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Neurobiology of Disease

Altered Intrinsic Pyramidal Neuron Properties and Pathway-
Specific Synaptic Dysfunction Underlie Aberrant Hippocampal
Network Function in a Mouse Model of Tauopathy

XClair A. Booth,1* X Jonathan Witton,1* Jakub Nowacki,2 XKrasimira Tsaneva-Atanasova,2,3 XMatthew W. Jones,1
Andrew D. Randall,1,4 and XJonathan T. Brown1,4

1School of Physiology and Pharmacology and 2Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TD, United Kingdom, 3College of
Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom, and 4Institute of Biomedical and Clinical Sciences,
University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, United Kingdom

The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting
neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings
in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau
pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit
advanced taupathology andprogressiveneurodegeneration. In vitro recordings revealed shifted theta-frequency resonanceproperties of
CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibi-
tion at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting,
and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to alteredbehavior-
dependent network function.
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Introduction
Tau-associated neuropathology is a characteristic feature of a
range of dementias (Iqbal et al., 2010; Morris et al., 2011).

Studies in genetically engineered mice, which overexpress
disease-relevant mutant forms of tau protein, have allowed the
functional consequences of tauopathy to be probed and have
typically established deficits in learning and memory, particu-
larly in hippocampus-dependent tasks (McGowan et al., 2006).
However, comparatively few studies have examined the neuro-
physiological cellular and network mechanisms underlying these
deficits.

The rTg4510 mouse is a transgenic tau mutant overexpression
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Significance Statement

Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a
pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and
memory, is one of the first andmost heavily affected regions. Our results show that, in areaCA1of hippocampus, a region involved
in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level
function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify
several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for
future therapeutic intervention.
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model, which develops hyperphosphorylated tau, neurofibrillary
tangles, neurodegeneration, and associated cognitive impair-
ments in an age-dependent manner (Ramsden et al., 2005; San-
tacruz et al., 2005; Spires et al., 2006). Work in this model has
revealed tauopathy-associated morphological and electrophysio-
logical changes in rTg4510 cortical neurons, including dendritic
and synaptic atrophy, depolarization of the resting potential, and
increased “sag” potentials (Rocher et al., 2010; Crimins et al.,
2011, 2012). Furthermore, recent work has identified distur-
bances to hippocampal sharp wave-ripple oscillations (Witton et
al., 2014) and spatial encoding in rTg4510 mice (Cheng and Ji,
2013), suggesting a level of hippocampal network dysfunction.
Thus, it is apparent that tau-associated neuropathology induces
changes in neuronal cellular and network physiology, likely lead-
ing to cognitive behavioral impairments in tasks dependent on
these circuits.

In light of the evidence of disturbances in cellular and network
properties in rTg4510 mice, we sought to determine whether we
could correlate such changes within a behaviorally relevant net-
work by combining cellular- and network-level electrophysiolog-
ical analysis of hippocampal CA1 pyramidal neurons (CA1-PNs)
with mathematical modeling approaches.

Materials and Methods
Ethical approval. All procedures were performed in accordance with the
United Kingdom Animals (Scientific Procedures) Act 1986 and Euro-
pean Union Directive 2010/63/EU and were reviewed by the University
of Bristol Ethical Review Group.

Experimental animals. rTg4510 mice and their wild-type (WT) litter-
mates (Charles River) were used in this study. rTg4510 mice harbor
cDNA encoding human four-repeat tau containing the P301L mutation
under control of a tetracycline operon-responsive element (Santacruz et
al., 2005). Mice were bred on a 129S6_FVB/N-F1 genetic background,
weaned at 3 weeks of age, and housed according to gender and litter on a
12:12 h light:dark cycle with ad libitum access to food and water. Exper-
iments were performed on 7- to 8-month-old male mice, housed singly
for at least 2 weeks before experiments, which were performed during the
circadian light phase.

In vitro electrophysiological recordings. A total of 300 �m horizontal
hippocampal slices were prepared in an ice-cold (�4°C) sucrose-based
cutting solution (comprising the following in mM: 189 sucrose, 10
D-glucose, 26 NaHCO3, 3 KCl, 5 MgSO4, 0.1 CaCl2, 1.25 NaH2PO4)
using a Leica VT1200 vibratome (Leica Microsystems), and whole-cell
and extracellular recordings were made as described previously (Booth et
al., 2014). For recording, slices were submerged in a chamber maintained
at 32°C–33°C and continuously perfused (�2.5 ml/min) with oxygen-
ated aCSF containing the following (in mM): 124 NaCl, 3 KCl, 24
NaHCO3, 2 CaCl2, 1.25 NaH2PO4, 1 MgSO4, 10 D-glucose. Current-
clamp recordings were made using an internal solution containing the
following (in mM): 140 K-gluconate, 10 NaCl, 10 HEPES, 0.2 EGTA, 0.3
Na-GTP, 4 Mg-ATP, pH 7.3, �295 mOsm/L. A liquid junction potential
of 15 mV was corrected for arithmetically.

Square-wave current injections (500 ms, �100 or 300 pA) were used to
measure subthreshold membrane properties or to evoke action potential
(AP) firing. The impedance (Z) amplitude profile (ZAP) method (Hu et
al., 2002) was used to characterize the electrical resonance of CA1-PNs.
The ZAP current consisted of a constant amplitude (range 30–100 pA)
sinusoid with linearly increasing frequency (1–20 Hz over 30 s).

Postsynaptic potentials were evoked by brief (0.1 ms) electrical stim-
ulation of the Schaffer collateral (SC) and temporoammonic (TA) path-
ways. Extracellular field EPSPs (fEPSPs) were recorded in both stratum
radiatum and stratum lacunosum moleculare of area CA1 (see Fig. 6a).
For LTP experiments, baseline stimulation intensity was set to 40%–50%
of the maximal response as determined from input–output curves from
each slice for each pathway. Pathways were stimulated alternately at a
baseline frequency of 0.067 Hz. LTP was evoked using a theta-burst
stimulation (TBS) paradigm (Larson et al., 1986) consisting of 5 bursts

(10 stimuli at 100 Hz) delivered at 5 Hz, repeated 4 times at an interval of
20 s (Nolan et al., 2004). Stimulation intensity and duration were con-
stant throughout the entire experiment, including the theta-burst induc-
tion protocol.

In vitro electrophysiology data analysis. Analyses were performed using
MATLAB (The MathWorks). To determine input resistance (Ri) and
membrane time constant (�M), a single exponential was fitted to the
10%–95% portion of the membrane charging curve in response to a 500
ms injection of 100 pA hyperpolarizing current. Extrapolated Ri was
determined with Ohm’s law from an infinite time extrapolation of this fit
(Booth et al., 2014). The extrapolated Ri reflects resting Ri before the
additional activation of Ih that occurs upon hyperpolarization: % sag �
((extrapolated voltage change � steady-state voltage change)/extrapo-
lated voltage change) � 100. AP threshold was measured as the voltage
where the first derivative of the spike waveform exceeded 10 V/s. Imped-
ance profiles were constructed by plotting frequency against the magni-
tude of the fast Fourier transform (FFT) of the ZAP voltage response,
divided by the magnitude of the FFT of the ZAP current (Z � V(FFT)/
I(FFT)). The ratio (Q value) of the impedance at the resonance peak to
the impedance at 1 Hz was used to quantify the strength of the resonance.

