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The wall shear stress (WSS) vector �eld provides a signature for near wall convective
transport, and can be scaled to obtain a �rst order approximation of the near wall uid
velocity. The near wall ow �eld governs mass transfer problems in convection dominated
open ows with high Schmidt number, in which case a ux at the wall will lead to a
thin concentration boundary layer. Such near wall transport is of particular interest in
cardiovascular ows whereby hemodynamics can initiate and progress biological events
at the vessel wall. In this study we consider mass transfer processes in pulsatile blood
ow of abdominal aortic aneurysms resulting from complex WSS patterns. Speci�cally,
the Lagrangian surface transport of a species released at the vessel wall was advected
in forward and backward time based on the near wall velocity �eld. Exposure time and
residence time measures were de�ned to quantify accumulation of trajectories, as well
as the time required to escape the near wall domain. The e�ect of di�usion and normal
velocity was investigated. The trajectories induced by the WSS vector �eld were observed
to form attracting and repelling coherent structures that delineated species distribution
inside the boundary layer consistent with exposure and residence time measures. The
results indicate that Lagrangian wall shear stress structures can provide a template for
near wall transport.

1. Introduction

Wall shear stress (WSS) is the tangential component of traction on the wall. WSS
provides two types of information. First, it can be used to quantify the frictional drag
force per unit area on the wall. Second, it provides a �rst order approximation for near
wall convective transport. In the context of mass or heat transfer, the importance of near
wall ow is emphasized in high Schmidt (Sc) or high Prandtl (Pr) open ows with a
ux of species concentration or heat at the wall, and a convection dominated free stream
carrying a speci�c species concentration or temperature over the no-slip boundary. In
this paper, we focus on high Sc mass transfer, however, the ideas could be used in high
Pr heat transfer applications as well.

Mass transfer in the cardiovascular system, including the transport of solutes (e.g.
oxygen and nutrients) or that of proteins and cells (e.g. low density lipids and blood
cells), represents an important application of high Sc ows (Ethier 2002). The methods
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presented herein will be applied to pulsatile blood ow inside abdominal aortic aneurysm
(AAA). AAA is a permanent widening of the aorta in the abdominal region. The sudden
expansion of the aorta, complex vascular anatomy, presence of branch arteries, and
pulsatility of blood ow together lead to complex ow inside AAAs (Finol & Amon
2001; Deplano et al. 2007; Arzani & Shadden 2012), accompanied with complex WSS
distributions (Salsac et al. 2006) and particle residence times (Suh et al. 2011a,b).

It is known that in convection dominated ows, a ux of species concentration at the
wall will lead to the formation of a thin concentration boundary layer. The common ap-
proach to obtain the species concentration distribution is to solve the advection di�usion
equation in an Eulerian framework. However, this approach requires an extremely high
resolution near the wall, often leading to numerical di�culties in complex 3D ows (Ethier
2002). Alternatively, in the case of high Sc ows, the near wall region can be considered
isolated from the rest of the ow, with the core ow having negligible direct e�ect on
the concentration distribution. Because the WSS vector �eld can be scaled to obtain a
�rst order approximation for the velocity vector �eld next to the wall, it may be used to
compute surface-bound trajectories representing the transport of a material species near
the wall. In the case of high Sc numbers, the concentration boundary layer is very thin,
making this �rst order approximation reasonable for understanding near wall transport.

Previous studies have shown that for a prescribed concentration (Dirichlet boundary
condition) on the wall, the resulting ux of concentration from the wall is mostly
independent of the chaotic ow away from the wall (Ghosh et al. 1998). The observation
that the boundary layer distribution of a concentration is largely una�ected by advection
far from the wall motivates a reduced-order, near-wall approach, which can be based on
the WSS vector �eld. It should be noted however that the large scale core ow features
determine the WSS patterns (El Hassan et al. 2013), therefore the near wall transport
depends on the ow topology away from the wall indirectly.

