptible to these factors and therefore the 

most difficult to deal with. Perhaps for this reason, the cultures of decision making in 

geotechnical and structural design have diverged, creating additional communication 

difficulties on the topic of risk and reliability. 

   Similar to other branches of civil engineering, geotechnical engineering tends to be focused 

on the prevention of any sort of failure. Leonards (1982) describes failure as the 

“unacceptable difference between expected and observed performance”. Expressing the task 

positively, geotechnical structures must be designed so as to satisfy their intended 

performance outcomes. Engineers try to achieve this by using various mechanical checks, 

along with rules of thumb that have proven useful in previously successful projects. 

   The aim of this paper is to review the evolution of methods for the evaluation of 

geostructural systems for the purposes of design, from simple safety factors through partial 

factors and the development of reliability assessments, to practical performance evaluations 
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that shift the focus to serviceability. The topic ultimately under discussion will be good 

decision making under uncertainty, accounting for the inherent variability and nonlinearity of 

the systems under discussion. One key issue that must be faced is the balance between the 

creation of design rules and their application in practice by well-educated professionals using 

their own judgment. 

 

Failure 

Geotechnical engineers are generally taught about past examples of failure early in their 

education (Morley 1996). The engineering student will often be exposed to discussion on 

prominent failures such as the Aberfan disaster in Wales (HMSO 1967) and the failure of the 

Teton Dam (U. S. Department of the Interior Teton Dam Failure Review Group 1977), each 

of which was so catastrophic as to wipe out much of the evidence of their actual causes, 

leading to continuing speculation concerning mechanisms of cracking, fluid transmission and 

soil liquefaction. The geostructural failures by tilting of the Transcona Grain Elevator ultimate 

collapse (Peck and Bryant 1953) and The Leaning Tower of Pisa which represented a 

repairable serviceability failure (Terracina 1962) were more amenable to the verification of 

mechanisms by back-analysis. Designers must anticipate how their designs could fail (if built) 

so that catastrophic events can be prevented; this is why case studies are essential (Petroski 

1994). Until recently, however, the focus of attention was placed on mechanisms of ultimate 

collapse, rather than unserviceability. Geotechnics is perhaps the only branch of engineering 

in which the performance in service of manufactured goods is rarely the keystone of the 

design process. 

   The potentially damaging effects of settlement and differential settlement have, however, 

been collated and discussed for over 60 years (Meyerhof 1953, Skempton and Macdonald 

1956, Polshin and Tokar 1957, Burland and Wroth 1975, Meyerhof 1982, Boscardin and 
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Cording 1989 and Poulos et al. 2001). The various definitions that were found to be useful in 

categorising the causes of structural damage are (cf. Poulos et al. 2001): 

 Overall settlement, w; 

 Tilt (local and overall),  

 Angular distortion (or relative rotation), β; and 

 Relative deflection, Δw/L. 

   In this paper, the authors follow Burland et al. (2004) in preferring relative deflection as the 

most practical definition of differential settlement for the purposes of estimating damage in 

structures that are continuous over shallow foundations (e.g., storage tanks on rafts, framed 

structures with pad foundations, buildings with load-bearing walls on strip foundations, 

bridge decks continuous over three or more supports). 

   Boscardin and Cording (1989) also studied the link between building damage and the 

combination of horizontal strain and angular distortion induced by ground movements due to 

nearby excavations or tunneling. However, Burland et al. (2004) demonstrated from careful 

field records that integral foundations such as rafts offered immunity to elongation, reducing 

the additional consideration of horizontal ground strains to the estimation of subsidence 

damage in buildings on separate footings. 

   Table 1 summarises the various limits suggested by previous authorities; these limits are 

linked with terms that might be found in a risk analysis. In cases in which authorities have 

preferred to quote limiting values of angular distortion , this has been halved in Table 1 to 

derive an approximate value for the equivalent relative deflection Δw/L, assuming a parabolic 

profile. Very severe cracking accompanied by relative deflections of the order of 1/300 is 

referred to in this paper as a hazard, on the grounds that segments of masonry will have 

become isolated by wide cracks, and made vulnerable to collapse out of plane under 

differential wind pressures. Moderate to severe cracking is referred to as a violation of 
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serviceability requirements, because the owner would surely regard the consequent lack of 

weatherproofing and the likely jamming of doors and distortion of windows as intolerable. 

Loss of the good appearance of the structure might, in comparison, be regarded simply as 

disappointing, as it could be rectified at a cost, presumably to be borne by the constructors 

and their advisors. Burland et al. (1977) describe a category of damage that is described in 

this paper as disappointing in that it spoils appearance and preceeds unserviceability, which 

describes the rain or wind getting in or the doors or the machinery jamming, progressing to 

safety hazard - beyond which the building should be put in quarantine pending rebuilding. 

   There was ample evidence regarding the significance of foundation displacements during 

the time that limit state design (LSD) and load and resistance factor design (LRFD) codes 

were written, and reliability-based design (RBD) was being developed. Simpson et al. (1981) 

pointed out that structural engineers are often unsure about the confidence geotechnical 

engineers actually place on their predictions of ground deformations. Hence, deformation 

checks have been subjected to much less scrutiny than those relating to collapse. The reason 

may be that, until relatively recently, engineers had no access to validated soil-structure 

deformation mechanisms for the assessment of serviceability that were equivalent to the 

failure wedges and slip circles that permit practical assessments of collapse. This deficit will 

be addressed later in the paper. 

 

Geotechnical Uncertainty 

Bolton (1981) reviewed system and parameter uncertainty in geotechnical engineering. 