As SC fEPSPs were in most cases contaminated by population spikes
following TBS, fEPSP slope was determined by fitting a straight line to the
initial rising phase of the fEPSP. An identical time window (1 ms follow-
ing the fiber volley, determined from baseline traces) was used for all
slope measurements for each experiment. TA fEPSPs were small com-
pared with SC fEPSPs, resulting in unreliable slope measurements in the
TA pathway (mean coefficient of variation for baseline fEPSPs: TA slope,
WT � 0.24 � 0.05, rTg4510 � 0.34 � 0.09; SC slope, WT � 0.064 �
0.007, rTg4510 � 0.097 � 0.02; TA amplitude, WT � 0.073 � 0.009,
rTg4510 � 0.046 � 0.009). Because population spikes were never ob-
served in the TA pathway, fEPSP amplitude was measured as commonly
reported in pathways with small synaptic response amplitudes (e.g., hip-
pocampal mossy fiber pathway) (Mistry et al., 2011).

Modeling. To model the effect of the h-current on CA1 neuronal be-
havior, we extended our CA1 pyramidal model (Nowacki et al., 2011) to
include an h-current. The h-current conductance was modeled using
Hodgkin-Huxley formalism (Hodgkin and Huxley, 1952) as a noninac-
tivating current with fast and slow activation components and is given by
the equation, IKh

�V� � gKh
�pmKh

� �1 � p�nKh
��V � EK�, where

gKh
� 0.05 is the maximal conductance of the current, mKh

is the fast
activation component and nKh

is the slow activation component of the
current, p � 0.85 represents the proportional contribution of the fast
component, V is the membrane potential of the cell, and EK is the reversal
potential of the current, which was set to EK � � 90 mV. The gating
variables are described by the ordinary differential equation as follows:

dx

dt
�

x	 � x

�x

where x	 are the steady-state activation functions and �x are time
constants for each of the gating variables x � 
mKh

, nKh
}. The steady-

state activation functions mKh
, nKh

are defined using a single Boltz-
mann function, namely, mKh	�V� � �1 � exp� � �V � VKmh

)/kKmh
���1

and nKh	�V� � �1 � exp� � �V � VKnh
�/kKnh

���1, where VKmh
� VKnh

�
�102 mV are the half-activations for the slow and fast components of the
current, respectively; kKmh

� � 13 mV and kKmh
� � 6 mV are the

slope of the functions. The current activation time constants are
�Kmh

� 15 ms and �Knh
� 210 ms.

In vivo electrophysiological recordings. Methods were as described
previously (Witton et al., 2014). Briefly, mice were implanted with
custom microdrives containing four independently movable tetrodes.
Tetrodes were fabricated from four 12.5 �m Formvar-insulated tung-
sten wires (California Fine Wire). Gold plating reduced the imped-
ance to 200 –300 k�.

Mice were anesthetized using isoflurane (4% induction, 1%–2%
maintenance) and fixed in a stereotaxic frame. Seven watchmakers’
screws were inserted into the skull to anchor the microdrive. A craniot-
omy was made over right parietal cortex, and tetrodes were implanted
into the brain at stereotaxic coordinates (relative to bregma): anteropos-
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terior, �2.0 to 2.2 mm; mediolateral, 1.5–2.0 mm. Tetrodes were im-
planted to a depth of 0.5–0.7 mm from the brain surface, which was
sealed off using a 70% paraffin wax/30% mineral oil mixture. Silver
ground and reference wires were connected to anchor screws overlying
the cerebellum. Gentamycin-impregnated bone cement was used to an-
chor the microdrive to the skull.

After 1 week of postoperative recovery, tetrodes were advanced 30–60
�m per day until neurophysiological signatures characteristic of the CA1
pyramidal cell layer could be identified (i.e., ripple oscillations, theta
modulation, complex spiking cells). Signals were recorded by connecting
the microdrive to a unity-gain headstage tethered to an analog high-
density recording system (Neuralynx). One tetrode was targeted to white
matter dorsal to the hippocampus as a local reference.

Tetrodes recorded local field potentials (LFPs) and, in several animals,
single units. LFPs were filtered between 1 and 475 Hz and sampled at 2
kHz. LFPs were acquired from all three tetrodes, with one of these signals
selected for analyses. Efforts were made to ensure consistent neuroanat-
omical placement of the LFP electrode across animals, based on post hoc
histology. Units were threshold triggered at 50 �V, filtered between 600
and 6000 Hz, and digitized at 30 kHz. Units were referenced to the local
reference, whereas LFPs were referenced to the cerebellar ground screw.
This was to prevent parietal or volume conducted hippocampal network
activity detected on the local reference from biasing the hippocampal
LFP. The animal’s position was tracked at 25 Hz using two light-emitting
diodes on the headstage and an overhead video camera.

For experiments, mice were placed on a familiar linear track (80 � 5
cm, with 10 � 10 cm turning zones at either end) and were required to
run from end-to-end for appetitive rewards (25 �l 10% condensed milk
in water). Mice were not food restricted but were habituated to the re-
ward. A black or white spatial cue card was placed on the wall of the
recording room at either end of the track. Recording sessions lasted for 15
min and were repeated across two consecutive days. Tetrodes were ad-
justed at the end of the first recording session to optimize their placement
for the following day.

At the end of experiments, mice received an overdose of sodium pen-
tobarbital (Euthetal), and electrolytic lesions were made at the tetrode
tips (30 �A anodal current, 10 s). Mice were transcardially perfused with
1� PBS followed by 4% v/v formaldehyde in 1� PBS. Tetrodes were
retracted, and the brain was removed from the skull. Brains were post-
fixed in 4% formaldehyde for a minimum of 24 h and cryoprotected in
30% w/w sucrose in 1� PBS for �48 h. Brains were cut into 50 �m
coronal sections, mounted onto slides, and stained using thionin. Final
recording positions were confirmed using bright-field microscopy.

In vivo electrophysiology data analysis. Analyses were performed in
MATLAB. Animal position and running speed were estimated from the
video tracking (25 Hz) of the headstage light-emitting diodes. X and Y
pixel coordinates were converted to centimeters by scaling to the dimen-
sions of the camera field of view. Tracking positions were then binned (by
linear interpolation) into 0.5 s epochs and the speed determined from the
distance traveled in each bin. As hippocampal network activity is modu-
lated by animal running speed (Chen et al., 2011), LFP analyses were
performed on epochs in which the running speed was between 10 and 20
cm/s. Signals recorded during these epochs were concatenated and de-
trended to generate a speed filtered LFP. Multitaper Fourier power anal-
ysis (Mitra and Pesaran, 1999) was performed using the Chronux
toolbox (Bokil et al., 2010). Phase-amplitude coupling (PAC) was as-
sessed using a PAC detection toolbox (Onslow et al., 2011). Spectral
power and the extent of PAC across different frequency bands were esti-
mated from the integral of the Fourier periodogram and PAC comodu-
logram, respectively.