In prior work, critical points of the WSS vector �eld and their dynamics have been
observed to play an important role in organizing near wall transport (Perry & Chong
1987; Cardesa et al. 2014). Also, the structure of WSS lines have been used in developing
theories for ow separation using dynamical system methods (Surana et al. 2006, 2008).
Recently, WSS critical points associated with rare near wall backow have been observed
in turbulent channel ows (Lenaers et al. 2012; Br�ucker 2015). WSS patterns have
been demonstrated to a�ect the heat transfer in impinging jets. As examples, the heat
transfer coe�cient has been shown to have similar distribution as WSS with a phase
shift (Had�ziabdi�c & Hanjali�c 2008), and Dairay et al. (2015) showed that the secondary
vortex resulting from ow impingement creates negative WSS regions that correspond
to heat transfer augmentation.

The correlations observed in the above studies between WSS and transport processes
motivates more mechanistic exploration of near wall ow topology induced by the WSS
vector �eld. In steady ows the critical points of the vector �eld and their associated
invariant manifolds largely determine the ow topology. In unsteady ows Lagrangian
coherent structures (LCS) have been used to obtain a template for transport (Shadden
2011; Haller 2015), including cardiovascular applications (Shadden & Taylor 2008; Shad-
den & Arzani 2015). These structures represent prominent ow features that organize
the ow from a Lagrangian perspective. This study demonstrates the relevancy of similar
structures obtained from the WSS vector �eld for organizing near wall transport in the
context of patient speci�c AAA models. Namely, species accumulation in the boundary
layer in connection with these structures will be demonstrated. The inuence of di�usion
and ow normal to the wall, is also investigated and discussed.
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2. Methods

Velocity data was obtained from computational uid dynamics (CFD) simulations of
blood ow in two patient-speci�c AAA models, as described in Arzani et al. (2014b). The
vascular models spanned from the descending aorta through the iliac arteries to ensure
the region of interest (aneurysm) was su�ciently far from inow and outow boundaries.
Major aortic branch arteries were also included due to their proximal inuence on
abdominal aortic ow. Inow and outow boundary conditions were tuned to match
measured, patient-speci�c ow rates and blood pressures as described in Les et al.
(2010). Rigid wall and Newtonian blood rheology were assumed. It has been shown
that the Newtonian assumption produces reasonable WSS patterns in AAAs (Marrero
et al. 2014) and that vessel deformation leads to relatively minor changes in overall
ow topology (Duvernois et al. 2013). Figure 1 shows one of the two AAA models, to
exemplify the anatomy of the model, morphology of volumetric ow waveform, and the
nature of mesh. The results presented in this paper are mostly based on this model for
demonstration purposes, although similar results were observed for other patient-speci�c
geometries. The incompressible Navier-Stokes equations were solved using the stabilized
�nite element ow solver in SimVascular (simvascular.org). Linear tetrahedral elements,
with second order time integration were used. The mesh edge size next to the wall was
200 �m, and the time step divided the cardiac cycle into 1000 time points. The peak
Reynolds number was Re = 1750 and the Womersley number was � = 12:8. The wall
traction was obtained as t = � � en, with the stress tensor � and the unit normal vector
en evaluated on the wall. The WSS vector was computed as

� = t� (t � en)en : (2.1)

The convective near wall transport can be derived by Taylor expansion of the uid
velocity near the wall (Gambaruto et al. 2010) as

u� =
� �n

�
+ O(�n2) ; (2.2)

where u� is the velocity vector in the local wall tangent plane, � is the dynamic viscosity,
and the �n is the distance normal to the wall where the velocity is being evaluated.

The vector �eld de�ned by the �rst term on the right hand side of Eq. (2.2) was used
to study transport. This vector �eld is de�ned on the surface mesh, however it represents
the near wall uid velocity (per Eq. 2.2), as uid velocity is zero on the vessel surface
itself due to the no-slip, no-penetration condition. To study transport on this simplicial
complex (discrete surface manifold), the methods used in (Zhang et al. 2006; Chen et al.
2007) to obtain surface streamlines were extended to unsteady vector �elds to obtain
WSS surface pathlines. Pathlines were densely seeded over the aneurysm surface, and
integrated for 100 cardiac cycles, or until they left the domain. After several cardiac
cycles of ow simulation, the WSS vector �eld was recorded and assumed periodic since
the inow boundary condition was periodic. This enabled velocity data to be recycled for
the purposes of trajectory integration over many cardiac cycles. The species concentration
was assumed to be dilute and modeled by advection of non-interacting passive tracers.