Essentially, system uncertainty arises because existing behavioural models are a poor fit with 

reality. For example, everyday geotechnical calculation models generally ignore all but the 

most obvious stratification and anistotropy, the pre-existing lateral earth pressures, and the 

process of excess pore water pressure generation and its partial drainage. In addition, as noted 
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previously, they usually address total soil failure, rather than structural deformation leading to 

unserviceability, which is by far the more common limit state encountered in practice.  

   Parameter uncertainty recognises that engineers cannot know precise values of all the 

engineering properties that should ideally be available as inputs into their design models; 

judgment and choice are required. Bolton (1981) pointed out that system uncertainty should 

never be assessed by statistical means which inevitably requires just that class of uncertainty 

to be eliminated (e.g., the biased penny in a tossing trial). He also opined that parameter 

uncertainty should generally be dealt with by the determinsitic analysis of validated limit 

mechanisms, employing carefully selected worst-case values of parameters, rather than 

probability theory (Bolton 1981). However, as will be explored, others have taken a different 

view. 

   McMahon (1985) categorised six types of uncertainty that are encountered in geotechnical 

engineering (Table 2). Practitioners may attempt to deal with Type 3 uncertainties 

arithmetically, i.e., by using statistical and probabilistic thinking. However, other sources of 

uncertainty can only be reduced if researchers develop better failure models for use in design, 

if practitioners maintain up-to-date skills, if clients release sufficient money for adequate 

ground investigation and construction control, and if all project partners maintain open 

channels of communication.  

   Moreover, engineering judgment is essential even in purely technical aspects of the design 

process.  In his Laurits Bjerrum memorial lecture, Peck (1980) states that “judgment is 

required to set up the right lines of scientific investigation, to select the appropriate 

parameters for calculations, and to verify the reasonableness of the results”. Petroski (1993) 

described engineering judgment as “the quality factor among those countless quantities that 

have come to dominate design in our postcomputer age … [it] prevents mistakes, catches 

errors, detects flaws, and anticipates failure.” 
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   Codes of practice clearly cannot remove the need for good judgment and skill in 

engineering practice, nor is exhaustive computation in the absence of such judgment any 

panacea. Burland (2008a and 2008b) attributed the following sentiment to Hugh Golder: 

“Any design that relies for its success on a precise calculation is a bad design”. 

   One way of reducing uncertainty is to make the final design contingent on the prediction 

and then observation of field performance during the early stages of construction, called the 

observational method (Peck 1969). Peck (1969) pointed out that the essential requirement for 

use of the observational method is a design that can be modified during construction, which 

has implications for the drafting of construction contracts. Application of this approach to 

decision making is made more feasible by recent advances in smart sensor technologies that 

promise cheap and reliable means to monitor the deformation of geotechnical structures such 

as tunnels (Bennett et al. 2010, Cheung et al. 2010 and Mohamad et al. 2010), piled 

foundations (Klar et al. 2006) and deep excavation works (Schwamb et al. 2014). The most 

salient advantage is that such deformation measurements directly address the degree to which 

performance requirements, such as those in Table 1, are being met. 

 

GEOTECHNICAL FACTOR OF SAFETY 

 

Factors and Codes 

The factor of safety (FOS), also described as a factor of uncertainty (or a factor of ignorance 

e.g., Petroski 1994, p. 31) is a commonly used engineering term, but it is difficult for 

practitioners to define and justify. To this end, codes of practice are written with the intention 

to guide the engineer towards an appropriate factor of safety and thus to a safe design; they do 

this using various methodologies and philosophies. 
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   Meyerhof (1970) defined the factor of safety as “the ratio of the resistance of the structure to 

the applied loads in order to ensure freedom from danger, loss or risks”. He then explained 

that “the magnitude of the safety factor required depends mainly on the reliability of the 

design data …” as well as (amongst other things) the probability of failure, and the 

consequences of failure, should it occur (Meyerhof 1970). Terzaghi and Peck (1948) (in 

Article 53) stated: “First, the factor of safety of the foundation with respect to the breaking 

into the ground should not be less than 3, which is the minimum factor of safety customarily 

specified for the design of the superstructure. Second, the deformation of the base of the 

structure due to unequal settlement should not be great enough to damage the structure. There 

is no definite relation between the factor of safety with respect to breaking into the ground 

and the settlement. ” 

   Terzaghi and Peck (1948) gave some classical values of safety factors for geotechnical 

engineering design (Table 3). Meyerhof (1995) referred to the factors from Terzaghi and Peck 

(1948) as “customary total factors of safey”. Today the values in Table 3 can be thought of as 

reference values that practicing engineers consider when performing design calculations and 

drafting codes of practice. In many cases, even if a limit state design method is used, 

engineers will still refer to an equivalent factor of safety. 

   When reviewing the use of a single factor of safety in geotechnical engineering, Simpson et 

al. (1981) concluded that it can produce “sensible results when material strength is the 

greatest uncertainty in the design”, or when it is applied as a load factor where loads are 

significantly more uncertain than material strength. Significant problems arise, however, 

when both strength and loads are uncertain. Kulhawy (2010) described global factors of safety 

as “misleading” because they are usually assigned without considering “(1) any other aspects 

of the design process, such as the loads and their evaluation, method of analysis (ie, design 

equation), extent and quality of site investigation, method of property evaluation (ie, how to 
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select the undrained shear strength), and (2) uncertainties in design, such as variations in the 

loads and material strengths, unforeseen in-situ conditions, inaccuracies in the design 

equations, and errors arising from poorly supervised construction.” 

 

Limit State Design 

Most structural and geotechnical codes are now based on limit-state design precepts. In 

consideration of limit state design, Simpson et al. (1981) stated that “its basis is the 

acknowledgement that a structure may fail to meet its design requirements through a number 

of possible shortcomings …” Each of these shortcomings is described as a limit state 

(Simpson et al. 1981). 