Single units were isolated by clustering the spikes using KlustaKwik 1.7
(http://klusta-team.github.io/klustakwik/) followed by verification and
refinement in MClust 3.5 (http://redishlab.neuroscience.umn.edu/
MClust/Mclust.html). Cluster quality inclusion criteria were as follows:
isolation distance �15.0; L-ratio 
0.35 (Schmitzer-Torbert et al., 2005).
Putative units were rejected if the mean firing rate was 
0.1 Hz, or had
�0.3% of spikes within a 2 ms refractory period. CA1-PNs were classified
using standard waveform (peak-to-trough width �260 �s) and mean
firing rate (
5 Hz) analyses (Ranck, 1973). The complex spike index was

the percentage of consecutive spikes with an interspike interval 
15 ms
where the peak amplitude of the second spike was smaller than the first
(McHugh et al., 1996). The theta modulation index was calculated from
the Fourier transform of the �500 ms spike-train autocorrelation, as
described previously (Langston et al., 2010; Wills et al., 2010). Spike-
trains that contained 
100 spikes during theta-state epochs (running
speed �5 cm/s) were excluded from theta modulation analysis.

Firing rate maps were constructed by dividing the track length into 4
cm bins and dividing the number of spikes fired in each bin by the
occupancy time in each bin. As place cells routinely exhibit directionality
in linear environments (McNaughton et al., 1983), left-to-right and
right-to-left running trajectories were analyzed separately and the data-
sets pooled. Activity on a given trajectory was analyzed if the cell’s mean
firing rate was �0.1 Hz on that trajectory. To exclude spikes fired during
stationary behavior, laps that took �16 s to complete (mean running
speed 
5 cm/s) were excluded. Spatial information was calculated using
Skaggs’ formula (Skaggs et al., 1996) as follows:

Spatial information � �
i

Pi

Ri

R
log2

Ri

R

where i is the bin number, Pi is probability of occupancy for bin i, Ri is the
mean firing rate for bin i, and R is the overall mean firing rate. Spatial
information measures the extent to which a cell’s firing predicts the
animal’s location, expressed in bits/spike. Spatial information was calcu-
lated using adaptively smoothed rate maps to maximize the trade-off
between sampling error and blurring error, as previously described
(Langston et al., 2010; Wills et al., 2010; Chen et al., 2013). To calculate
the firing rate in bin i, a window centered on i was expanded until:

r �
�

n�s

where r is the radius (or half-width) of the widow, � is a constant (1000),
and n and s are the number of occupancy samples and spikes in the
window, respectively. To account for the possibility of cells having mul-
tiple discontinuous firing fields on the track, a cell’s firing field was
defined as the percentage of the track length (contiguous and noncon-
tiguous bins) where the firing rate exceeded 10% of the peak firing rate
(Nakazawa et al., 2003). Lap-by-lap rate-stability was defined as the mean
Pearson correlation coefficient calculated between the firing rate maps of
all possible pairs of individual laps, as previously described (Cheng and Ji,
2013).

Statistical analyses. Statistical analyses were performed using SPSS
(IBM) or MATLAB (The MathWorks). Datasets were tested for normal-
ity, and parametric or nonparametric tests were used as appropriate with
an � level of 0.05. Where appropriate, two-way ANOVA was used to
compare datasets across multiple factors. Where the sphericity assump-
tion was violated, a Huynh-Feld correction was applied to adjust the
degrees of freedom. Post hoc comparisons were made using a Bonferonni
correction for multiple comparisons. Data are mean � SEM unless oth-
erwise stated. Medians are presented for non-normal datasets, with in-
terquartile range in square brackets.

Results
CA1 network activity in rTg4510 mice
Impaired performance in the Morris water maze (Morris et al.,
1982) confirmed that mice in our rTg4510 cohort exhibited im-
paired hippocampal function at the 7–8 month age point used for
electrophysiological analyses (Fig. 1a). To examine neurophysi-
ological correlates of hippocampal dysfunction in awake, behav-
ing rTg4510 mice, CA1 LFPs were recorded in 6 WT and 7
rTg4510 mice as they traversed a linear track, baited at either end
with appetitive rewards. Recording electrode positions were con-
firmed by post hoc histology (Fig. 1b). During periods when mice
traversed the track at a velocity of 10–20 cm/s (WT � 13.2 � 0.3
cm/s, rTg4510 � 13.2 � 0.4 cm/s, t(11) � 0.16, p � 0.87, unpaired
t test), WT LFPs displayed a clear peak in the theta frequency
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Figure1. Impaired spatialmemory is associatedwith aberrant CA1network oscillations and theta-gammaphase-amplitude coupling in 7- to 8-month-old rTg4510mice.a, Hiddenplatformand
probe task performance in the Morris water maze in WT (n � 10) and rTg4510 (n � 10) mice. The maze consisted of a 1-m-diameter circular pool filled with opacified water and was surrounded
by overt visual cues. A 9-cm-diameter escape platform was concealed�1 cm beneath the water in one of the four maze quadrants. The length of swim path required to locate the escape platform
wasmeasuredwithin a 60 s time limit and averaged across four consecutive trails (30 s intertrial interval). The probe trial was performed on day 8. The escape platformwas removed, and the length
of swim path spent searching the target maze quadrant was measured within a 30 s time limit. Dashed line plots the chance performance level (25% path length inside target maze quadrant). b,
Photomicrographs of Nissl-stained coronal brain sections illustrating recording positions (arrows) in the CA1-PN layer in a representative WT and rTg4510 mouse. c, d, The 5 s traces of raw LFP
recorded in the CA1-PN layer of a representative WT (c) and rTg4510 (d) mouse. Expanded traces of wideband (W, 1–200 Hz), theta (	, red, 4–12 Hz), and gamma (
, green, 25–120 Hz) LFPs are
plotted below. In the WT traces (c), peaks in gamma amplitude coincide with peaks in the theta cycle, an example of theta-gamma PAC. e, Periodogram illustrating the wideband power spectral
density (PSD) of CA1 LFPs inWT and rTg4510mice. Inset, Plot of the 1–20 Hz PSD. f, Total PSD (integral of periodogram) for discrete frequency bands of CA1 network oscillations inWT and rTg4510
mice: delta (�; 1– 4 Hz); theta (	); beta (�; 12–25 Hz); slow gamma (
S; 25–50 Hz); fast gamma (
F; 50–120 Hz); high-frequency oscillations (HFO; 120–200 Hz). g, Relative PSD (% wideband
power) for discrete frequency bands of CA1 network oscillations in WT and rTg4510 mice. h, i, Population-averaged comodulograms illustrating theta-gamma PAC in WT CA1 LFPs (h) and strong
attenuation of theta-gammaPAC in rTg4510 CA1 LFPs (i). j, Quantification of theta-gammaPAC. e–g,h, Data aremean� SEM from n� 6WT and n� 7 rTg4510mice. *p
 0.05. ***p
 0.005.
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Figure2. Altered firing properties of CA1 pyramidal neurons in behaving 7- to 8-month-old rTg4510mice.a, Scatter plot (left) represents thewaveformenergies of extracellular APs recorded on
two channels of a representativeWT tetrode. Colors highlight clusters of APs discharged by individual neurons. Nonclustered APs have been omitted for clarity. Mean APwaveforms on each tetrode
channel are displayed for the red unit cluster (circled). Calibration: 100 �V, 250 �s. Right, Spike-train autocorrelation for the red unit cluster. Note the prominent peak in the 0–50 ms
autocorrelation (inset), illustrating the tendency for the cell to burst fire, and the �100 ms (theta) periodicity. b, As for a for a representative rTg4510 tetrode. Note the lack of obvious �100 ms
periodicity in the blue unit cluster autocorrelation and the reduced prominence of a peak at short latency lags. Calibration: 100 �V, 250 �s. c–f, Cumulative frequency plots illustrating the
distributions ofWT (n� 21) and rTg4510 (n� 42) CA1-PN spikewidths (c), firing rates (d), complex spike indices (e), and thetamodulation indices (f ). g, Lap-by-lap raster plots for the circledWT
cell in a and two other representative cells recorded in two different WT mice. Track position is plotted on the abscissa. Arrows indicate the direction of track traversal. Each tick indicates the firing
position of anAP. The averaged firing ratemap is plotted below.h, As forg for the circled rTg4510 cell inb and twoother representative cells recorded in twodifferent rTg4510mice. i–k, Cumulative
frequency plots illustrating the distributions of WT (n � 36 trajectories) and rTg4510 (n � 61 trajectories) CA1-PN spatial information indices (i), firing field sizes (j), and lap-by-lap rate stabilities
(k). c–f, i– k, Inset, Box plots represent the median, first and third quartiles, and 99% confidence limits. Line plots (normally distributed data) represent the mean � SD. ns, Not significant at p �
0.05. *p 
 0.05. **p 
 0.01. ***p 
 0.005.
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band (4–12 Hz), with less prominent peaks in the � (1–4 Hz), �
(12–25 Hz), and slow and fast gamma (25–50 Hz and 50–120 Hz,
respectively) frequency bands (Fig. 1c,e). Equivalent recordings
made from rTg4510 mice revealed an �75% deficit in wideband
LFP power in rTg4510 mice (WT � 28,300 � 1400 �V2,
rTg4510 � 7000 � 1400 �V2, F(1,11) � 143.2, p � 3.4 � 10�18,
two-way ANOVA; Fig. 1d,e). A factorial ANOVA also detected a
significant interaction between genotype and frequency band
(F(1.2,13.6) � 57.5, p � 1.0 � 10�6), suggesting LFP power to be
more depressed in rTg4510 mice at certain frequencies. Post hoc
comparisons showed that power was significantly decreased for
all frequencies up to and including the fast gamma band (Fig. 1f)
and that the greatest proportional decrease occurred in the theta
band, such that in WT mice the theta component comprised
58.2 � 3.8% of the wideband LFP, whereas in rTg4510 mice the
theta component only comprised 30.4 � 4.1% of the total signal.
As a result, the proportion of the signal contributed by all the
other frequency bands to the wideband LFP was significantly
increased in rTg4510 mice (Fig. 1g). Contrary to a previous report
in rTg4510 mice (Cheng and Ji, 2013), peak theta oscillation fre-
quency was not affected by genotype (WT � 9.0 � 0.1 Hz,
rTg4510 � 9.2 � 0.1 Hz, t(11) � 0.99, p � 0.34, unpaired t test).
This discrepancy is potentially the product of controlling for an-
imal running speed in spectral analyses in the present study, as
running speed modulates the power (Chen et al., 2011) and fre-
quency (Slawinska and Kasicki, 1998) of hippocampal theta
oscillations.