In order to evaluate the regions of species accumulation in the boundary layer, we
introduce a WSS exposure time measure, which is de�ned for each surface element
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Figure 1. Example AAA model. The region of interest where trajectories are tracked is
highlighted in red. The volumetric ow rate waveform at the inlet and the mesh are also shown.
The �rst patient is shown in this �gure.

(triangle) as the accumulated amount of time of all trajectories visiting that element

WSSET (e) =
q

Am

Ae

NtP
p=1

R T
0
He(p; t) dt (2.3)

He =

(
1 if xp(t) 2 e
0 if xp(t) =2 e

;

where Ae is the area of the element, Am is the average area of all the elements, xp(t)
is the position of the near wall trajectory, He is the indicator function for element e,
Nt is the total number of trajectories released, and T is the integration time. For each
trajectory, we de�ne the WSS residence time as the amount of time that it takes to leave
the near wall ow domain, mapped back to the initial condition

WSSRT (x0; t0;� ) = min(t) 2 (0; T ) s.t. x(x0; t0 + t) 62 � ; (2.4)

where � is the near wall ow domain.

In order to characterize the near wall ow topology induced by the WSS vectors
in complex geometries, one approach would be to compute the �nite time Lyapunov
exponent (FTLE) �eld on the lumen surface to identify LCS. In this study LCS were
identi�ed by simply advecting a large enough number of trajectories (� 42000) and
identifying coherent structures formed. With su�cient forward time integration, the
trajectories trace out prominent attracting LCS, and with backward time integration
prominent repelling LCS are delineated. The motivation for this simple approach was to
aid visualization; the temporal persistence of these near wall LCS made this possible.
We refer to these as WSS LCS, which demonstrate organizing structures of near wall
transport.

The above analysis ignores two e�ects that may be of importance. The reconstructed
velocity in Eq. (2.2) ignores the normal near wall velocity. This velocity is second order,
and is considered small close to the wall. However, over longer integrations in time this
second order term might become important. The normal velocity can be written from
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the same series expansion used above (Gambaruto et al. 2010) as

un = � 1

2�
r � � �n2 + O(�n3) : (2.5)

Thus, the divergence of WSS contributes to normal wall ux. Positive WSS divergence in-
dicates ow towards the wall (e.g., impingement), and negative WSS divergence indicates
ow away from the wall (e.g., separation).

The e�ect of di�usion on near wall transport is also ignored. A simple dimensional
analysis shows that the di�usion in the wall normal direction is more signi�cant than the
streamwise di�usion. The normal di�usion in a Lagrangian framework can be modeled
with a random walk approach (Ghosh et al. 1998)

�n(t+�t) = �n(t) + � (2.6)

� � N (0; 2D�t) ;

where D is the mass di�usion coe�cient,�t is the integration time step, and � is a random
variable determined from a Gaussian distribution, with zero mean and variance of 2D�t.
In order to model the normal to the wall transport e�ects considered by Eq. (2.5) and
Eq. (2.6), trajectories were con�ned to stay on the wall surface, however their normal-to-
wall distance was tracked by these equations. Therefore, at each time step the trajectories
experience a slightly di�erent value of �n, which contributes to a di�erent value for near
wall velocity u� (see Eq. 2.2) in addition to the inherent spatial and temporal change of
the vector �eld. The normal to the wall transport was tracked until the trajectory left a
near wall threshold (�nmax), whereby the trajectory was assumed to be out of the near
wall ow region where this model holds and the integration was terminated.

