On the Performance of Opportunistic NOMA in Downlink CoMP Networks

Yue Tian, Andrew R. Nix and Mark Beach

Abstract—In this letter, an opportunistic NOMA (ONOMA) scheme is proposed in Coordinated Multi-Point (CoMP) system. Compared with the conventional joint-transmission (JT) NOMA in CoMP, the main purpose of the ONOMA scheme is to advance the capability of the CoMP system and the effectiveness of the successive-interference-cancellation (SIC) decoding process. The relationship between the topology of the ONOMA cells and the sum-rate of CoMP network is analysed. Meanwhile, the outage probability of ONOMA system is derived and evaluated in ideal case and non-ideal case respectively. In the numerical results, the sum-rate and the outage performance of the proposed ONOMA case and non-ideal case respectively. In the numerical results, the probability of ONOMA system is derived and evaluated in ideal sum-rate of CoMP network is analysed. Meanwhile, the outage relationship between the topology of the ONOMA cells and the successive-interference-cancellation (SIC) decoding process. The capability of the CoMP system and the effectiveness of the CoMP, the main purpose of the ONOMA scheme is to advance

I. INTRODUCTION

As one of the key technology enhancements for LTE-A, the coordinated multi-point (CoMP) transmission scheme is an area of intense research [1]. For the downlink of the CoMP system, the access points (AP) allocate the same channel to a cell-edge user and this channel can not be allocated to other users at the same time. Thus, the spectral effectiveness of the CoMP system degrades when the cell-edge users increase in number if the orthogonal multiple access is employed. Recently, a promising non-orthogonal multiple access (NOMA) scheme has been proposed for CoMP in an endeavour to tackle this difficulty [2]. The NOMA technique is acknowledged as a potential candidate air interface technique for the fifth generation (5G) mobile networks [3]-[7]. By using NOMA, which merges the superposition coding (SC) scheme at transmitters with the successive interference cancellation (SIC) scheme at receivers [3], users are capable of decoding their own signal even though they are using the same frequency channel simultaneously. For the downlink of the cellular network, the system level performance along with the user fairness of NOMA is studied in [4]. In [5], a cooperative NOMA with simultaneous wireless information and power transfer scheme is investigated. In [6] and [7], the ergodic sum-rate and outage behavior of NOMA is studied in the normal cellular network and a relay-based heterogeneous network respectively.

The NOMA strategy is able to offer extensively improved spectrum efficiency, however, the complexity of NOMA scales with the number of users alongside the level of multi-user interference [3]. To overcome this issue alongside providing additional performance enhancements, an opportunistic NOMA (ONOMA) scheme is proposed in this research. More specifically, the main contributions of this letter are as follows: a) we first consider a joint-transmission NOMA (JT-NOMA) scheme in CoMP, and then propose a novel ONOMA scheme; b) by analyzing the topology of ONOMA CoMP, we describe the procedure of the ONOMA scheme in ideal and non-ideal scenarios respectively; c) the achievable sum-rate and the outage performance of the proposed scheme are derived for different ONOMA topologies; d) the comparisons of the sum-rate and outage probability of JT-NOMA with ONOMA are computed and presented.
where $I_k = \left| h_k \right|^2 \sum_{m \in K} a_m$ along with $a_m < a_k$; note that when $m = K$, $I_k = 0$.

The sum-rate of K users in conventional JT-NOMA CoMP is expressed as

$$ R_{\text{sum}} = \sum_{k \in K} \left\{ \log \left(1 + \frac{\left| h_k \right|^2 a_k}{I_k + \sigma_k^2 P^{-1}} \right) \right\}. \quad (3) $$

B. Opportunistic NOMA Strategy in CoMP

We assume that the range of the transmit power at each AP is $[P_{\text{min}}, P_{\text{max}}]$. The transmit power allocated to s_k at the AP b is given by $P_{k,b} = a_k P$, then $P_{k,b} \in [P_{\text{min}}, P_{\text{max}}]$. The ONOMA strategy is implemented via the following procedure:

1) Initialization (Reference Broadcast): The B APs separately broadcast a normalized reference signal s_b to the K users, with reference transmit power P_r. Via the B reference signals, each user creates a reference power set. The user k’s $(k \in K)$ reference power set is expressed as $D_k = \{ P_r | h_k, 1 |^2, \ldots, P_r | h_k, B \}$.