The phase of hippocampal theta oscillations is dynamically cou-
pled to the amplitude of concurrent gamma oscillations (Bragin et
al., 1995). This PAC is thought to support hippocampus-dependent
cognitive processes, including certain forms of context-specific
(Tort et al., 2009) and spatial memory (Tort et al., 2008). From
the same data, we calculated the modulation index (MI) (Canolty
et al., 2006) across a range of frequencies to generate a comodu-
logram. In WT mice, the phase of the theta oscillation was
strongly coupled to the amplitude of gamma oscillations, partic-
ularly in the fast gamma band (peak modulating frequency: 8.5 �
0.1 Hz, peak modulated frequency: 66 � 1.0 Hz; Fig. 1c,h). As we
could not clearly discriminate PAC between theta-slow gamma
and theta-fast gamma oscillations, the extent of coupling was
estimated between theta and slow-to-fast gamma frequencies
(25–120 Hz), such that theta-gamma coupling in WT mice was
147,000 � 8000 MI.Hz2. When this analysis was performed on
rTg4510 CA1 LFPs, we found a substantial deficit in theta-
gamma coupling (47,000 � 11,000 MI.Hz2, t(11) � 7.25, p �
1.6 � 10�5, unpaired t test; Fig. 1d,i,j).

CA1 pyramidal neuron activity in rTg4510 mice in vivo
Network oscillations facilitate the coordination of spiking in neu-
ronal circuits (Buzsáki and Draguhn, 2004). To explore whether
the changes in hippocampal network oscillations in rTg4510
mice were mirrored by changes in cellular activity, we examined
the spiking of isolated CA1-PNs recorded while mice traversed
the linear track.

We isolated 21 and 42 CA1-PN units (see Materials and Meth-
ods) from 5 WT and 3 rTg4510 mice, respectively (Fig. 2a,b).
Spike-widths (WT � 323 �s [296, 347], rTg4510 � 333 �s [300,
403], Z � 0.87, p � 0.39, rank-sum test) and firing rates (WT �
0.71 Hz [0.52, 0.96], rTg4510 � 0.56 Hz [0.29, 1.14], Z � 0.66,
p � 0.51, rank-sum test) were not significantly affected by geno-
type (Fig. 2c,d). Quantification of the level of burst firing by CA1-
PNs (complex spike index; see Materials and Methods), however,
revealed that rTg4510 CA1-PNs had a reduced propensity to fire

high-frequency bursts (WT � 13.5 [9.7, 17.0], rTg4510 � 8.0
[3.8, 12.1], Z � 3.26, p � 1.1 � 10�3, rank-sum test; Fig. 2e).
Theta-frequency modulation of CA1-PN spiking (Buzsáki, 2002)
(theta modulation index; see Materials and Methods) was also
significantly decreased in rTg4510 mice (WT � 7.0 [4.7, 10.2],
rTg4510 � 2.7 [1.2, 4.9], Z � 3.37, p � 7.5 � 10�4, rank-sum
test; Fig. 2f), suggesting that the changes in oscillatory drive in the
hippocampus in rTg4510 mice disturb the structure of neuronal
firing.