   Phoon et al. (2003a) described the basic requirements of the limit state design philosophy as 

follows: “(1) identify all potential failure modes or limit states; (2) apply separate checks on 

each limit state; and (3) show that the occurrence of each limit state is sufficiently 

improbable”. Instead of simply invoking the good judgment of an experienced engineer, the 

third of these requirements was phrased by Phoon to imply that a probabilistic approach 

should be used, notwithstanding the philosophical objections with regard to system 

uncertainty and the practical difficulties afforded by the collection of data sufficient to make 

meaningful probability estimates. Recent drafters of limit-state design codes have attempted 

to overcome these potential hurdles by adopting a partial factor format, as explained 

subsequently. 

 

Partial Factors 

Instead of specifying a single factor of safety, a partial factor limit state code stipulates that 

certain parameters or calculated values are factored at various points in the design calculation. 

Such factors are specified by the code drafters. This approach recognises that the uncertainty 
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in the loading, for example, is likely to be different to the uncertainty in soil strength. 

According to Simpson (2000), “most schemes have therefore chosen to factor only some of 

the uncertain parameters, with the intention of giving a sufficient margin to cover those not 

factored.” 

   Meyerhof tracked the development of partial factors sets in geotechnical codes of practice 

for many years (e.g., Meyerhof 1970, Meyerhof 1984, Meyerhof 1994 and Meyerhof 1995). 

Table 4 provides a comparision of partial factor sets for various design approaches in codes of 

practice (Meyerhof 1995). Meyerhof (1984) noted that the minimum values of partial factors 

were obtained by calibration against traditional safety factors to ensure that designs under any 

new code would generally have the same safety margin than that had been deemed acceptable 

based on past experience. Code comparison of various codes of practice for simple bored pile 

design in London clay (Vardanega et al. 2012a, Vardanega et al. 2014) revealed that most 

codified approaches settled on an equivalent global factor of safety of approximately 2.5 (one 

notable exception being the Russian code). One possibility for future change is the adoption 

of RBD procedures, as proposed by, e.g., Phoon et al. (2003a, 2003b), taking into account the 

high values of the coefficient of variation (COV) that are observed for many geotechnical 

parameters. RBD will be discussed in more detail later in the paper. 

 

Limit Modes 

Consider the determination of the limit state criteria for the design of bridge abutment walls. 

Bolton (1989) offered five limit modes that qualitatively cover the full range of possible soil-

structure behaviour situations that may arise: (1) “unserviceability through soil strain”; (2) 

“unserviceability through concrete deformation”; (3) “collapse through soil failure alone”; (4) 

“collapse with both soil and concrete failure”; and (5) “collapse arising without soil failure”. 
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   Codes of practice should assist designers in understanding the limit modes that need to be 

investigated with the appropriate application of “worst credible” characteristic parameters (cf. 

Simpson et al 1981 and Bolton 1989). Bolton (1989) advocated limit state design thinking by 

summarising that “The code must offer specific guidance to the designer in the selection of 

worst credible characteristics for the soil-structure system, and the external influences acting 

on it: no further safety factor will then be necessary”. 

   This approach requires that the code guide the engineer to the critical parameter in each 

limiting mode and then offer guidance on selecting a worst credible value. 

   Both the methods of Simpson et al. (1981) and Bolton (1989) were criticised by Phoon et al. 

(2003a) being little better than the use of “empirical partial factors”. Bolton (1981) concluded 

that “deterministic calculations based on observable mechanisms offer a more reliable route to 

decision-making in geotechnical design than do the processes of statistical inference”. 

Statistical methods aid in sensitivity analyses, but they cannot be employed intelligently if the 

mechanism of failure is not well understood. In particular, the great majority of RBD 

approaches focus on ultimate failure, whereas the onset of excessive deformations leading to 

structural unserviceability is widely accepted to be a more critical issue in foundation 

engineering. Later in the paper the merging of the mechanistic and statistical design 

approaches will be reviewed. 

 

Characteristic Values 

Eurocode 7 Part 1 (CEN 2004) does not require designers to use reliability theory to 

determine soil properties but it does require the determination of a “characteristic value” of a 

soil parameter for use in design, which may be protected by an additional partial factor. 

Clauses 2.4.5.2 (1)P and (2)P of CEN (2004) state:  
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“(1)P The selection of characteristic values for geotechnical parameters shall be based 

on results and derived values from laboratory and field tests, complemented by well-

established experience. 

(2)P The characteristic value of a geotechnical parameter shall be selected as a 

cautious estimate of the value affecting the occurrence of the limit state.” 

The code then goes on to state in Clause 2.4.5.2 (11) of CEN (2004): 

“(11) If statistical methods are used, the characteristic value should be derived such 

that the calculated probability of a worse value governing the occurrence of the limit 

state under consideration is not greater than 5%.” 

   Orr (2000) attempted to quantify the “cautious estimate”, by advocating the method 

proposed by Schneider (1999), which calls for the construction of a characteristic design 

line offset from the average line through the data of relevant test results by a 0.5 standard 

deviation. Although this offers the designer a calculation methodology for the notional 

characteristic value, it evades a variety of statistical questions. Does the designer seek an 

estimate of the mean of the parent population (e.g., the cone penetration resistance to be 

used to calculate the shaft capacity of a pile), or an extreme value applicable to a small 

region (e.g., to predict end-bearing)? Would the same partial factor be applicable to both? 