2) Scheduling (AP Selection and ONOMA Cells Generation): By using the opportunistic AP selection algorithm, each user generates a set for its preferred APs. The user k’s preferred AP set is denoted by S_k. The required channel state information (for SC precoding in NOMA as [2]-[6]) along with the AP selection results are fed back from K users to B APs. Then based on the feedback, the CoMP system generates B ONOMA cells. The ONOMA cell b contains the AP b and the users who select the AP b in their preferred AP sets, therefore the set B can also indicates the B ONOMA cells. The set of the users in ONOMA cell b is denoted by W_b.

Algorithm 1 Opportunistic AP Selection (OAPS) Scheme

1) Input B, D_k, P_r, P_{max} and P_{min}.
2) Set $b = 0$, $S_k = \emptyset$ and $B = \text{card}(B)$.
3) Define $\hat{D}_k = P_{r^{-1}} - D_k$ and normalized \hat{D}_k, such that $\forall b \in B$, $\hat{D}_k \{ b \} \in [0, 1]$.
4) Let ϵ_k denote an AP selection threshold value at user k.
5) Randomly select the value of ϵ_k from an inter干 course range. (e.g. the interference range is set to $[0, 0.1]$ in simulation results).
6) Define $\delta_k = P_{\text{min}} \epsilon_k$. For all $b \in B$, compare $P_{\text{max}} \hat{D}_k \{ b \}$ with δ_k; if $P_{\text{max}} \hat{D}_k \{ b \} \geq \delta_k$, add the AP’s index b to S_k.

For the user k, the interference from the APs which are selected by S_k is defined as the intra-ONOMA cell interference (this can be canceled by SIC); the interference from the APs which are not selected by S_k is defined as the inter-ONOMA cell interference (this cannot be canceled by SIC). Let Ψ_k denote the inter-ONOMA cell interference to the user k; the observation at user k is given by

$$ r_k = \sum_{b \in S_k} h_k, b \sum_{i \in W_b} a_i P s_i + \Psi_k + n_k, \quad (4) $$

where $\Psi_k = \sum_{j \in \{ B \setminus S_k \}} \sum_{n \in W_j} h_j, j \sum_{i \in W_j} a_i P s_n$.

By implementing the Algorithm 1, the threshold value ϵ_k at user k ensures that for all $j \in \{ B \setminus S_k \}$ and $b \in S_k$, there exist $h_{k,j} \sqrt{a_n P s_n} < h_{k,b} \sqrt{a_i P s_i}$, where $n \in W_j$ and $i \in W_b$. Therefore, the complexity of SIC is reduced as the SIC is only charge of the intra-ONOMA cell interference. Note that some ONOMA cells may have an overlapping area (by using Algorithm 1), which means the users could be selected by different ONOMA cells at the same time. Based on whether the ONOMA cells have overlapping area, the ONOMA CoMP can be divided into ideal case and non-ideal case.

1) Ideal Case of ONOMA CoMP: For the ideal case, each user only selects one AP in its preferred AP set, which means for all $k \in K$, $\text{card}(S_k) = 1$, where $\text{card}(S_k)$ denote the cardinality of a set S_k. Therefore, there is no overlapping area between the different ONOMA cells. Assume that $a_n < a_k$ for all $m \in \{ W_b; b \in S_k \}$, by using SIC, the rate of detecting s_k at user k can be expressed as follows

$$ R_{k,b} = \log \left(1 + \frac{a_k \left| h_{k,b} \right|^2}{I_k + \Psi_k + \sigma_k^2 P^{-1}} \right), \quad (5) $$

where $b \in S_k$, $I_k = \left| h_{k,b} \sum_{m \in \{ W_b \cup S_k \}} a_m \right|^2$ and $\Psi_k = \sum_{j \in \{ B \setminus S_k \}} h_{j,b} \sum_{n \in W_j} a_n$. Note that for all $m \in \{ W_b; b \in S_k \}$, if there is no $a_n < a_k$ then $I_k = 0$. The sum-rate of K users for the ideal case ONOMA is given by

$$ R_{\text{sum}} = \sum_{b \in B} \sum_{k \in W_b} \log \left(1 + \frac{a_k \left| h_{k,b} \right|^2}{I_k + \Psi_k + \sigma_k^2 P^{-1}} \right). \quad (6) $$

