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Abstract 

Here we demonstrate the first use of a multifibre Raman probe that fits inside the bore of a 

hypodermic needle. A Raman probe utilising multiple collection fibres provides improved signal 

collection efficiency in biological samples compared with a previous 2-fibre design. Furthermore, 

probe performance (signal-to-noise ratios (SNRs)) compared favourably with those achieved in 

previous Raman microscope experiments able to distinguish benign, primary malignancies and 

secondary malignancies in lymph nodes. 

Experimental measurements presented in this paper give an indication of the sampling volume of 

the Raman needle probe in lymphoid tissues. Liquid tissue phantoms were used, containing 

scattering media encompassing a range of scattering properties similar to a variety of tissue types, 

including lymph node tissues. To validate the appropriateness of phantoms, the sampling depth of 

the probe was also measured in excised lymph node tissue. Greater than 50% of Raman photons 

collected were found to originate between the tip of the needle and a depth of 500 µm into the 

tissue.  

The needle probe presented here achieves comparable spectral quality to numerous studies 

previously demonstrating Raman disease discrimination. It is expected that this approach could 

achieve targeted subcutaneous tissue measurements and be viable for use for the in vivo Raman 

diagnostics of solid organs located within a few cm below the skin’s surface. 
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Introduction 

Raman spectroscopy is a vibrational spectroscopic technique that provides a ‘molecular 

fingerprint’ demonstrated for use in various biomedical diagnostic applications. The technique 

allows for classification of both healthy tissue types and the discrimination of healthy versus 

diseased tissue, and can be a powerful tool for the diagnosis of disease [1-5]. Challenges still exist, 

however, in performing Raman spectroscopic measurements below the skin surface in vivo. 

Conventional Raman spectroscopy is limited in non-transparent turbid media to studying the 

sample surface, due to the inability to focus or confocally collect sufficient light at depths beyond 

a few tens of µm below the surface. Raman measurements in tissues are restricted in depth of 

penetration as well as in sensitivity and limit of detection due to multiple diffuse scattering events, 

light absorption by various tissue components, and the fluorescent background and Raman signal 

from the surface and bulk overwhelming the Raman signals of diagnostic interest [6-8]. 

The majority of biomedical Raman spectroscopy thus far has been performed in tissue specimens 

ex vivo. Deep Raman techniques such as SORS (Spatially Offset Raman Spectroscopy) [9], 

Transmission Raman Spectroscopy (TRS) [10], and TRRS (Time Resolved Raman Spectroscopy) 

[11, 12] have demonstrated potential to go in vivo [13]. These techniques allow for Raman 

spectroscopic measurements of bulk materials at limited depths (mm-cm scale) within tissues and 

other opaque, light-scattering materials by relying on the scattering properties of the material to 

provide a spatial or temporal discrimination between surface signals and depth signals.   

The promise of non-invasive diagnostic techniques via these methods is very appealing, however, 

penetration depth, sensitivity, and precise depth selectivity when measuring from the skin surface 

is limited, due to the complex interaction of light with tissues. An alternative option for applying 

Raman techniques in vivo is to use a sub-cutaneous fibre optic probe directly in the region of 

interest within the body [14-25]. Such probes include Raman-based endoscopes and catheters that 

can probe the surface of hollow organs of the body, and recently a fibre optic probe was designed 

that can be inserted subcutaneously via a hypodermic needle [25]. This needle probe design 

consisted of one excitation and one collection fibre in a bevelled tip, and was shown to have the 

sensitivity to discriminate tissue types as well as metastatic malignant disease in excised lymph 
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nodes ex vivo [25]. 

Here we present the next generation of Raman needle probe, which provides increased collection 

efficiency through additional collection fibres. The bevelled tip of the previous 2-fibre prototype 

was built to sample as close to the needle tip as possible [25]; this approach can be ideal for 

accurate tissue localisation at the needle tip. However, for those applications where larger sampling 

volumes may be required, the probe design has been modified such that the tip face of the Raman 

needle probe presented here is flat. The flat polished tip allows for a relatively larger sampling 

volume [26,27], and combined with increased collection fibres, a significantly improved SNR in 

measuring biological samples as compared with the 2-fibre needle probe. 

The work outlined in this paper was motivated by the clinical need for making a rapid, minimally 

invasive diagnosis of Hodgkin’s and Non-Hodgkin’s lymphoma [28]. Such an approach requires 

the measurement of abnormal lymph nodes, buried below the skin surface, to enable the Raman 

molecular signals associated with disease to be interrogated for identification of metastatic lymph 

nodes. The needle probe design will allow for some form of bulk sampling within the lymph node 

of interest which is ideal for studying the macro-chemistry. Lymph nodes can be highly 

heterogeneous, and a bulk sampling provides a mean spectrum of the lymph node with a higher 

probability of contribution to the signal from diseased tissue over point spectra collected from a 

small area [29,30].  