And would the same value still apply if a more rigorous ground investigation acquired 

ten times as many data points? Or should the designer rationally be seeking a lower 

bound to the data rather a mean value (e.g., residual strength estimated after a variety of 

direct shear tests on cores recovered from a slope)? Selection of sensible fractiles for 

base and shaft resistances for bored pile design in stiff clay is studied in Vardanega et al. 

(2012c, 2013b). 
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STATISTICAL APPROACHES TO FAILURE ANALYSIS 

 

Probability Distributions 

Meyerhof (1970) highlighted the obvious point that safety factors cannot imply “absolute” 

safety and “include a small acceptable risk” of failure. Following the terminology from Phoon 

et al. (2003a), consider a load distribution (F) with a mean value (mF) and the resistance 

(capacity) distribution (Q) with an average value (mQ): the area enclosed by the two curves 

represents instances in which Q < F and corresponds to the probability of failure. If the shapes 

of the curves are known, then the value pf, i.e., the probability of failure, can be estimated. 

   However, in geotechnical works especially, it is difficult to determine the shapes of the 

frequency distributions (e.g., Bolton 1993). Furthermore, the consequences of failure are 

likely to be perceived as an unserviceability of the structure concerned rather than a collapse, 

because there are likely to be earlier signs in the form of surprising displacements which 

result in temporary measures such as limiting live loads until underpinning can be provided to 

foundations. This, of course, is not to underestimate the importance for designers to assure 

that structures fulfill their intended purpose while maintaining the planned budget. However, 

it does alter the perception of the consequences of failure, and emphasises the importance to 

the designer of assuring ductility and continuity, and excluding brittle failures, regardless of 

the smallness of the notional probability of failure. 

   Scott et al. (2003) argued that “in geotechnical engineering, information about the mean and 

variance of a load or resistance is typically available, even though the exact distribution may 

not be known”. In their review, Scott et al. (2003) argued that although the assumption of a 

normal distribution is the “least biased” choice, the log-normal distribution is often favoured 

as factors such as, load magnitudes “cannot take negative values” (although Lumb 1970 did 

point out that other distributions could be used to satisfy the aforementioned requirement). 
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Heterogeneity 

A major aspect of geotechnical engineering is to capture and model the distribution of soil 

parameters, which generally vary with depth (Phoon and Kulhawy 1999) because strength and 

stiffness each vary with mean effective stress. Vanmarcke (1977) identified three causes of 

uncertainty in choosing a design soil strength profile: (1) natural heterogeneity of the soil, (2) 

lack of subsurface soil data and (3) errors arising during testing (i.e., measurement). Christian 

et al. (1994) expressed these three sources of error in terms that would be familiar to every 

application of signal processing, namely, “systematic error” and “data scatter” (Figure 1). 

Statistical methods of data analysis can correspondingly assist in the construction of soil 

property profiles on site (e.g., Whitman 2000). Practicing engineers may, however, prefer less 

formal procedures. Duncan (2000) reviewed the “graphical three-sigma rule” that can be used 

to estimate an appropriate design line to describe the variation of a soil parameter with depth.  

 

RELIABILITY-BASED DESIGN 

 

Probability of Failure 

Reliability and probabilistic thinking for geostructural design (e.g., Freudenthal 1947, 

Kulhawy 2010) has found use in in many geotechnical design applications e.g., shallow 

foundation capacity (Phoon et al. 2003a, 2003b and Foye et al. 2006a, 2006b), capacity of 

deep foundations (Zhang et al. 2001), settlement of foundations (Akbas and Kulhawy 2009) 

and random-parameter finite-element methods (Schweiger 2001). If the probability of failure, 

which is the probability of failing to meet at least one performance requirement, is pf,  then the 

reliability of the system is said to be rf where: 

ݎ ൌ 1 െ             (1)	

   Reliability then represents the probability that the system will perform as intended. 
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Reliability Index 

Cornell (1969), Phoon et al. (2003a), Scott et al. (2003), Kulhawy (2010) and Ebrahimian and 

De Risi (2014) all provide definitions for the reliability index. Engineers generally consider 

the definition of load (F), and capacity (Q), which allows the formal definition of failure as 

the condition Q ≤ F. However, the safety margin formulation can be expressed more generally 

as a limit state function (or performance function) V = R-L where R is a generalized estimate 

of capacity (or resistance) and L is a generalized loading function. The probability of failure pf 

can be then defined according to equation (2) as the probability that the limit state function V 

is lower than or equal to zero. The definition of pf leads to the formal and generalized 

definition of a reliability index, typically referred to as  in the literature, and in this paper 

referred to as RI (to avoid confusion with other variables indicated by the same symbol), 

[equation (3)], where (·) is the standard normal cumulative distribution function (CDF). 

Equation (3), however, does not “imply that uncertain parameters are jointly normal” 

(Ebrahimian and De Risi 2014) and then that “the inverse of the standard normal CDF simply 

provides a convenient one-to-one mapping between the computed probability of failure and a 

reliability index” (see Ebrahimian and De Risi 2014 for more details). 

 ൌ ܲሾܸ  0ሿ           (2) 

β ൌ ܫܴ ൌ െΦିଵሺሻ          (3) 

 

Cornell Index 

The basic form of the reliability index was proposed by Cornell (1969), in which RI () is 

defined as shown in Equation (4) and is also called the “Cornell index” (Ebrahimian and De 

Risi 2014). If F and Q are normally distributed, RI can be defined according to the expression 

provided in equation (4), in which mV is the mean of the probability distribution of the safety 

margin (also normally distributed if F and Q are normally distributed); sV is the standard 
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deviation of the safety margin; mQ is the mean value of computed capacity; mF is the mean 

value of estimated load; sQ is the standard deviation of computed capacity; and sF is the 

standard deviation of estimated load (e.g., Phoon et al. 2003a). 