2) Non-ideal Case of ONOMA CoMP: For the non-ideal case, two or more ONOMA cells may have the overlapping area, and that is because some users may select multiple APs. Let O_b denote the set of APs whose ONOMA cells exist the overlapping area with the ONOMA cell b, then an optimized ONOMA strategy can be implemented via the Algorithm 2.

Algorithm 2 Non-ideal Cases ONOMA Implementation

1) Input S_k and W_b; compute the cardinality of S_k for all $k \in K$.
2) If $\text{card}(S_k) \geq \cdots \geq \text{card}(S_K)$, the power allocation values to the K users will be sorted as $a_1 \geq \cdots \geq a_K$.
3) For $M = \{ 1, 2, \ldots, M \}$ users whose preferred AP sets have the same cardinality, the power allocation values will be sorted based on their equivalent channels. E.g. Let \hat{h}_m denote the equivalent channel of user $m \in M$, where $\hat{h}_m = \sum_{i \in S_m} h_{m,i}$; if $\text{card}(S_1) = \cdots = \text{card}(S_M)$, but $\left| \hat{h}_1 \right|^2 \leq \cdots \leq \left| \hat{h}_M \right|^2$, then $a_1 \geq \cdots \geq a_M$.
4) For all $b \in B$, let S_b^P denote the element who has the largest cardinality in $\{ S_i; i \in W_b \}$ and define a null set \mathcal{U}_b; then $\forall o \in \{ W_b; b \in O_b \}$, compare $\text{card}(S_o^P)$ with $\text{card}(S_o)$; if $\text{card}(S_o) \geq \text{card}(S_o^P)$, add the user’s index o to \mathcal{U}_b.
5) For all $b \in B$ and $k \in K$, AP b broadcasts signal $\sum_{i \in \{ W_b \cup \mathcal{U}_b \}} a_i P s_i$ and user k decodes its observations.
Assume that $a_m < a_k$ $(m \in \{ W_b; b \in S_k \})$, the rate of detecting s_k at user k is given by

$$ R_{k,n} = \log \left(1 + \frac{\left| \sum_{b \in S_k} h_{k,b} \right|^2 a_n}{I_k + \Psi_k + \sigma_k^2 P^{-1}} \right), \quad \text{(7)} $$

where $I_k = \sum_{b \in S_k} \left(\sqrt{\sum_{m \in W_b} a_m h_{k,b}^2} \right)^2$ and $\Psi_k = \sum_{j \in \{ R \cup S_k \}} \left(\sqrt{\sum_{n \in \{ W_j \cup S_k \}} a_n h_{k,j}^2} \right)^2$. If there is no $a_m < a_k$ for all $m \in \{ W_b; b \in S_k \}$, then $I_k = 0$. The sum-rate of K users for the non-ideal case ONOMA is given by

$$ R_{\text{sum}} = \sum_{k \in K} \log \left(1 + \frac{\left| \sum_{b \in S_k} h_{k,b} \right|^2 a_n}{I_k + \Psi_k + \sigma_k^2 P^{-1}} \right). \quad \text{(8)} $$

III. Outage Probability of ONOMA

Define $R'_{k,n} < R_{k,n}$ as user k's targeted and real data rate to decode the signal s_n, respectively. Then, outage will happen when $R_{k,n} < R'_{k,n}$, which means the user k cannot detect the user n's signal s_n before detecting its desired signal s_k. Let us define this outage event as $E_{k,n} = \{ R_{k,n} < R'_{k,n} \}$. For the ideal ONOMA CoMP, by substituting (5) to $E_{k,n}$, then

$$ E_{k,n} = \left\{ \frac{a_n}{\rho_k \sum_{b \in S_k} a_m} < \frac{1}{R'_{k,n} - 1}, \right\} \quad \text{(9)} $$

where $\rho_k = \mathcal{P} (\Psi_k + \sigma_k^2)^{-1}$. The complementary set of the outage event can be derived by

$$ E_{k,n}^c = \left\{ \frac{\left| h_{k,b} \right|^2}{a_n - \rho_k \sum_{m \in \{ W_b; b \in S_k \}} a_m} > \theta_n, \right\} \quad \text{(10)} $$

where $\theta_n = 2^{R'_{k,n} - 1}$. Then, step (a) follows the condition that $a_n > \theta_n \sum_{m \in \{ W_b; b \in S_k \}} a_m$.