In a given environment, subsets of hippocampal pyramidal
neurons exhibit firing tuned to specific locations (O’Keefe and
Dostrovsky, 1971) and are thus posited to encode environmental
space (Moser et al., 2008). Recent work has demonstrated the
spatial specificity of CA1 “place cell” activity to be reduced in 7-
to 9-month-old rTg4510 mice as a result of these cells having
unstable firing locations (Cheng and Ji, 2013). Based on the ob-
servation of aberrant CA1-PN spiking in rTg4510 mice, we de-
termined whether similar aberrant spatial coding was present in
our sample of rTg4510 CA1-PNs. Lap-by-lap raster plots and
averaged firing rate maps were constructed for WT and rTg4510
CA1-PNs for each running trajectory on the linear track. Most
WT CA1-PNs active on each trajectory (mean firing rate �0.1
Hz) exhibited spatially modulated firing characteristic of place
cells (Fig. 2g). Although some rTg4510 CA1-PNs displayed place
cell activity (Fig. 2h, middle), across the population the location
specificity of rTg4510, CA1-PN firing (spatial information; see
Materials and Methods) was significantly decreased (WT �
0.86 � 0.08, rTg4510 � 0.61 � 0.05, t(95) � 2.67, p � 8.9 � 10�3,
unpaired t test; Fig. 2i). Total firing field sizes (% of track length)
were comparable between the two genotypes (WT � 32.4%
[20.0, 50.0], rTg4510 � 31.6% [20.0, 60.8], Z � 0.99, p � 0.32,
rank-sum test; Fig. 2j), although there was greater variability in
the rTg4510 CA1-PN population (quartile coefficient of varia-
tion, WT � 0.43, rTg4510 � 0.50). As has been observed (Cheng
and Ji, 2013), however, analysis of the lap-to-lap spatial firing
stability, defined as the average spatial correlation between the
firing rate maps of all laps, revealed that rTg4510 CA1-PNs had
significantly lower rate stability (WT � 0.25 � 0.02, rTg4510 �
0.20 � 0.02, t(95) � 2.00, p � 0.048, unpaired t test; Fig. 2k), likely
accounting for the reduced spatial information scores of these
cells. These findings link the previous observation of impover-
ished spatial coding by CA1-PNs in rTg4510 mice (Cheng and Ji,
2013) to impaired network oscillations at the network/LFP level.

Table 1. Intrinsic membrane properties of CA1-PNs from 7- to 8-month-old rTg4510
and WT micea

WT (n � 39) rTg4510 (n � 27) p

Subthreshold membrane properties
RMP (mV) �79.5 � 0.4 �78.1 � 0.6 0.060
Ri (M�) 134.5 � 5.1 147.3 � 9.8 0.21
�M (ms) 18.6 � 0.8 16.3 � 0.6 0.035*
% sag 24.9 � 1.2 29.7 � 1.6 0.016*
Negative peak (mV) �12.6 � 0.3 �13.5 � 0.9 0.32
Rebound (mV) 2.3 � 0.1 2.8 � 0.2 0.014*

Action potential properties
Peak (mV) 30.8 � 0.9 31.7 � 1.4 0.58
Width (ms) 0.79 � 0.02 0.81 � 0.01 0.32
Threshold (mV) �57.4 � 0.7 �59.3 � 0.8 0.061
Maximum rate of rise (V/s) 471 � 12 520 � 21 0.040*

aRMP, Resting membrane potential.

*Significant.
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Intrinsic membrane properties of CA1 pyramidal neurons
The intrinsic membrane properties of individual neurons have a
profound influence on the way they respond to ongoing network
activity (Traub et al., 2004; Harvey et al., 2009; Lee et al., 2012).
Electrophysiological data obtained in vivo from behaving mice
suggested alterations in the cellular neurophysiology of CA1-PNs
in rTg4510 mice. Current-clamp recordings were therefore made
from 39 WT and 27 rTg4510 CA1-PNs in hippocampal slices
prepared from 7- to 8-month-old mice to ascertain a range of
subthreshold and suprathreshold intrinsic membrane properties
(Table 1). While most of these parameters were unaffected by
genotype, we observed a significantly faster membrane time
constant (�M; WT � 18.6 � 0.8 ms, rTg4510 � 16.3 � 0.6 ms,
t(64) � 2.15, p � 0.035, unpaired t test) and increased h-current-
mediated (Ih) sag potential (WT � 24.9 � 1.2%, rTg4510 �
29.7 � 1.6%, t(64) � 2.47, p � 0.016, unpaired t test) in rTg4510
CA1-PNs (Table 1; Fig. 3a,b). There was also an increase in the
rebound potential in rTg4510 CA1-PNs, which likely reflects the
enhanced sag potential because the rebound potential in CA1-
PNs corresponds to the slow deactivation of Ih following mem-
brane repolarization. AP peak, threshold, and width at �15 mV
were unaltered by genotype, although there was a small but sig-
nificant increase in the maximum rate of rise in rTg4510 CA1-
PNs (Table 1), which likely reflects the significantly shorter �M.
Importantly, there was no detectable difference in AP firing pat-
terns (F(1,57) � 2.07, p � 0.16, two-way ANOVA on first 5 spike
pairs) or the number of APs (F(1,64) � 0.41, p � 0.52, two-way
ANOVA) elicited by depolarizing current injections (Fig. 3c,d),

suggesting that the changes in subthreshold membrane proper-
ties do not substantially affect the core excitability of rTg4510
CA1-PNs.

Alterations in membrane kinetics and sag potentials may af-
fect the way in which neurons respond to phasic oscillatory in-
puts. In this regard, CA1-PNs resonate within the theta frequency
band, such that they are tuned to respond to synaptic inputs in
this frequency range (Hutcheon and Yarom, 2000; Hu et al.,
2002). In CA1-PNs, theta frequency membrane resonance arises
from the combination of a relatively slow �M and the presence of
slowly activating and noninactivating voltage-gated conduc-
tances, such as Ih and Im (Hu et al., 2002; Nolan et al., 2004; Peters
et al., 2005). We therefore explored whether the changes in �M

and sag in rTg4510 CA1-PNs affected their resonance properties.
The voltage response to a sinusoidal ZAP current (see Materials
and Methods) produced a maximal response when the current
waveform was oscillating in the theta frequency band in both
genotypes at a range of different membrane potentials (Fig. 4a).
To quantify this, we derived impedance profiles for 24 WT and 16
rTg4510 CA1-PNs (Fig. 4b) and found that the peak resonance
frequency in rTg4510 CA1-PNs was significantly higher than WT
CA1-PNs (F(1,38) � 5.72, p � 0.022, two-way ANOVA; Fig. 4c),
although still within the theta band. We also observed a signifi-
cant increase in the strength of resonance (Q; F(1,38) � 12.72, p �
1.0 � 10�3, two-way ANOVA) in rTg4510 CA1-PNs compared
with WT CA1-PNs (Fig. 4d).