The near wall distance �n remains to be chosen. This distance needs to be chosen
within the concentration boundary layer thickness �c. To approximate this, the order of
magnitude of the momentum boundary layer thickness � was evaluated from inspection
of the thickness of the high vorticity region near the wall. The concentration boundary

layer thickness was subsequently estimated using �=�c = Sc
1
3 (Truskey et al. 2004). A

mass di�usion coe�cient of D = 5 � 10�6 cm2

s was used, which is approximative of the
di�usivity of chemicals and proteins in blood. The kinematic viscosity for blood was

set to � = 0:0377 cm2

s , which gives a Sc number of Sc = �
D � 7500. Using the above

estimates, the concentration boundary layer thickness was estimated as �c � 0.005 cm.
Since �n should be chosen within �c, a �n = 0:0014 cm was chosen. The sensitivity to
this choice will be later discussed. The maximum near wall region thickness �nmax was
chosen within the momentum boundary layer thickness � in the region where the velocity
pro�le was mostly linear (�nmax � 0.05 cm). A smaller �nmax was tested to ensure the
results were not sensitive to this choice.

The full continuum 3D advection-di�usion problem was solved to validate the proposed
Lagrangian surface transport approach. The advection-di�usion equation is written as

@c

@t
+ u � rc = Dr2c ; (2.7)

where c is a non-dimensional concentration, u is the velocity and D is the mass di�usivity
as above. A Neumann boundary condition of @c

@n = 10 cm�1 was prescribed at the no-
slip wall representing a uniform ux of concentration. The inlet and outlet boundary
conditions were set to c = 0. Zero Dirichlet outlet boundary condition was preferred to
zero Neumann, due to the presence of reverse ow. The outlet boundary was extended
to ensure minimal inuence of the outlet boundary condition. A �nite element method
was used to solve the equation using streamline upwind/Petrov-Galerkin (SUPG) for-
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Figure 2. WSS exposure time and WSS residence time plots in �rst AAA model. Forward time
trajectories are superimposed on the exposure time �eld, and backward time trajectories are
superimposed on the residence time �eld. The forward and backward trajectories aggregate to
attracting and repelling WSS LCS, respectively. T = 0:75 s is the cardiac cycle of the patient.
The absolute time instances shown correspond to t = 0, t = 27T , t = 61T , and t = 100T from
left to right.

mulation (Brooks & Hughes 1982; Bazilevs et al. 2007), implemented in the FEniCS
package (Logg et al. 2012). Second order tetrahedral elements were used with an edge
size of 0.1 cm in the interior and a boundary layer mesh with next to wall edge size of
6.6 �m in order to resolve the concentration boundary layer. The simulation was run for
60 cardiac cycles until the surface concentration reached steady state.

3. Results

Figure 2 shows the WSS exposure time and WSS residence time �elds in the �rst
AAA model. Forward and backward time WSS trajectories are shown in the �gure. In
forward time (top row), WSS trajectories are seen to cluster towards distinct curves,
which identify attracting WSS LCS. Trajectories remain in the vicinity of the attracting
LCS for a long time, therefore the WSS exposure time is high in such regions. Moreover,
the attracting LCS demonstrates little motion over time, which causes the region of high
exposure time (red region in Fig. 2) to be con�ned to narrow bands. In backward time,
WSS trajectories cluster to distinct curves, which identify a repelling WSS LCS. In this
case the repelling LCS marks the boundary between the trajectories that eventually leave
the domain, and those that remain in the near wall region for a long time (high residence
time region).

Figure 3 further demonstrates the role of the WSS LCS in organizing near wall
transport. The second patient is shown in this �gure, due to interesting WSS LCS
patterns. Three repelling WSS LCS, indicated by clustering of black tracers, divide the
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Forward time

rLCS 1

rLCS 2
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Figure 3. Three repelling WSS LCS are formed from backward time integration of WSS
trajectories (black spheres). These LCS mark the boundary of four di�erent near wall regions.
Trajectories starting in each of these regions are colored di�erently, and are shown to have
di�erent fates. The second patient is shown in this �gure. The time instances shown correspond
to t = 0, t = 34T , and t = 100T from left to right. T = 0:95 s is the cardiac cycle of this patient.

surface into four regions. Additional tracers are seeded and colored based on their initial
position with respect to these regions. Upon advection of the colored sets of tracers it is
seen that the trajectories starting in any of these four regions move collectively towards
a di�erent location in forward time. Namely, the repelling WSS LCS indicate boundaries
between di�erent basins of attraction for near wall species.