ߚ ൌ ܫܴ ൌ
ೂିಷ

ሺ௦ೂమା௦ಷమሻబ.ఱ
ൌ ೇ

௦ೇ
          (4) 

   The work of Lumb (1966, 1970) showed that although other distributions may better fit data 

of soil strength (for the Hong Kong soils he studied), the simplifying assumption of a normal 

distribution is also acceptable in the central region of the data. Unfortunately, this rules out its 

application to extreme values RI > 2, which is exactly where reliability estimates are currently 

employed. 

 

Challenges for RBD in Geotechnical Applications 

RBD is a method to deal with Type 3 uncertainties in geotechnical engineering practice 

(Table 2). Some challenges to be faced in applying RBD even in this restricted class of 

uncertainty are listed as follows: 

 Knowledge of the shapes of the distributions (e.g., log-normal, normal, beta) of soil 

properties is, by definition, impossible to obtain at the tails. Therefore, any required inference 

of extreme values, beyond the predictive limits of whatever data have been encountered on 

site, would have to appeal to some wider regional experience of severe deviations. This caveat 

is likely to include all the acceptable performances listed in Table 1; 

 Although reliable estimates of the mean and standard deviation are easier to ascertain 

than the shapes of the pdfs, there remains an unjustified tendency to rely solely on published 

COV values from other soil deposits. Because variability in a soil deposit is a function of the 

processes of geological deposition and geomorphological change that have influenced the site 

(e.g., Hutchinson 2001), intensive efforts would be necessary to draw parallels between a new 
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site that lacks such information and previously explored sites for which COV values have 

been established; 

 The spatial autocorrelation of geotechnical properties is known to be significant, but 

difficult to ascertain because of sparse sampling. Once again, geological interpretation and 

experience is required to set reasonable intervals for boring and sampling in relation to 

consistencies and inconsistencies expected at a site. Engineers should realise that the 

probability of failure of an end-bearing pile is intimately linked with the probability that an 

erratic soft spot greater than the diameter of the pile may be located below its base. 

Furthermore, if e.g., Prandtl’s model is used for bearing capacity calculations on 

heterogeneous clay, any single estimate of soil strength must bias the calculated reliability. If, 

for example, the designer attributes the worst credible strength to the whole mechanism, that 

should lead to an overestimate of the probability of failure; and 

 With very few exceptions, RBD is applied to the ultimate failure of the soil, rather 

than to the onset of disappointing deformations that later develop into serviceability issues, 

and then ultimately threaten structural collapse only if nothing has been done to interrupt the 

loading process or enhance the soil-foundation system. In that sense, the rigid demarcation 

between serviceability limit state (SLS) and ultimate limit state (ULS) failures in limit state 

design is unrealistic and unhelpful for a designer wishing to apply risk-based concepts. 

Predicting displacements, placing realistic bounds on those predictions, and comparing those 

bounds with displacement limits such as those described in Table 1 would offer a more 

objective approach. The challenge for geotechnical practitioners is not only to make 

settlement predictions, but to do so within a rigourous statistical framework. For this purpose 

it would be essential to use a soil constitutive model with a minimum number of parameters, 

to have access to a database that indicates the variability of those parameters, and to insert 
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them in a robust but simple deformation mechanism that has been calibrated against observed 

performance. These elements will now be explained in more detail. 

 

SOIL DEFORMABILITY 

 

Phoon and Kulhawy (1999) demonstrated the significance of the coefficient of variation for 

use in RBD. Subsequent papers (e.g., Ching and Phoon 2014a, 2014b) focussed on the 

determination of the coefficient of variability, primarily for strength and index parameters. 

Kulhawy and Mayne (1990) championed the use of geo-databases for parameter selection. 

Recent papers detailing the variation of deformation parameters in new databases are 

summarised subsequently. 

 

Small Strain Stiffness 

The importance of small strain stiffness for geotechnical design is mentioned in Burland 

(1989) and Atkinson (2000). Ideally, Gmax should be measured on site (e.g., Clayton 2011 and 

Stokoe et al. 2011). Predicting Gmax simply from density and mean effective stress may lead 

to errors of up to a factor of 2 (Vardanega and Bolton 2013). However, modified hyperbolae 

can be used to make a-priori estimates of soil stiffness reduction. Vardanega and Bolton 

(2013, 2014) presented a database of 67 modulus reduction curves of a large variety of fine-

grained soils. Using the form of the equation used by Darendeli (2001) and Zhang et al. 

(2005), the variability of ref (which is the shear strain required to reduce G/Gmax to 0.5) and  

was determined. The reference strain (ref) was shown to correlate strongly with plasticity 

index wheras  in equation 5 could not usefully be correlated with any other parameter. The 

database of tests on sands reported in Oztoprak and Bolton (2013) showed that  is correlated 
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to the coefficient of uniformity and ref related to the mean effective stress, uniformity 

coefficient, void ratio and relative density. 
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   Predicting G/Gmax using versions of equation 5 (Oztoprak and Bolton 2013 and Vardanega 

and Bolton 2013) results in errors of up to a factor of 1.3; approaches such as these run 

outside the main body of available data at approximately 0.5% strain. Assessing the 

deformability of clays at higher strains requires an alternative approach. 