Define $\nu_n = \theta_n \sum_{m \in \{ W_b; b \in S_k \}} a_m$ and $\phi = \max \{ \nu_1, \ldots, \nu_K \}$, the outage probability at user k is shown as

$$ P^\text{out}_k = 1 - \mathbb{P} (E_{k,1} \cap \cdots \cap E_{k,K}) = 1 - \mathbb{P} (\left| h_{k,b} \right|^2 > \phi). \quad \text{(11)} $$

The cumulative distribution function (CDF) and probability density function (PDF) of the unordered Rayleigh channel $\left| h_{k,b} \right|^2$ is given by

$$ F(x) = 1 - \exp (-x/\sigma_k^2), \quad f(x) = \sigma_k^2 \exp (-x/\sigma_k^2) $$

respectively. Define $N_b = \text{card} \{ \{ W_b; b \in S_k \} \}$ and assume that user k's decoding order in ONOMA cell b is $n_b(k)$ (where order $n_b(k)$ is higher than $n_b(k+1)$). Based on the high order statistics in [8], (11) can be derived as

$$ P^\text{out}_k \equiv \int_0^\phi N_b \frac{F(x) (F(x))^{n_b(k)-1} (1 - F(x))^{N_b-n_b(k)}}{n_b(k)-1)! (N_b-n_b(k))!} \, dx \quad \text{(12)} $$

where $\Delta i = \{ \psi_{i,n_b(k)} \}$ and $\psi_{i,n_b(k)}$ follows the power series of exponential functions.

For the non-ideal ONOMA, $E^c_{k,n}$ is expressed as

$$ E^c_{k,n} = \left\{ \rho_k \sum_{b \in S_k} a_m h_{k,b}^2 > \theta_n, \right\} \quad \text{(14)} $$

where (14) is derived by substituting (7) to $\{ R_{k,n} > R'_{k,n} \}$; step (c) follows the condition that $\forall b \in S_k; \gamma_{k,b} > 0$, where $\gamma_{k,b} = (1 - \rho_k \sum_{m \in \{ W_b; b \in S_k \}} a_m) \gamma_{k,b}$; and $\left| h_{k,b} \right|^2 = \sqrt{\gamma_{k,b} \alpha_{k,b}^2 \beta_{k,b}^2}$. According to [9], $\left| h_{k,b} \right|^2$ can be regarded as the generalized chi-square distribution with variance $\alpha_{k,b}^2 \beta_{k,b}^2$.

Define $\hat{\phi} = \max \{ \hat{\nu}_1, \ldots, \hat{\nu}_K \}$ and $M_k = \text{card} \{ \hat{S}_k \}$. The PDF of the unordered normalized chi-square RV $\left| h_{k,b} \right|^2$ is given by

$$ f_k(x) \equiv \frac{\hat{M}_k \cdot e^{-1} \exp (-\hat{\phi} x^2)}{\Gamma(M_k)}, \quad \text{(15)} $$

where $\hat{\phi}$ denotes the gamma function. Define $N_b = \text{card} \{ \{ W_b; b \in S_k \} \}$; then assume that the user k's decoding order in ONOMA cell b is $n_b(k)$ again. With the aid of order statistics and following the similar process in (12)-(13), the outage probability can be derived from integrating the PDF of the ordered variable $\left| h_{k,b} \right|^2$ as

$$ P^\text{out}_k \equiv \int_0^{\phi} \frac{N_b \left(F(x) (F(x))^{n_b(k)-1} (1 - F(x))^{N_b-n_b(k)}}{n_b(k)-1)! (N_b-n_b(k))!} \, dx \quad \text{(16)} $$

The cumulative distribution function (CDF) and probability density function (PDF) of the unordered Rayleigh channel $\left| h_{k,b} \right|^2$ is given by

$$ F_k(\phi) = \int_0^{\phi} \frac{e^{M_k \cdot e^{-1} \exp (-\hat{\phi} x^2)}}{\Gamma(M_k)} \, dx \quad \text{(17)} $$

where (d) follows the power series of exponential functions.