The e�ect of di�usion and normal velocity on near wall transport was modeled as
described above and the results are shown in Fig. 4. The region of high WSS exposure
time formed by the attracting WSS LCS remains robust with respect to these e�ects
(top row). Di�usion causes some of the trajectories to leave the near wall domain in long
integration times, therefore the exposure time is generally reduced, although the same
features persist. Residence time results (bottom row) are more sensitive to di�usion and
normal velocity e�ects. Di�usion causes trajectories to randomly leave the region of high
residence time, and in general more noisy and lower residence time values are observed.
However, the boundary between the region of high residence time and low residence time
persists. Introduction of normal velocity leads to more dramatic change in the spatial
distribution of residence time. This is for two reasons. First, the e�ect of normal ow
is spatially dependent; in regions with large negative WSS divergence tracers will more
quickly escape from the near wall region. Second, residence time, by its de�nition, is
more sensitive to individual tracers leaving the near wall region. Alternatively, exposure
time depends on the collective behavior of trajectories and is therefore less sensitive to
this inuence.

Next we consider the e�ect of di�erent choices for �n on the results, as shown in Fig. 5.
We note that the dynamic variation of �n is tacitly considered in the results of Fig. 4,
however our goal here is to demonstrate more directly the underlying relationship of the
ow behavior to near-wall distance. For small values of �n (top left) the WSS LCS is
almost stationary, uctuating in a very narrow region of high WSS exposure time. The
reason for this quasi-steady behavior is that very close to the wall the WSS trajectories
have a small velocity, thus have small displacements during one cardiac cycle, which
is the time scale of ow unsteadiness. Subsequently, the near wall transport becomes
quasi-steady with the time average (TA) WSS vector governing transport. Indeed, upon
inspection of the limiting streamlines computed from the TAWSS vector �eld (bottom
right), it can be observed that the attracting WSS LCS coincide with unstable manifolds
of �xed points in the TAWSS vector �eld for small values of �n. For larger values of �n
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Figure 4. The e�ect of di�usion and normal ow on WSS exposure time and WSS residence
time. T = 0:75 s is the cardiac cycle of the patient. Di�erent views of the �rst patient is shown
in this �gure.

(top right and bottom left) it can be seen that the WSS LCS demonstrate increasing
uctuation with an increase in �n, as near wall convective transport becomes less
stationary. However, for large Sc numbers, as long as �n is within �c the WSS LCS
change modestly, and the WSS exposure time and residence time features are persistent.

To test the validity of using the �rst-order near-wall velocity approximation to integrate
near-wall particle transport, Figure 6 compares the WSS exposure time derived from
the surface transport model, and the surface concentration obtained from the full 3D
advection-di�usion solution. The spatially averaged Sherwood number Sh = @c

@nd =
(Cs � Ci), where d is the maximum aneurysm diameter, Cs is the (spatially averaged)
surface concentration, and Ci = 0 is the inlet concentration, was found to be 387. Relative
agreement can be observed between the main features (identi�ed hot spots) using the two
approaches, validating the surface-based Lagrangian approach. To establish convergence
of the numerical results, Figure 7 shows a comparison of the baseline TAWSS streamlines
and WSS LCS to those derived from a Navier-Stokes solution using a �ner mesh with
next to wall edge size of 100 �m. Relatively minor change in the structures are observed,
indicating adequate near-wall resolution of the ow �eld solution.