 

Mobilization of Moderate Strengths in Clay 

Vardanega and Bolton (2011, 2012) demonstrated, through a database of 115 diverse stress-

strain tests on natural cores taken from 19 contrasting fine grained soils, that the mobilization 

of shear stress   with shear strain   in an undrained shear test taken up to peak shear strength 

cu, offers a tight fit to the power law expression: 
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   This represents a two-parameter constitutive model for clays at moderate strains, tested 

from an initially isotropic stress state, and applicable only within the typical range of 

mobilization factor M (generally referred to as a safety factor in current geotechnical practice) 

ܯ ൌ ೠ
ఛ

     5 > M > 1.25      (7) 

   This is reminiscent of expressions for soil stress-strain used in the development of p-y 

curves that make use of ε50 (e.g., Matlock 1970). However, in the earlier work, evidence of 

high quality tests in the databases was not apparent, nor the recognition that the exponent b is 

a significant source of variability.  

   The key parameter is the mobilization strain M=2, which is the shear strain mobilized at half 

the shear strength, i.e., at M = 2. Vardanega et al. (2012b, 2013a) demonstrated that M=2 can 
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range over an order of magnitude, from approximately 0.4% for a normally consolidated 

kaolin to approximately 4% for a heavily overconsolidated kaolin. However, it is also known 

that soils are inherently anisotropic, so it must be anticipated that M=2 would vary between 

triaxial compression and extension, for example. To verify a serviceability requirement, it is 

essential that soil test data be used to obtain appropriate values of M=2. If this requirement is 

ignored, and designers continue to rely only on the setting of a partial factor on strength, it is 

self-evident that strains in service will vary from soil to soil by at least the same factor of 10 

that is found for M=2. Serviceability criteria will either be grossly overconservative, or will 

fail to safeguard against structural damage, depending on the soil concerned. 

   The second parameter in equation (6) is the exponent b, which was generally found to vary 

within a narrow range of approximately 0.3 to 0.7 for most soils (Vardanega and Bolton 

2011). In general, a lower value of approximately 0.3 to 0.4 was obtained for normally 

consolidated clays that were sampled and set up in an isotropic stress state (Vardanega et al. 

2012b and Bolton et al. 2014). A higher value of about 0.5 to 0.6 fitted the data of 

overconsolidated kaolin (Vardanega et al. 2012b), and 0.6 also coincided with the mean value 

obtained for the 19 natural clays and silts analysed in Vardanega and Bolton (2011). If it is 

assumed that b = 0.6, but a value is obtained for M=2, the fitting of the power curve equation 

(6) generally succeeds in capturing the strain data in Vardanega and Bolton’s databases within 

a factor of 2.  

   Statistics describing the variability of clays included in Vardanega and Bolton’s databases 

are summarised in Table 5. Obviously, the more data that are obtained for a given clay of 

interest, the more accurate the curve fitting could be. The in situ earth pressure coefficient 

inevitably influences subsequent stress-strain behaviour in the ground. Although Osman and 

Bolton (2005) showed that a field trial of footing behaviour could be predicted adequately by 

using the average stress-strain curve from K0-consolidated triaxial compression and extension 
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tests on good quality core samples, the influence of K0 in other applications may not be 

summarised so conveniently. At least equation (6), through the two deformation parameters 

M=2 and b with values fitted to the data of project-specific soil tests, provides a basis for 

ground displacement predictions that can be calibrated subsequently against field 

measurements. 

 

DESIGN TO LIMIT DEFORMATIONS 
 

Mobilizable Strength Design 

If the deformability of soil can be predicted within given error bounds, only the pertinent 

ground deformation mechanism is required before structural displacements can be predicted 

and compared with safety and serviceability criteria, such as those listed in Table 1. 

   Mobilizable strength design (MSD) first emerged as a concept in relation to the 

displacements observed around stiff in situ retaining walls. Bolton and Powrie (1988) 

(Figure 2) and Bolton et al. (1990) invoked separate, but arguably consistent, mechanisms to 

describe the state of equilibrium around an embedded wall, and a distribution of soil 

displacements and strains consistent with the kinetics of a rigid wall, in undrained clay. 

   These two mechanisms were linked through the representative shear stress-strain relation of 

the clay. A permitted wall rotation could be converted into a kinematically equivalent 

permitted soil shear strain, which could in turn be translated using stress-strain data into a 

mobilizable soil strength, which could then be used to derive an appropriate embedded depth 

required for equilibrium. The method was validated through centrifuge models of simulated 

excavation one side of a stiff preformed wall. 

   Later, the same approach was used by Osman and Bolton (2004) to calibrate MSD against 

the non-linear finite element analaysis (FEA) of retaining walls of various flexibility, 

subjected to excavation to various proportional depths, in clays that began with various K0 
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values and that required different strains to reach failure. Wall displacements predicted by 

rigid-wall MSD, as a ratio of those computed by FEA, were shown to fall in the range 1.0 to 

0.5, depending on the sytem parameters mentioned previously. The influences of these 

parameters on the calculated displacement ratio MSD/FEA were, in descending order of 

significance: relative wall flexibility, embedment ratio, soil mobilization strain, and initial K0 

value. Designers who were able able to apply the simple MSD approach could then use the 

charts in Osman and Bolton (2004) to recalibrate the MSD approximations accordingly. 

   An even simpler approach and suitable for codes of practice would be to work on the 

conservative side of the evaluations. If an in situ wall were to be designed with sufficient 

embedment to restrict wall rotations to 1/100, for example, a limit of 1/200 would be imposed 

in an equivalent MSD calculation, which offers the least favourable assessment of ΔMSD/ΔFEA 

across the range of conditions considered by Osman and Bolton (2004). In conducting that 

calculation, the shear stress-strain curves would then be constructed based on a mean strength 

profile, a mobilization strain M=2 obtained from the samples taken approximately from mid-

depth of the wall, and by assuming a power index of b = 0.6. The consequences of the 

strength profile falling below the mean of the test data, the mobilization strain being larger, or 

the power exponent different from 0.6, could be investigated. 