Current gold standard methods for the diagnosis of lymphomas include a needle biopsy or excision 

of the lymph node, followed by classification by a histopathologist.  We aim to develop a clinical 

diagnostic tool that will be less invasive than surgical biopsy, and provide an immediate diagnosis 

based upon molecular signals, thus providing greater efficacy in diagnosis than the current gold 

standard techniques [28]. This procedure would clearly reduce patient stress and limit the number 

of unnecessary surgeries.  

Materials and Methods 

Ethics 

 

Excised human lymph nodes used in this study were collected and measured with informed 

written consent of the donors, who were undergoing routine surgical procedures. Ethical 

approval has been provided by the Gloucestershire Local Research Ethics Committee. 
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Instrumentation 

Multi-fibre probe tip design 

As shown in detail in Figure 1, the probe tip is composed of a bundle of low-OH silica optical 

fibres (0.22 NA, Thorlabs) with 105 µm diameter cores and 125 µm silica cladding. The 250 µm 

acrylate buffer coating was first stripped from the fibres, and then they were fixed together with a 

biomedically-approved epoxy into a custom-cut piece of stainless steel tubing (Hamilton, 22 

gauge). The bundle was polished flat, arranged in an orientation of 6 collection fibres around 1 

excitation fibre. This configuration is very similar to many probes designed for clinical application, 

the differences being that the overall diameter of this probe (720 µm) allows it to be inserted and 

move freely back and forth inside a 19 gauge disposable hypodermic needle, and that the expensive 

and complex filters and optics are left outside of the needle probe tip. The length of unfiltered fibre 

bundle in the needle probe tip is relatively low cost, enabling this portion to be disposable. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (A) Design of the probe tip with 6 collection fibres around 1 excitation fibre using fibres with 125 µm outer 

diameter (including cladding) and 105 µm core, encased in a stainless steel tube (22 gauge, 720µm outer diameter 

(OD), 410 µm inner diameter (ID)). (B) A magnified probe tip after polishing with white light illumination of the 

fibre cores. (C) Collection areas of 6 around 1 orientations of 125 µm and 220 µm fibres inside standard tube gauge 

sizes (ID and OD are shown), where A=summed area of collection of the fibre cores for n-1 fibres, where n is the 
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total number of fibres, for a given design. ‘Outer needle gauge’ refers to the smallest size hypodermic needle tip that 

the probe fits inside [31].  

 

The needle tip of the probe can be made to any length; the constraints are that the Raman 

background from unfiltered silica fibre increases with increasing fibre length in the needle tip. The 

human anatomy leads to the requirements for a maximum needle length of ~10 cm. As outlined 

above our primary medical interest is in studying lymph nodes of the head and neck area with this 

instrument, and a needle length of ~6 cm was confirmed by head and neck surgeons as being a 

sufficient and medically-relevant depth to reach below the surface tissues. 

In theory, the greater the collection area: the larger the signal obtained by the probe. This can be 

achieved with more fibres or fibres with larger cores. However, in practice, the addition of extra 

collection fibres may not be necessary if the required SNR for spectral discrimination is achievable 

with fewer collection fibres. There exists a trade-off between maximum collection area (number 

or size of fibres) and total needle diameter acceptable to the patient; a smaller needle appears less 

daunting, but may require longer measurement time than a slightly broader needle with greater 

collection area.  The respective collection areas provided by 125 µm and 220 µm fibres in 6 around 

1 orientations inside standard needle gauge sizes are shown in Figure 1 C. Although various 

options, such as using 220 µm fibres, give a larger total collection area than the 6 around 1 fibre 

design using 125 diameter fibres, the needle diameter also increases considerably in these cases. 

There is also diminishing advantage in using larger fibres as they couple less efficiently into the 

spectrometer.  

 

Raman needle probe instrumental setup 

A schematic of the multifibre Raman needle probe instrument is depicted in Figure 2. Excitation 

at 830 nm is delivered by an IPS spectrum stabilized laser module (Innovative Photonic Solutions, 

I0830MM0350MF), passing through a collimating lens and short-pass filter (BrightLine® FF01-

830/2-25, Semrock, Rochester, NY, USA) via a 105 µm core fibre optic patch cable, and is 

launched into the centre fibre (105 µm core/125 µm graded index low-OH silica fibre, Thorlabs) 

of the needle tip bundle. Excitation power was adjusted between 20 mW and 100 mW depending 

on the sample requirements. The specific excitation power used in each measurement is indicated 

in the corresponding figure caption.   