4. Discussion

In this study the role of Lagrangian wall shear stress structures on organizing the
near wall transport of high Sc ows was investigated in the context of blood ow in
abdominal aortic aneurysm. It was shown that the attracting and repelling WSS LCS
act as templates of near wall transport. The applicability of this approach relies on the
existence of a thin concentration/thermal boundary layer. Using � to scale the normal
to wall distance, the relative error in neglecting the higher order terms in Eq. (2.2) is
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Figure 5. WSS exposure time contours with the attracting WSS LCS (indicated by particle
clustering) for di�erent values of �n in the �rst patient. Two di�erent time instances are
shown to visualize the extremes in temporal displacement of the LCS. The limiting streamlines
of the TAWSS vector �eld are also shown, with normalized arrows showing the direction
of WSS vectors. For smaller �n, the attracting LCS demonstrate less movement and are
well-approximated by the unstable manifolds of the TAWSS vector �eld. For larger �n, near
wall transport, and hence WSS LCS, become more unsteady. T = 0:75 s is the cardiac cycle for
the patient. The two time instances shown di�er by 2T.

0

134 s

concentrationWSSET

0

0.2

Figure 6. Comparison of WSS exposure time (WSSET ) with the non-dimensional surface
concentration obtained from the corresponding 3D continuum advection-di�usion equation.
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Figure 7. Comparison of the TAWSS streamlines and attracting LCS (aLCS) obtained from
the original mesh (next to wall edge size 200 �m) to a �ner mesh (next to wall edge size 100 �m)
in the �rst patient. The TAWSS streamlines are colored based on the TAWSS vector magnitude.

O( �n� ). �n is chosen as the same order as �c, therefore the relative error in the linear

approximation is O( �c

� ). A relative error of 10% gives Sc � 1000. Therefore, the current
approach may give reasonable results for Sc or Pr number O(103) or higher (in the
examples shown Sc � 7500). We note however that the second order term scales with
WSS divergence, thus the near wall transport model can break down in locations of high
WSS divergence (cf. Fig. 4).

It has been shown that for Sc & O(103) mass transfer resulting from unsteady blood
ow was similar to that obtained from the time-averaged components (Ma et al. 1994).
Our result are consistent and provide further explanation. Two di�erent time scales
govern the near wall transport. The time scale for variations in the base ow (one cardiac
cycle) is much smaller than the time scale for e�ective transport of near wall species
(several cardiac cycles), implying that near wall transport is quasi-steady. It is important
to keep in mind that in complex ows a time-dependent ow solve is still needed, as the
time-averaged WSS �eld obtained from the time-dependent ow can be di�erent from the
WSS �eld obtained from a steady simulation with a time-averaged inow. For the ow
conditions considered in this study, we veri�ed that using the TAWSS vector as a steady
vector produced nearly identical WSSET results to the corresponding unsteady WSS
vector �eld. Our results also demonstrated that the quasi-steady behavior of near wall
transport led to the conforming of the WSS LCS with the stable/unstable manifolds of
the TAWSS vector �eld. Moreover, Shari� et al. (1991) have shown that stable/unstable
manifolds in the velocity �eld emerge from critical points of the time-averaged WSS �eld
in periodic two-dimensional ows. Therefore, the relation between WSS critical points
and their invariant manifolds with the core ow features can provide insight into the
basis of near wall transport.

For high Sc, as long as �n was chosen within the concentration boundary layer, the
exact choice did not signi�cantly a�ect the qualitative behavior of the WSS LCS, WSS
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Initial tracer seed 3D particle tracking

Figure 8. Tracers are seeded near the wall (�n = 7�m) and integrated in forward time using
the �rst patient model. The left panel shows tracer seed locations. The right panel shows the
emerging near wall structures after su�cient forward 3D integration. (Particles on right are
enlarged to become visual through the surface.)

exposure time and residence time �elds. We note that a decrease in Sc number yields
a larger concentration boundary layer thickness, and subsequently more unsteadiness in
near wall transport manifested in the temporal variations of WSS LCS. In the case of
smaller Sc number ows, a higher order representation of the near wall ow by means of
a series expansion (Perry & Chong 1986) may be employed to accurately model the near
wall transport with a larger �n. In this case, depending on the Sc number it is likely that
the trajectories closer to the wall will be controlled by the time-averaged WSS vector �eld
manifolds, and trajectories further away from the wall will be subject to unsteadiness
around these manifolds (cf. Fig.5).

