
Peer reviewed version
License (if available):
Unspecified
Link to published version (if available):
10.1080/14786419.2015.1095747

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Taylor and Francis at http://dx.doi.org/10.1080/14786419.2015.1095747. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria

Pakorn Wattana-Amorn\(^a\),*, Waranya Charoenwongsa\(^a\), Christopher Williams\(^b\), Matthew P. Crump\(^b\) and Busaya Apichaisataienchote\(^c\),*

\(^a\)Department of Chemistry, Center of Excellence for Innovation in Chemistry and Special Research Unit for Advanced Magnetic Resonance, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

\(^b\)School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom

\(^c\)Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand

* Corresponding author:
Email: fscipwa@ku.ac.th
Tel: +66-2-562-5555 ext 2234
Fax: +66-2-562-5555 ext 2119
Email: busayaa@gmail.com
Tel: +66-34-219364 ext 25200
Fax: +66-34-219360

This work was supported by the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education.
Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from
Streptomyces sp. strain 22-4 against phytopathogenic bacteria

Two bioactive cyclic dipeptides, cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr), were isolated from the culture broth of Streptomyces sp. strain 22-4 and tested against three economically important plant pathogens, Xanthomonas axonopodis pv. citri, Ralstonia solanacearum and Clavibacter michiganensis. Both cyclic dipeptides were active against X. axonopodis pv. citri and R. Solanacearum with MIC of 31.25 µg/mL. No activity could be observed against C. michiganensis.

Keywords: cyclo(L-Pro-L-Tyr); cyclo(D-Pro-L-Tyr); Streptomyces; phytopathogenic bacteria

1. Introduction

Screening for bioactive compounds from natural resources to use for medical and agricultural purposes is one of the major goals in medicinal chemistry. One of the major sources of these compounds is Streptomyces, a large genus bacteria that produce a vast diversity of secondary metabolites (Lucas et al. 2013) including cyclic dipeptides (Zhou et al. 2014). This class of metabolites contains a diketopiperazine core built with D and L amino acids, that displays a broad spectrum of biological activities including antimicrobial activity (Martins and Carvalho 2007).

Two promising cyclic dipeptides exhibiting potent antimicrobial activity are based on the cyclo(L-Pro-L-Tyr) (A) and cyclo(D-Pro-L-Tyr) (B) scaffolds (Figure 1). To date only the cyclo(L-Pro-L-Tyr) has been isolated from Streptomyces and here we report the isolation and molecular characterisation of both diastereomers produced by Streptomyces sp. strain 22-4. Furthermore, we also report the first antibacterial studies of both cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) against three economically important phytopathogenic bacteria.

2. Results and discussion

2.1 Isolation and structure determination of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr)

From the culture broth of S. sp. strain 22-4, a mixture containing cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) was isolated. Separation of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) proved to be difficult by HPLC as both diastereoisomers eluted at 25% MeOH/H2O. However, their structures were elucidated by HR-MS (Figure S1) and NMR (Figure S2-S7) in combination with Marfey’s method (Figure S8). The structures were further confirmed by
comparison with the 1H spectra of synthetic standards (Figure S2). To our knowledge this is the first time that both compounds have been isolated from S. sp strain 22-4. As several cyclic dipeptides have been previously reported from production broths (Prasad 1995), medium alone was extracted and carefully investigated by HPLC to confirm that neither cyclo(α-Pro-α-Tyr) or cyclo(α-Pro-α-Tyr) were present.

2.2 Antibacterial activity against plant pathogenic bacteria

Previously, both cyclo(α-Pro-α-Tyr) and cyclo(α-Pro-α-Tyr) has been isolated from several micro-organisms including $Haloterrigena$ $hispanica$ and $Bacillus$ sp. N strain 22-4. To the best of our knowledge, this is the first time that the cyclo(α-Pro-α-Tyr) has been isolated from $Streptomyces$. Due to the antimicrobial activity of both cyclo(α-Pro-α-Tyr) and cyclo(α-Pro-α-Tyr), this led us to assess the biological activity on untested phytopathogenic bacteria. Bacterial wilt and canker in particular are important diseases in commercial crop plants, causing significant economic loses worldwide. In this work, both cyclo(α-Pro-α-Tyr) and cyclo(α-Pro-α-Tyr) were tested against X. $axonopodis$ pv. citri, R. $solanacearum$ and C. $michiganensis$. X. $axonopodis$ pv. citri is an extremely persistent causative agent of bacterial canker in citrus (Brunings and Gabriel 2003) whilst R. $solanacearum$ and C. $michiganensis$ cause bacterial wilt in plants of the Solanaceae family (Gleason et al. 1993, Hayward 1991). Both compounds exhibited activity against X. $axonopodis$ pv. citri and R. $solanacearum$, albeit weak (MIC 31.25 μg/mL) when compared to standard antibacterial agents (Table 1). No antibacterial activity was observed against C. $michiganensis$ even at relatively high concentrations (up to 500 μg/mL).

Although there is currently a small trade-off with potency, the broad spectrum of antimicrobial activity of cyclo(α-Pro-α-Tyr) and cyclo(α-Pro-α-Tyr) however means these compounds may have potential for use as agricultural biocontrol agents. This can be seen from a chitinase producing $Streptomyces$ $glauciniger$ WICC-A03 (Awad et al. 2014) or a related compound, cyclo(4-hydroxy-α-Pro-α-Trp) which has already been deployed as a non-toxic biopreservative agent to inhibit the growth of A. $flavus$ and A. $niger$ on peanut kernels (Kumar et al. 2014). With further toxicity testing and structure modification to improve the biological activity of cyclo(Pro-Tyr), this cyclic dipeptide may be a promising biocontrol agent for use in the agricultural industry.

3. Experimental
Experimental information is provided in Supplementary material.

4. Conclusion

This is the first time that both \(\text{cyclo}(\text{L-Pro-L-Tyr})\) and \(\text{cyclo}(\text{D-Pro-L-Tyr})\) were isolated from \(\text{Streptomyces}\) sp. strain 22-4 and we are the first to show their antibacterial activity against economically phytopathogenic bacteria \(X.\ axonopodis\) pv. citri and \(R.\ Solanacearum\). With the use of toxic chemicals in agricultural industry to prevent the crop damage, the use of cyclic dipeptides as biological control agents may provide a sustainable approach to improve the crop quality without damaging the environment or human health.

Acknowledgement

This work was supported by the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education.

References

Table 1. Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr)

<table>
<thead>
<tr>
<th>Compound</th>
<th>X. axonopodis pv. citri</th>
<th>R. solanacearum</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclo(L-Pro-L-Tyr)</td>
<td>31.25</td>
<td>31.25</td>
</tr>
<tr>
<td>cyclo(D-Pro-L-Tyr)</td>
<td>31.25</td>
<td>31.25</td>
</tr>
<tr>
<td>chlortetracycline</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td>streptomycin sulfate</td>
<td>-</td>
<td>3.91</td>
</tr>
</tbody>
</table>

Figure 1. Structures of (A) cyclo(L-Pro-L-Tyr) and (B) cyclo(D-Pro-L-Tyr)