To explore the effects of alterations in �M and sag on the res-
onance properties of CA1-PNs, we used a Hodgkin-Huxley type

Figure 3. Fastermembrane time constant and increased Ih-mediated sag potential in rTg4510 CA1 pyramidal neurons.a, Left, Full-scalemean peak normalized traces (WT, black; rTg4510, blue)
in response to 500 ms, �100 pA current injection. Right, Initial response on a larger time scale reveals the difference in �M more clearly. Shaded areas represent the SEM. b, Scatter plots represent
membrane time constant (�M) and percentage sag from all recorded neurons (open symbols). Mean (filled symbols), SEM (box), and median (central line) are shown on the right. c, The number of
actionpotentials elicitedby500msdepolarizing current injection stepswasnot different betweenWTand rTg4510CA1-PNs.d, Instantaneous frequencybetween consecutive spikepairs in response
to 500ms, 300 pA depolarizing current injection steps reveals no significant differences in firing patterns between genotypes. Inset, Representative example trace from a rTg4510 CA1-PN showing
the initial high-frequency burst of action potentials followed by accommodation to �35 Hz. n � 39 WT and n � 27 rTg4510 CA1-PNs. *p 
 0.05.
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single-compartment model neuron. Increasing capacitance (CM)
without altering Ri increased �M (Fig. 5a,b) as expected, since CM

� Ri � �M. Notably, we found that keeping Ri constant and
decreasing CM (and thereby �M) of the model neuron, without
altering relative amounts of Ih, resulted in an increase in sag po-
tential (Fig. 5a,b) similar to that determined experimentally in
rTg4510 CA1-PNs. In addition, decreasing CM shifted peak res-
onance frequency to higher frequencies and increased strength of
resonance, as observed in rTg4510 CA1-PNs (Fig. 5c,d). Finally,
altering the membrane capacitance was also sufficient to alter the
maximum rate of rise of the AP in the model, in a manner con-
sistent with our experimental results (Fig. 5b). Based on the re-
sults from this model, a reduction in membrane capacitance of
�30% appeared to be sufficient to produce changes equivalent to
the mean changes in the neurophysiological parameters mea-
sured experimentally. Specifically, when CM was reduced by 30%,
sag ratio increased from 26.4% to 29.4% in the model, similar to

the difference between WT and rTg4510 CA1-PNs observed ex-
perimentally (Table 1). Similarly, membrane time constant was
2.8 ms faster in the model when CM was reduced by 30%, whereas
the difference in mean �M between WT and rTg4510 was �2.3
ms. A 30% reduction in CM was also sufficient to produce a
similar change in membrane resonance properties; thus, at �86
mV, peak resonance frequency increased by 2.9 Hz, whereas the
experimentally observed mean difference between WT and
rTg4510 resonance frequency was �1.4 Hz. These data suggest
that a reduction in CM of �30% is sufficient to produce all the
other changes in intrinsic membrane properties observed in
rTg4510 CA1-PNs (for illustration of these data, see Fig. 5, refer-
ence lines).

Hippocampal synaptic transmission and plasticity
As well as intrinsic membrane properties, synaptic transmission
in hippocampal circuits plays a crucial role in determining the

Figure 4. Resonance properties are altered in rTg4510 CA1 pyramidal neurons. a, Representative traces from WT (top) and rTg4510 (bottom) CA1-PNs showing the ZAP current protocol and
corresponding voltage responses at�76,�82, and�88mV. b, Impedance ( Z) profiles (bottom) are calculated by dividing the FFT of the voltage response (top) by the FFT of the current injection
(middle). Red line indicates the smoothed Z profile (bottom). c, d, Peak resonance frequency (c) and strength of resonance (Q; d) were significantly higher in rTg4510 CA1-PNs compared with WT.
Data are mean � SEM from n � 24 WT and n � 16 rTg4510 CA1-PNs. *p 
 0.05. ***p 
 0.005.
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output patterns of individual component
neurons (Brun et al., 2008; Nakashiba et
al., 2009). For example, deficits in CA3-
CA1 Schaffer collateral (SC) synaptic
transmission results in reduced burst fir-
ing of CA1-PNs (Nakashiba et al., 2009).
Given that CA1-PNs are less likely to fire
in bursts in rTg4510 mice in vivo (Fig. 2)
and yet are intrinsically capable of gener-
ating similar burst frequencies at a cellular
level (Fig. 3d), we reasoned that glutama-
tergic synaptic transmission in this path-
way might also be disturbed. To test this
hypothesis, we made extracellular record-
ings of field EPSPs in response to stimula-
tion of the SC input in hippocampal slices.
The mean input–output relationship re-
corded in rTg4510 slices was significantly
attenuated compared with WT slices (WT
n � 12, rTg4510 n � 12, F(1,22) � 9.20, p �
6.1 � 10�3, repeated-measures ANOVA;
Fig. 6b, left). We also examined LTP in-
duced by TBS of the SC pathway and
found no significant difference in the
ability of rTg4510 synapses to support
LTP compared with WT slices (WT n �
10, rTg4510 n � 11, t(19) � 1.25, p �
0.23, unpaired t test; Fig. 6c, top). This
finding is in contrast to the deficit in SC
LTP previously reported in rTg4510
mice (Hoover et al., 2010); however, the
different age of mice (4.5 months and
thus different expression of tau pathol-
ogy) and TBS protocol used may ac-
count for this discrepancy; and
importantly, Hoover et al. (2010) did
observe SC LTP in rTg4510 mice, albeit
to a lesser degree than in WT mice.

In addition to the SC pathway, axons
from layer II entorhinal cortex innervate
the distal dendrites of CA1-PNs via the TA
pathway. This input has a strong modula-
tory role on CA1-PN activity in vivo (Brun
et al., 2008). We therefore also con-
structed input–output relationships for
the TA input into CA1 and found no sig-
nificant difference between genotypes (WT n � 12, rTg4510 n �
8, F(1,18) � 1.29, p � 0.27, repeated-measures ANOVA; Fig. 6b,
right), suggesting that entorhinal glutamatergic inputs onto the
distal dendrites of CA1-PNs function within normal parameters.
However, while WT slices supported significant levels of LTP in
the TA pathway 1 h after TBS (123 � 5% baseline, n � 11, t(10) �
4.97, p � 5.6 � 10�4, one-sample t test), identical stimulation
patterns in rTg4510 slices did not result in significant LTP (96 �
6% baseline, n � 8, t(7) � 0.69, p � 0.51, one-sample t test; WT vs
rTg4510, t(17) � 3.70, p � 1.8 � 10�3, unpaired t test; Figure 6c,
bottom).

LTP of the TA synaptic input onto CA1-PNs is dependent on
the precise regulation of GABAergic, and in particular GABAB

receptor-mediated, synaptic transmission (Remondes and Schuman,
2003).Therefore,we reasoned thatGABAergic synaptic transmission
in the TA pathway may be disturbed. Whole-cell current-clamp
recordings from CA1-PNs revealed that IPSPs evoked with a sin-

gle stimulus in the TA pathway were biphasic; the slower compo-
nent was sensitive to a GABAB receptor antagonist (CGP55845, 1
�M), and the faster component was blocked by a GABAA receptor
antagonist (gabazine, 2 �M; Fig. 7a). Trains of 6 stimuli delivered
at a range of frequencies (5, 10, 20, 50, and 100 Hz) evoked
summated IPSPs, which were sensitive to CGP55845 and
gabazine (Fig. 7b). The amplitudes of the summated TA IPSPs
were larger in rTg4510 CA1-PNs compared with WT counter-
parts (WT n � 19, rTg4510 n � 10, F(1,27) � 3.94, p � 0.057,
two-way ANOVA; Fig. 7b,c), suggesting that an enhancement
of GABAergic signaling may underlie the deficit in TA LTP in
rTg4510 slices. In the presence of antagonists of GABAA and
GABAB receptors, the magnitude of LTP 1 h after TBS in WT
slices was comparable with that observed with inhibition in-
tact (127 � 7% baseline, n � 12, t(21) � 0.41, p � 0.69; un-
paired t test). Strikingly, GABA receptor antagonists rescued
the deficit in TA LTP in rTg4510 slices (115 � 6% baseline,