Light is collected at the needle tip via the 6 collection fibres (105 µm core/125 µm graded index 
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low-OH silica fibre, Thorlabs) encircling the excitation fibre, as depicted in Figure 1. In these 

experiments the fibre collections were intentionally measured separately, i.e. a single fibre of the 

bundle was selected for collection at a time, and paired lenses with FC connectors were used 

(Thorlabs, 0.26 NA F220FC-780 nm) to pass the collected light through a long-pass filter 

(RazorEdge®, LP02830RU-25, Semrock, Rochester, NY, USA). The collected light is then 

launched into fibres that terminate in a vertical column over the 6 mm length of the entry port of 

the spectrometer (Raman Explorer 830, 1002A-00465, Headwall Photonics, Fitchburg, MA, 

USA). The spectrometer is coupled to a deep-depletion Charge-Coupled Device (CCD) camera 

(iDus, DU420A-BR-DD, Andor, Belfast, UK).  

 

 

Fig. 2. Schematic diagram depicting the Raman needle probe instrumental setup. Excitation at 830 nm was provided 

by a CW IPS laser passing via fibre optic cable through a short pass filter (‘laser filter’), and into the central fibre of 

the needle tip. The six collection fibres returning from the needle tip were directed through a long pass filter (‘filter’) 

and were delivered to the spectrometer in a vertical column across the entry port. Spectra were acquired with a deep 

depletion CCD camera. 

 

Experimental Methods 

Measuring sampling depth in tissue phantoms 

The sampling depth of the Raman needle probe was measured in a two-layer tissue phantom, using 

the instrument depicted in Figure 2 and experimental setup shown in Figure 3A.  The phantom 

consisted of a 2 mm-thick piece of Polytetrafluoroethylene (PTFE) in the bottom of a petri dish 

filled with a scattering liquid (see Figure 3). 

PTFE is a white scattering plastic with a similar refractive index and scattering to tissue [32,33]. 

It provides a distinct Raman signal that can be used to demonstrate the depth of probing in tissue-

simulating phantoms. The Raman cross section of PTFE is generally larger than biological tissue, 
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but the SNR of PTFE spectra is more comparable to that of tissue than many other common 

polymers with even larger Raman cross sections.  

Solutions with varying concentrations of Intralipid ® (IL) (Sigma-Aldrich, 20%) in water were 

used as the scattering liquid, and were formulated in a range of scattering concentrations of 0.5%, 

1%, and 20% IL by volume. IL is frequently used as a scattering agent in tissue-simulating 

phantoms, and its optical properties have been well characterized at various wavelengths [34-38]. 

Of the concentrations used, near 1% IL most resembles the scattering at 830 nm of soft, adipose-

rich biological tissue similar to lymph nodes (µs’ of ~1-10 cm-1) [39-41], while the highest 

scattering concentration of 20% IL scatters more strongly than biological tissues at this wavelength 

(µs’ of ~100 cm-1).  

The probe was placed on a micrometer z-stage and the needle tip was positioned in the scattering 

liquid of the tissue phantom with the tip face touching the surface of the PTFE. The probe was 

then raised vertically away from the PTFE within the scattering liquid in steps of 50 µm, recording 

Raman spectra at each step consecutively. Spectral acquisition time for all sampling depth 

measurements was 1s x 10 accumulations.  

       

 
Fig. 3. Photos of (A) the sampling depth measurements in PTFE and IL phantoms, and (B) of measurements of an 

excised human lymph node (mediastinal) on top of aluminium foil. 

 

Scattering 

liquid 
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B A 
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Addition of absorption to tissue phantoms 

An additional sampling depth experiment was performed in which India ink (American 

MasterTech Scientific, Inc., Lodi, CA, USA) was added to the scattering liquid as an absorbing 

agent. India ink is particularly appropriate as a light absorber in biological tissue phantoms because 

it is easy to incorporate homogenously into various media, including IL solutions, and it has a 

well-characterized broadband absorption spectrum [37,38,40,42,43]. The ink was commercially 

available as a stock solution of unknown concentration. It was first characterized by UV-Vis 

absorption of a series of dilutions of the stock solution, from which a 0.2 µl/ml solution of India 

ink was determined to have an absorption coefficient (µa) of ~0.05 mm-1 at 830 nm.  The India ink 

solutions were sonicated prior to the UV-Vis measurements, and also after addition to the 

scattering liquid in the phantom, to ensure the ink particles were homogenously dispersed. 