   MSD was extended by Osman and Bolton (2006) to predict the lateral bulging of a braced 

wall supporting an excavation in clay, using the deformation mechanism shown in Figure 3. 

Lam and Bolton (2011) later developed a refined approach using an energy balance on the 

same mechanism as the key to the calculation method. Bolton et al. (2014) used this technique 

to present MSD-based design charts for deep excavations in Shanghai soil deposits, validated 

against a databse of field construction records. The scatter evident in the field data is a good 

indication of the uncertainty inherent in making design assumptions, especially, to the extent 

of the ground deformation mechanism defined by the elevation below which wall and soil 
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displacements would be negligible. A good engineer in the possession of both field data from 

previous works and a simplififed design rule, is well-placed to cope with such uncertainties. 

 

Chart Methods 

Bolton et al. (2014) demonstrated the use of new dimensionless groups to display wall 

bulging estimates, namely, the modified displacement factor ψ* and the modified system 

stiffness η* (equations 8 and 9) for the development of MSD-inspired design charts for use in 

Shanghai, which represented an advance on the traditional approach of Clough et al (1989). 

Figure 4 shows the clear division between deeper and shallower excavations for the field data 

available. Figure 4 shows design lines that capture the variation ψ* and η* using full MSD 

analysis (Lam and Bolton 2011) and with upper, middle, and lower bound profiles of 

undrained strength variation with depth, approximated for Shanghai in Bolton et al. (2014). 

The MSD calculation shows that a considerable increase in system stiffness is needed to 

effect a significant change in bulging displacement, and that improving soil undrained shear 

strength (such as by deep cement mixing) should be considerably more influential. 
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Full MSD Predictions with RBD 

Zhang et al. (2015) applied the MSD method from Osman and Bolton (2004) to a database of 

45 field case histories and 14 centrifuge tests of unpropped cantilever wall displacements. 

They determined that the correction factor (FEA/MSD) is related to six dimensionless groups, 

and that the residual random part can be treated as a lognormal random variable. This study 

demonstrates the potential for MSD to be used in a RBD context. 
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SUMMARY REMARKS 

The Type 2 uncertainty described by McMahon (1985), the risk of designing to the wrong 

failure mechanism, is overlooked by most codified geotechnical design approaches, or not 

given the prominence it deserves. Many codes of practice have not emphasised the 

importance of the prediction of settlements as the key geotechnical element governing most 

structural design works. Furthermore, most of the highly cited studies on RBD assume that 

the geotechnical engineer is only concerned with gross collapse. Ground displacements 

should, however, be at the forefront of design thinking. To achieve this, deformation 

mechanisms need to be understood, and reliable values of tolerable settlements defined. The 

MSD philosophy provides geotechnical engineers with the tools to better calculate ground 

deformations without resorting to complex numerical methods. Recent databases have been 

produced that can be expanded and further analysed to provide statistical measures for RBD.  
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NOTATION 

 

The following symbols are used in this paper: 

b = non-linearity factor (soil); 

c = cohesion; 
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cu = undrained shear strength; 

EI = flexural rigidity per unit width of a retaining wall; 

F = load distribution; 

G = secant shear modulus; 

Gmax = shear stiffness at very small strains; 

K0 = coefficient of earth pressure at rest; 

L = generalised loading fuction; 

M = mobilisation factor; 

mF = mean value of estimated load; 

mQ = mean value of computed capacity; 

mV = mean value of the safety margin; 

pf = probability of failure; 

Q = computed capacity (resistance) distribution; 

sF = standard deviation of estimated load; 

SQ = standard deviation of computed capacity; 

sV = standard deviation of the performance function; 

R  = generalised estimate of capacity (resistance); 

RI = reliability index; 

rf = system reliability; 

V = performance function; 

w = overall settlement; 

wmax = maximum measured wall bulge; 

 = curvature parameter; 

  = angular distortion (or relative rotation);  

 = shear strain; 

 = shear strain to mobilise 50 per cent undrained shear strength; 
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ref = reference shear strain; 

w = unit weight of water; 

w/L = relative deflection; 

ε50 = strain to mobilise 50 per cent strength; 

η* = modified system stiffness; 

  = tilt (local and overall); 

  wavelength of the wall deformation mechanism;

average = average of the wavelength of the wall deformation mechanism; 

μ = mean value; 

 standard deviation; 

 = mobilised shear strength; 

ψ* = modified displacement factor; 

 soil friction angle; 

(·) = standard normal cumulative distribution function. 
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Table 1: Suggested Limits for the Relative Deflection of Structures 
 

 
 

Type of Structure Limit state Sources Magnitude 

w/L  0.5 

Guideline 

w/L 

Framed buildings 
Hazard 

(dangerous cracking) 

P& 

Bo 

Bu& 

1/300 to 1/500 

1/300 

1/600 

1/300 

 Serviceability  

(severe cracking) 

 

P& 

Bo 

Bu& 

1/1000 to 1/2000 

1/600 

1/1200 

1/600  

to 

1/1200 

 Appearance 

(repairable cracking) 
Bo 1/2400 1/2400 

 Machinery 

(malfunction) 
P& 1/2400 to 1/4000 1/2400 

Load-bearing 

Walls 
Hazard 

Bo 

Bu& 
1/300 1/300 

 

Serviceability 

Bo 

Bu& 

Bu& 

1/600 

1/2000 sag 

1/2000 hog 

1/600  

to 

1/1200 

 