Figure 5. Changes inmembrane capacitance are sufficient to produce experimentally observed changes in intrinsicmembrane
properties. a, Simulated voltage response to a current stimulus in a Hodgkin-Huxley style single compartment model of a CA1
pyramidal neuron.When the simulatedmembrane capacitance (CM)was systematically increased (lighter red traces) or decreased
(darker traces), differences in the voltage response were observed, which were particularly evident during the initial charging
curves (shown on an expanded time-base in the bottom). b, The membrane time constant (�M, top) and percentage sag (middle)
were decreased and increased, respectively, in response to a reduction in CM. Furthermore, the maximal rate of rise of simulated
action potentials (bottom) was also altered in a manner consistent with experimentally observed changes in rTg4510 CA1-PNs
(Table 1). c, d, Peakmembrane resonance frequency (c) and resonance quotient (Q; d) are also increased in response to decreased
membrane capacitance (and vice versa). As observed experimentally, these effects are voltage-dependent.
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n � 13, t(12) � 2.36, p � 0.036; one-sample t test) to a similar
level as that observed in WT slices (WT vs rTg4510, t(23) �
1.24, p � 0.23, unpaired t test; Fig. 7d).

Discussion
In this study, we describe interrelated neurophysiological mech-
anisms, which culminate in impaired hippocampal information
processing in tauopathy. These include the following: (1) changes
to the intrinsic properties of CA1-PNs; (2) impaired synaptic
innervation of surviving CA1-PNs, particularly via the Schaf-
fer collateral pathway; and (3) impaired entorhinal-hippocampal
communication and plasticity mediated by dysregulation of tem-
poroammonic GABAergic transmission.

Altered intrinsic membrane properties
Intrinsic electrical properties of individual neurons, along with
the weightings of synaptic connections, play a fundamental role
in shaping the dynamics of neuronal networks (Buzsáki et al.,
2012). Theta resonance of hippocampal CA1-PNs is thought to
play an important role in tuning these cells to respond to theta

frequency inputs (Hutcheon and Yarom, 2000; Hu et al., 2002).
Slowly activating, noninactivating, voltage-gated conductances,
such as Ih and Im, contribute to the resonance properties of CA1-
PNs in a voltage-dependent fashion, such that, at hyperpolarized
potentials, Ih-mediated resonance is dominant, whereas at more
depolarized potentials, Im plays a greater role (Hu et al., 2002).
There were striking changes to the resonance profile in rTg4510
CA1-PNs, specifically increased peak resonance frequency and
strength of resonance (Fig. 4). In rTg4510 CA1-PNs, we observed
a significant increase in Ih-mediated sag potential (Fig. 3), similar
to that reported in studies of rTg4510 layer 3 frontal cortical
neurons (Rocher et al., 2010; Crimins et al., 2012). These studies
also revealed dendritic and synaptic atrophy in rTg4510 cortical
neurons (Rocher et al., 2010; Crimins et al., 2012). Such morpho-
logical changes would alter membrane capacitance, which, as our
modeling suggests, could contribute to changes in sag and
resonance (Fig. 5). The magnitude of the changes in intrinsic
membrane properties are relatively small; however, as the math-
ematical model demonstrates, an overall reduction in membrane

Figure 6. Basal synaptic transmission and LTP in the Schaffer collateral and temporoammonic pathways. a, Schematic representation of the hippocampus showing approximate positions of
stimulating and recording electrodes. SR, Stratum radiatum; SLM, stratum lacunosummoleculare; DG, dentate gyrus.b, Basal synaptic transmission is reduced in the SC pathway (left) but unaltered
in the TA pathway (right) in slices from rTg4510mice comparedwithWT. c, TBS-induced LTP is unaffected by genotype in the SC pathway (top) but significantly reduced in the TA pathway (bottom)
in rTg4510 slices compared with WT. Left, Representative traces from baseline (1) and 60 min after TBS (2) from WT (black) and rTg4510 (blue) slices. Stimulus artifacts were removed for clarity.
Right, Time course of normalized fEPSP slope (SC) or amplitude (TA) (seeMaterials andMethods) following TBS. SC, n� 10WT and n� 11 rTg4510 slices; TA, n� 11WT and n� 8 rTg4510 slices.
ns, Not significant at p � 0.05. **p 
 0.01.
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capacitance of �30% would be sufficient to produce these neu-
rophysiological effects. Such a change in membrane capacitance
likely results from a reduction in dendritic complexity, as has
been elegantly described for frontal cortical neurons (Rocher et
al., 2010; Crimins et al., 2012). Although it is not trivial to directly
translate electrophysiologically determined capacitance mea-
sures to morphological measurements of dendritic structure (not
least because of the cable-filtering properties of the neuronal pro-
cesses), a reduction of 30% membrane surface area appears to be
feasible based on the results from these published data.

Altered membrane resonance of CA1-PNs may have a num-
ber of functional consequences. Changes to the input impedance
within the theta frequency band will alter the cellular responsive-
ness to theta frequency inputs within the local network. When
driven at frequencies in the theta range, rTg4510 CA1-PNs re-
quire �20%–25% less current to produce a given voltage change
(Fig. 4b), and thus may be hyperexcitable. In rTg4510 mice, the
altered CA1-PN theta frequency resonance evident in vitro was
accompanied by a decrease in LFP theta power and striking def-
icits in theta modulation of single-unit activity in vivo. The
changes to intrinsic properties may therefore be a compensatory
effort to retain theta responsivity in the face of declining network
activity in this crucial frequency band. Notably, the converse (en-

hanced hippocampal theta power in vivo) has been observed fol-
lowing genetic deletion of forebrain HCN1 channels (thereby
eliminating sag potentials and shifting the resonance peak to
lower frequencies in CA1-PNs) (Nolan et al., 2004).

Input-specific synaptic deficits
Synaptic conductances dominate network activity measured in
the LFP (Buzsáki et al., 2012). Reduced LFP power therefore
likely reflects a gross decrease in synaptic innervation of CA1-PNs
in rTg4510 mice, presumably due to tauopathy-mediated synap-
tic and neuronal degeneration (Ramsden et al., 2005; Spires et al.,
2006). This is corroborated by our in vitro recordings demon-
strating reduced SC input in rTg4510 mice (Fig. 6). rTg4510
CA1-PN firing patterns were also significantly altered in vivo (re-
duced burst firing and theta modulation; Fig. 2), although intra-
cellular recordings revealed comparable firing patterns from
both genotypes (Fig. 3). Aberrant rTg4510 CA1-PN activity in
vivo therefore likely results from impairments in synaptic drive
(rather than alterations to intrinsic membrane properties), an
idea supported by recent evidence that attenuated SC trans-
mission reduces CA1-PN burst firing in vivo (Nakashiba et al.,
2009).