IV. Numerical Results

In this section, a time-invariant CoMP system which includes two single-antenna APs and five single-antenna users is considered and a Monte Carlo simulation is used to evaluate the performance of JT-NOMA and ONOMA. The set of the two APs and five users are denoted by B_s and K_o, respectively.
In order to obtain the statistical fading distribution, all the five users are randomly distributed in the two ONOMA cells in each simulation loop; if a user k is allocated in the ONOMA cell b but not in the overlapping area, then $|g_{b,k,b}/\mu_{b,k,b}|^2 > \epsilon_k$ and $|g_{b,k,b}/\mu_{b,k,b}|^2 < \epsilon_k$ (where $b_o \in \{B_o \setminus b\}$); if a user k is in the overlapping area of the B_o ONOMA cells, then $\forall b \in B_o$, $|g_{b,k,b}/\mu_{b,k,b}|^2 > \epsilon_k$.

The performance of JT-NOMA is evaluated under the same opportunistic conditions, i.e. the same distribution topologies and channel fadings are employed by JT-NOMA in each simulation loop. The power allocation coefficients for both JT-NOMA and ONOMA are sorted based on the decoding priority of the K_o users, e.g. assume that $\forall i \in K_o$, the decoding priority of user i is higher than user $i + 1$, then power allocation coefficient of user i is set as $a_i = \frac{\text{card}(K_o) - i + 1}{\mu}$, where μ is a parameter to ensure that $\sum_{i \in K_o} a_i = 1$. The channels in the following simulation results are normalized such that $|g_{b,k,b}/\mu_{b,k,b}|^2 \in [0,1]$. For the ideal case in ONOMA, the ϵ_k tends to 0 ($\epsilon_k \to 0$) such that S_k can exclude the APs only with extremely poor channel gain ($|g_{b,k,b}/\mu_{b,k,b}|^2 \to 0$). However, in practice, more APs with slight poor channel gain also need to be excluded by S_k, therefore in the following simulation results, the maximum range of ϵ_k in simulations is set as $0 < \epsilon_k < 0.1$.

In Fig.1, we compare the sum-rate performance between JT-NOMA CoMP and ONOMA CoMP with different inter-cell interference threshold levels: the ideal case ($\epsilon_k \to 0$) and two practical non-ideal cases where $\epsilon_k \in [0,0.01]$ and $\epsilon_k \in [0,0.1]$. Compared with JT-NOMA, the performance gain of ONOMA becomes significant when the signal to noise ratio (SNR) is larger than 6 dB. It should also be noticed that as the inter-ONOMA cell interference is proportional to the transmit power, for the cases that $\epsilon_k > 0$, the ONOMA sum-rate curves tend to flat with the increase of SNR. The Fig.2 provides a comparison of outage probability between JT-NOMA and ONOMA CoMP under different target data rates. Along with the simulation results, the theoretical curves are plotted at $\epsilon_k \to 0$ and $\epsilon_k \to 0.1$. Compared with the outage probability curves at $\epsilon_k \to 0$, it is shown that for each curve in which $\epsilon_k > 0$, the performance loss is proportional to the value of SNR. Moreover, the increase of ϵ_k results in a higher outage probability under the same SNR level.

V. CONCLUSIONS

An ONOMA scheme is proposed to reduce the complexity of SIC and in the meantime advance the performance of NOMA-CoMP system. The relationship between the topology of the ONOMA cells and the sum-rate of CoMP network has been analysed. Further, the outage performance of ONOMA system has been discussed in ideal case and non-ideal case respectively. Comparing with the conventional JT-NOMA CoMP, the numerical results show that the proposed ONOMA CoMP can achieve better sum-rate and outage probability performance.

REFERENCES