Appearance 

Bo 

Bu& sag 

P&   sag 

P&   hog 

1/1200 

1/2000 

1/1250 to 1/2500 

1/2500 to 1/5000 

1/1200 sag 

to 

1/2400 hog 

Bridges Structural damage P& 1/500 1/500 

Serviceability TRB 1/250 to 1/500 1/500 

P& = Poulos et al. (2001) 

Bo = Boscardin and Cording (1989) 

Bu& = Burland et al. (2004) and Burland et al. (1977) 

TRB = TRB (2015) 
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Table 2: Types of Geotechnical Uncertainty (Adapted from McMahon 1985, with 

Permission from the Australian Geomechanics Society) 

 

Type Description 
Cause of 

Uncertainty 

1 Risk of encountering an unknown geological condition Technical 

2 Risk of using the wrong geotechnical criteria e.g., 

designing to the wrong failure mechanism or failure to 

anticipate the eventual failure mechanism 

Technical 

3 The risk of bias and/or variation in the design parameters 

being greater than estimated 

Technical 

4 Human error Social 

5 Design changes Social 

6 Over conservatism Social 
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Table 3: Some Classical Factors of Safety for Geotechnical Practice (Data from Terzaghi 

and Peck 1948) 

 
Type of Construction Quoted Factor of Safety (FOS) value T&P Article  

Retaining Structures 
 

 

 
1.5 (against sliding) 
1.5 (base heave) 
2.0 (strut buckling) 

 
Art. 46 
Art. 32 
Art. 48 

Slope stability 
 
 

 
1.3-1.5 

 
Art. 51 

Embankments 
 
 

 
1.5 
1.1-1.2 with monitoring 
 

 
Art. 52 

Foundations 
Footings and rafts 

 
Single piles 

 
 

Floating pile groups 

 
2-3 
 
2.5-3 (with load testing) 
6 (with ‘Engineering News’ formula) 
 
2-3 (w. r. t. base failure) 

 
Art. 53 to 55 
 
Art. 56 
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Table 4: Comparison of different partial factor sets from different historical codes of practice (Adapted from Meyerhof 1995) [Original 
source: Meyerhof, G. G. (1995). Development of Geotechnical Limit State Design. Canadian Geotechnical Journal, 32(1): 128-136 © 

Canadian Science Publishing or its licensors] 
 

Item 
Brinch Hansen 

Denmark 
DS 415 

Eurocode 
7 

Canada 
CFEM 

Canada NBCC USA ANSI A58 

(1953) (1956) (1965) (1993) (1992) (1995) (1980) 
Loads  
Dead Loads, soil weight 1.0 1.0 1.0 1.1 (0.9) 1.25 

(0.8) 
1.25 (0.85) 1.2 – 1.4 (0.9) 

Live Loads 1.5 1.5 1.5 1.5 (0) 1.5 (0) 1.5 (0) 0.5 – 1.6 (0) 
Environmental Loads 1.5 1.5 1.5 1.5 (0) 1.5 (0) 1.5 (0) 1.3 – 1.6 (0) 
Water pressures 1.0 1.0 1.0 1.0 (1.0) 1.25 

(0.8) 
1.25 (0)  

Accidental loads  1.0 1.0 1.0 (0)    
Shear strength 
Friction (tan) 1.25 1.2 1.25 1.25 1.25 

Resistance factor of 1.25 – 
2.0 on ultimate resistance 
using unfactored strengths 

Resistance factor of 1.2– 
1.5 on ultimate resistance 
using unfactored strengths 

Cohesion (c)  
(slopes, earth pressures) 

1.5 1.5 1.5 1.4 – 1.6 1.5 

Cohesion (c)  
(spread foundations) 

 1.7 1.75 1.4 – 1.6 2.0 

Piles  2.0 2.0 1.4 – 1.6 2.0 
Ultimate Pile Capacities        
Load tests  1.6 1.6 1.7 – 2.4 1.6 – 2.0 1.6  
Dynamic formulas  2.0 2.0  2.0 2.0  
Penetration tests     2.0 – 3.0 2.5  
        
Deformations  1.0 1.0 1.0 1.0 1.0 1.0 
        
N.B. Load factors in parentheses apply to dead and live loads when their effect is beneficial 
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Table 5: Statistical Variation of b, M=2 and  and ref for Clays Included in the 

Databases of Vardanega and Bolton (Data from Vardanega and Bolton 2011, 2013) 

 

Statistic Moderate Strain Small Strain 

Static Dynamic 

b M=2  ref  ref 

Maximum  1.21 0.044 1.13 0.0034 2.16 0.0050 

Mininimum  0.32 0.0015 0.50 0.00024 0.69 0.00037 

Mean, μ 0.60 0.0088 0.75 0.00097 1.05 0.0017 

Standard Deviation,  0.15 0.068 0.12 0.00071 0.25 0.0012 

COV = σ/μ 0.25 0.78 0.16 0.73 0.23 0.70 
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Figure 1: Categories of uncertainty in soil properties (adapted from Christian et al. 

1994 © ASCE). 

 

 

Figure 2: Admissible strain field for embedded cantilever wall rotating about a point 

just above its base: Rigid wall (adapted from Bolton and Powrie 1988, with permission 

from ICE Publishing). 
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Figure 3: MSD lateral bulging mechanism (adapted from Bolton et al. 2014, Reprinted 

by Permission from Higher Education Press Limited Company: Frontiers of Structural 

and Civil Engineering, Vol. 8, No. 3, page 204, copyright 2014) 

 

 

Figure 4: MSD design lines compared with database of excavations in Shanghai 

(adapted from Bolton et al. 2014, Reprinted by Permission from Higher Education 

Press Limited Company: Frontiers of Structural and Civil Engineering, Vol. 8, No. 3, 

page 218, copyright 2014) 
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