While one may use the full 3D velocity �eld to track near wall tracers, this can be
di�cult to implement. For validation, we seeded tracers �n = 7�m from the wall and
integrated them forward in time using the full 3D ow �eld until coherent structures
were formed near the wall as shown in Fig. 8. It can be observed that tracers accumulate
near the same attracting WSS LCS as shown in Fig. 2. However, in using the 3D
velocity �eld for integrating near wall tracers, small errors in numerical integration are
more easily ampli�ed. Namely, such errors result in (1) increases in �n causing higher
normal velocities and tracers leaving the near-wall region prematurely, or (2) decreases
in �n causes tracers to stick to, or penetrate, the wall. Over long integration times
needed to understand near wall transport, the accuracy of near wall integration can
become signi�cantly impaired due to these e�ects. Alternatively, the surface integration
method provides a more e�cient approach, while maintaining accuracy as for example
demonstrated by the agreement between WSSET and the surface concentration obtained
from solving the 3D continuum advection-di�usion equation (cf. Fig.6).

For most vascular applications, the emergent WSS LCS patterns will be largely
dependent on the vascular geometry and Reynolds and Womersley numbers as these
factor most inuence ow topology. Indeed, Gopalakrishnan et al. (2014) have shown that
small changes in the AAA geometry can signi�cantly a�ect the WSS distribution, and
changes in the curvature of the vessel wall have also been shown to a�ect WSS (Siggers
& Waters 2008). In the current study we demonstrated results in two patient geometries,
however, we also performed similar simulations in a total of six patient geometries and
observed similar WSS LCS structures inuencing the observed near wall concentration
�elds. Thus, the indication that Lagrangian wall shear stress structures can provide a



12 A. Arzani et al.

template for near wall transport appears to hold generally over widely varying geometrical
models.

The inlet ow waveforms used in this study were patient speci�c resting waveforms
obtained from phase contrast magnetic resonance measurements. We have performed
preliminary study on the e�ect of simulated exercise ow conditions (increased Reynolds
and Womersley numbers, as modeled in Arzani et al. (2014a)) on WSS LCS, and observed
that the quasi-steady behavior of near wall transport can break down due to the higher
WSS magnitudes. In addition, pulsatile blood ow may have some cycle to cycle variations
due to transient e�ects from the uid mechanics or physiology. In this study we assumed
a periodic WSS vector �eld to generate WSS trajectories. Depending on the Reynolds
and Womersley numbers, the intercycle variations in the ow �eld can break down the
quasi-steady behavior of the WSS LCS, leading to greater unsteadiness in the near
wall transport. Under such conditions the WSS LCS may demonstrate time dependent
behavior and deviate from the stable/unstable manifolds of the TAWSS �eld. Additional
considerations that remain to be studied are that higher WSS divergence magnitudes
typically observed under exercise conditions, as well as physiologic deformation of the
vessel wall due to wall compliance, may increase transport normal to the vessel wall in the
boundary layer. To visualize the WSS LCS in this study we relied on a simple advection
of tracers. Alternatively, one could compute the �nite-time Lyapunov exponents (FTLE)
on a non-Euclidean manifold to visualize the LCS (Lekien & Ross 2010). The simple
approach employed here is nonetheless able to identify the more prominent LCS, which
a�ect the concentration pattern on the vessel surface.

The current study provides a framework for understanding the mechanisms underlying
mass/heat ux at a no-slip wall in disturbed high Sc/Pr ows. In particular, attracting
WSS LCS determine patterns of high species concentration, and repelling WSS LCS
mark the boundaries of di�erent basins of attraction. Therefore, the WSS LCS provide a
template for the distribution and evolution of wall generated species. Recently, Nguyen
et al. (2015) have demonstrated the separation between near wall species with di�erent Sc
numbers. This separation could also happen due to the partitioning e�ect of the repelling
WSS LCS as demonstrated in Fig 3. From a design perspective, it would be interesting
to manipulate these structures to obtain a WSS pattern with a desired outcome of wall
concentration/temperature distribution, in similar fashion to Hubble et al. (2013), who
investigated the e�ect of vortical structures near the boundary layer on heat transfer
augmentation. Finally, the bearing of these structures on near wall transport of turbulent
ows remains to be investigated.
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