The functional integration of CA3 (SC) and entorhinal (TA)

Figure 7. Enhanced temporoammonic IPSP in rTg4510 CA1 pyramidal neurons and blockade of GABA receptors rescue deficit in temporoammonic LTP. a, b, Representative current-clamp
recordings from WT (black) and rTg4510 (blue) CA1-PNs in response to a single stimulus (a) and 6 stimuli delivered at 100 Hz (b) to the temporoammonic pathway in control conditions, in the
presence of the GABAB receptor antagonist CGP55845A, and in the presence of CGP55845A and the GABAA antagonist Gabazine. Note the biphasic IPSP in response to a single stimulus (a) in control
conditions, the slow component of which is abolished in the presence of CGP55845A. c, Pooled IPSP amplitudes against stimulation frequency. n � 19 WT and n � 10 rTg4510 CA1-PNs. d, In the
presence of GABAantagonists (2�MGabazine and 1�MCGP55845A), TBS-induced LTP in the temporoammonic pathway is not different betweenWTand rTg4510 slices. Left, Representative traces
from baseline (1) and 60 min after TBS (2) from WT (black) and rTg4510 (blue) slices. Right, Time course of normalized fEPSP amplitude following TBS in the presence of GABA antagonists. n � 12
WT and n � 12 rTg4510 slices. ns, Not significant at p � 0.05. In all traces, stimulus artifacts were removed for clarity.
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inputs in CA1 is proposed to play a key role in hippocampal
processing of spatial information (Ahmed and Mehta, 2009; Carr
and Frank, 2012). In line with previous work (Cheng and Ji,
2013), rTg4510 CA1-PNs displayed impaired spatially modu-
lated firing in vivo (Fig. 2). Previous work has suggested that slow
gamma oscillations are conveyed to CA1 from CA3, whereas
fast gamma oscillations are generated by entorhinal innerva-
tion of CA1 (Colgin et al., 2009) and, as such, theta-slow
gamma coupling in CA1 corresponds to information transfer
between CA3-CA1, whereas theta-fast gamma coupling repre-
sents entorhinal-CA1 information transfer (Carr and Frank,
2012). Strong coupling between theta and fast gamma oscilla-
tions was observed in WT CA1 LFPs, as previously shown during
spatially directed behaviors (Chen et al., 2011). In contrast, theta-
fast gamma coupling was comparatively absent in rTg4510 mice
(Fig. 2), suggesting a deficit in entorhinal-CA1 synaptic signaling.

Our in vitro recordings established that, whereas basal synap-
tic transmission in the TA pathway was spared in rTg4510 slices,
LTP in this pathway was absent (Fig. 6). Importantly, because
GABAB receptor-mediated suppression of fast GABAA-mediated
inhibition is known to regulate LTP induction in the TA path-
way (Remondes and Schuman, 2003), we also established that
GABAergic signaling in this pathway was increased, and the def-
icits in LTP in rTg4510 slices could be ameliorated by inhibition
of GABAergic signaling (Fig. 7). These results suggest that aber-
rant GABAergic signaling may impair entorhinal-CA1 commu-
nication in rTg4510 mice. It is also possible that the deficit in TA
LTP arises from changes to the sag potential in rTg4510 CA1-
PNs. HCN channels that mediate Ih are expressed differentially
along the somatodendritic axis of CA1-PNs (with higher relative
density in distal dendritic compartments) (Magee, 1998) where
the TA pathway synapses onto CA1-PNs, and constrain the ex-
pression of LTP in the TA pathway (Nolan et al., 2004). Amplifi-
cation of Ih in the distal dendrites of rTg4510 CA1-PNs would
likely also inhibit the induction of TA LTP.

Translational implications
Our in vitro data suggest that increased GABA-mediated synaptic
inhibition impairs effective synaptic communication between
medial entorhinal cortex and CA1 (via the TA pathway). As fast
gamma frequency oscillations (Colgin et al., 2009), along with
spatial information from grid cells (Hafting et al., 2005), head
direction cells (Sargolini et al., 2006), and border cells (Solstad et
al., 2008), are conveyed from medial entorhinal cortex to CA1 via
the TA pathway, impaired function in this synaptic pathway may
contribute to deficits in theta-fast gamma PAC in rTg4510 mice.
Cross-frequency coupling in these frequency bands has been
linked to both long-term (Tort et al., 2009) and short-term
(Canolty et al., 2006) memory, and in particular is thought to play
a role in memory retrieval (for extensive review, see Lisman
and Jensen, 2013). Therefore, deficits in theta-gamma cross-
frequency coupling potentially represent a mechanism by which
spatial memory systems malfunction in dementia.

Enhanced inhibition in the dentate gyrus of hippocampus has
been observed in transgenic mouse models of Down syndrome
(Belichenko et al., 2007, 2009; Kleschevnikov et al., 2012b). For
example, in Ts65Dn mice (Davisson et al., 1993), GABAA (Kle-
schevnikov et al., 2004) or GABAB receptor (Kleschevnikov et al.,
2012a) antagonists recover deficits in LTP induction at perforant
pathway synapses in a manner comparable with our observations
in the TA pathway in rTg4510 mice, whereas treatment with
compounds that decrease GABAA (Fernandez et al., 2007; Rueda
et al., 2008; Braudeau et al., 2011; Martínez-Cué et al., 2013) and

GABAB (Kleschevnikov et al., 2012a) receptor-mediated trans-
mission improve cognitive impairments in Ts65Dn mice. As a
result of these findings, a negative allosteric modulator of �5
subunit-containing GABAA receptors (which are highly ex-
pressed in the proximal and distal dendrites of CA1 pyramidal
neurons) (Fritschy and Möhler, 1995; Sperk et al., 1997; Wain-
wright et al., 2000) has entered clinical trial in Down syndrome
subjects (Möhler, 2012), and such compounds may also have
therapeutic potential for the treatment of tauopathy-associated
dementia.

Neuronal activity is modulated by the dynamic interplay be-
tween intrinsic membrane and synaptic conductances (Buzsáki
and Draguhn, 2004; Buzsáki and Watson, 2012). Based on the
data presented here, it is not possible to establish a causal rela-
tionship between the observed cellular, synaptic, and network
level changes; this would necessitate longitudinal investigation of
multiple time points throughout the time course of tau pathology
in this model. Nevertheless, we consider that the phenomena
described can be attributed to tauopathy-mediated degeneration
of presynaptic and postsynaptic elements. Both our in vitro (at-
tenuated SC input, impaired TA LTP) and in vivo data (decreased
extracellular network activity) suggest that synaptic input to
CA1-PNs is diminished in rTg4510 mice, likely resulting from a
reduction in axonal and dendritic complexity and therefore fewer
functional synapses. As suggested by our mathematical model, a
reduction in the dendritic arbor, and therefore capacitance, of
CA1-PNs can account for the observed changes in intrinsic mem-
brane properties. Importantly, these synaptic and intrinsic im-
pairments have consequences for the ability of these cells to
operate within functional networks in vivo, leading to cognitive
deficits (particularly those associated with spatial memory) iden-
tified in this mouse model of dementia. Therapies that preserve
synaptic and neuronal structure and function by halting degen-
erative processes early in tauopathy (e.g., tau kinase inhibitors)
(Zhang et al., 2013) are therefore likely to be effective in attenu-
ating cognitive impairment in this disease model, and, by exten-
sion, in human sufferers of tauopathy-associated dementias. It
will also be important for future studies to characterize the ages
and staging of tauopathy at which cellular, synaptic, and network
changes emerge in rTg4510 mice, and drug-discovery efforts
should continue to integrate synaptic, cellular, network, and be-
havioral assays to quantify disease and treatment mechanisms.
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Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks.
Science 304:1926–1929. CrossRef Medline
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