Measurements of human lymph node tissue 

The target application of this probe will be in vivo Raman measurements in lymph nodes, which 

have a more heterogeneous consistency than tissue phantoms. As previously noted, while PTFE 

has similar elastic scattering properties to tissue, the Raman cross-section of PTFE is generally 

larger than that of most biological tissues. A stronger Raman signal from PTFE could result in an 

over-estimation of the sampling volume compared to that expected of this probe in biological 

tissue, due to the higher signal providing an increased limit of detection. 

In addition, it is important to verify that the optical values we have selected for our phantoms based 

on various reported literature values do in fact match up well with real lymph node tissue. Using 

a phantom with a much higher scattering coefficient may result in an underestimation of the 

sampling depth that would be expected in lymph node tissue, and using much lower scattering 

values may also provide significantly different results. 

To verify the appropriateness of the phantom materials used in this study, we also performed 

sampling depth experiments with a human lymph node sample of ~0.5 cm thickness placed on top 

of PTFE. This two-layer sample was measured by the same procedure and under the same 

conditions as used for PTFE and IL phantoms described previously. 
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Results and Discussion 

Sampling depth in phantoms  

 

Figure 4 depicts PTFE signal decay curves as measured with increasing distance of the Raman 

needle probe to the PTFE surface, within an IL phantom. The decay in net peak height of a 

representative peak of PTFE (730 cm-1 PTFE peak intensity with the baseline signal next to the 

peak subtracted) was plotted versus distance of the probe surface from the PTFE. Measurements 

were taken in increments of 50 µm, moving the probe through the IL phantom medium up to 1 

mm separation of probe and sample (PTFE). This signal decay profile was plotted for various 

phantoms, with different concentrations of IL and India ink, as shown in Figure 4.  

With increasing scattering concentration, the slopes of the decay curves became steeper, and the 

signal intensity also increased, due to the greater number of photons undergoing multiple scattering 

events and thus reaching the detection fibres, while in the lower scattering phantoms a lower 

fraction of light is backscattered. 

 

 

 

Fig. 4. The decay in net peak height of a representative peak (730 cm-1) of a PTFE layer within scattering liquid 

phantoms with increasing probe distance from the PTFE, as measured with the Raman needle probe.  Different 

scattering liquid phantoms were used; 0.5%, 1% plus 0.2 µl/ml India ink, 1% and 20% IL in water. Profiles are 

listed in order from top to bottom, and are plotted on linear and log10 y-axis scales. Spectra were acquired for 1 s x 

10 using 830 nm excitation at 100 mW, in consecutive measurements increasing the probe distance from the PTFE 

in steps of 50 µm.  

Sampling depth in lymph nodes 

In addition, the decay of the Raman signal from a layer of PTFE was measured using an excised 

lymph node as the scattering medium. In Figure 5, the PTFE beneath lymph node decay profile is 
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compared to the PTFE decay profile measured in the phantom of 1% IL and 0.2 µl/ml India ink 

discussed in the previous section.  

Practical constraints from the small size and inhomogeneity of the excised lymph node resulted 

in a profile that was only measured over a range of 300 µm; however the general signal decay 

trend is still evident over this shorter range. It appears from these plots that the scattering and 

absorption of the lymph node measured are greater than that used in the liquid phantom (where 

the value used was based on the literature). It is known that this node contains many soot 

particles accumulated from the filtering of the lymphatic fluid around the lungs of the donor, 

which may have had a significant contribution to the absorption. 

 

 

 

Fig. 5. Decay profile of PTFE from sampling volume measurements using (A) PTFE signal through lymph node 
over 300µm distance, and (B) PTFE signal in a liquid phantom of 1% IL and 0.02µl/ml India ink solution. The range 

of the decay profile measurements is limited by lymph node size and inhomogeneity, and the phantom measurement 

is shown over the same range for comparison.  

2-fibre vs multi-fibre probe for disease discrimination 

The bevelled tip of the 2-fibre needle probe provided a smaller sampling volume than the flat tip 

probe, and thereby also lower signal intensity. The addition of multiple collection fibres also 

improves the SNR of spectra collected with the flat tip probe. An illustration of the effect of 

combining signal from multiple collection fibres can be seen in Figure 6 for PTFE and for excised 

human lymph node. Spectra from the 6 collection fibres are shown individually in Figure 6 A and 

C and their combined collection is shown in Figure 6 B and D.  While there are minor differences 

in the spectra from individual fibres (+/- 4% on average) these can be attributed to differences in 
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the silica background due to differences in cleaving, polishing and connections of each individual 

collection fibre to the spectrometer; as well as to slight variations in fibre length.  While there is 

also small variation in distance of the individual collection fibres to the central excitation fibre, 

this variation is on the order of 5 µm, and was found to have a negligible effect on signal intensity 

given the sampling volume and scattering nature of the samples.  This was supported by results 

from Monte-Carlo simulations (results not shown).  
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Fig. 6. Spectra from the Raman needle probe: (A) Spectra of PTFE from individual collection fibres 1-6, (B) combined 

spectral collection of PTFE from all 6 fibres. C) Raw spectra of excised lymph node tissue from individual fibres 1-

6, (D) combined spectral collection of excised lymph node tissue from all 6 fibres. Spectra were acquired for 5s x 1 at 

830 nm, excitation power at the sample was 20 mW.  Data shown is unprocessed.  

   

 

 Table 1. SNR obtained from this study in comparison to our previous work (as measured by [max. Amide I peak 

height-mean of background]/RMS noise of background). SNRs shown for individual fibre collection, combined fibre 

collection from the multi-fibre Raman needle probe (MFNP); lymph node spectra measured with Raman microscopy 

from Lloyd et al.(2013)[28]; and in a lymph node spectrum measured with the 2-fibre bevelled tip probe from Day 

and Stone (2013)[25].  In all cases, spectral acquisition was 5s x 1, 830 nm, 20 mW, except lymph node data from 

Day and Stone (2013)[25], (which used 30s x 1, 830 nm, 24 mW).  It should be noted that a different spectrometer, 

laser and CCD were used to obtain the data in these three instrumental scenarios.   
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MFNP Additive spectrum 

of fibres 1-6 

37.46 84.71 

Day and Stone (2013)  

2-fibre probe with bevelled 

tip.   

 16.06 (+/- 14.76) 

 

(30s, 830 nm, 24 mW) 

45.98 (+/- 2.56) 

 

 

Spectra from Lloyd, et al. 

(2013) 

10.59 (+/- 7.24) N/A 

 

A comparison of SNRs of PTFE and lymph node measurements made with the single and multiple 

collection fibre needle probes is summarized in Table 1. SNRs of Raman data from lymph nodes 

measured with the two-fibre probe (from Day and Stone, 2013 [25]), and a different CCD, laser, 

spectrometer, and measurement parameters, are also shown for a rough comparison. It should be 

noted that differences in composition between the lymph nodes measured may also contribute to 

the differences in SNR, rather than just probe efficiency.   

The new multi-fibre probe appears to provide higher SNR in lymph nodes, and higher SNRs in 

measuring the surface of PTFE, than the previous bevelled tip, two-fibre probe. However, for 

single fibre comparisons, the bevelled tip sampled the PTFE signals in air more efficiently. It is 

important to note that the scattering and Raman cross section of PTFE is higher than those of 

lymph nodes, and the two probe designs behave differently if they are measuring scattering 

surfaces in air, versus being completely immersed in a scattering material (tissues and phantoms). 

 The bevelled tip probe collects efficiently from a small volume at the probe tip, and will therefore 

most efficiently collect Raman photons created at the illumination point. The individual flat tipped 

fibres of the multi-fibre probe will sample less efficiently at the surface as the collection zone is 

offset by 125 µm from the illumination zone. This inherently reduces the surface signal collected, 

but increases the relative number of photons collected that originated from greater depths than the 

first few 10s µms. Moving the flat tip multifibre probe slightly away from the surface of a 

scattering or reflective sample in air gives an improved signal from distance 0, as more 

backscattered Raman photons then fall within the collection angle. When the flat probe tip is 

completely immersed in a scattering medium, the surrounding medium serves to backscatter these 

photons to a collection fibre.  
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In previous work by Lloyd, et al. [28], multivariate analysis was used to discriminate benign, 

primary, and secondary malignancies in lymph nodes with 81% sensitivity and 89% specificity 

using Raman microscopy data. Based on this data, a rough estimation can be made on the target 

SNR that would be required of a clinical probe to achieve sufficient discrimination of lymph node 

pathologies. Using the Amide I peak (~1650 cm-1) the multi-fibre needle probe evaluated here 

achieves sufficient SNR from lymph node spectra, using a single collection fibre, to exceed that 

used for discrimination by Lloyd et al. The combined six-fibre signal was shown to provide 

approximately 3-4x the SNR required for lymph node discrimination in the above paper. This 

suggests that using the current probe design with six-fibre collection would provide sufficient 

signal for pathology discrimination with 20 mW power in between one and two seconds.  

 

Conclusions 

A flat tipped probe utilizing multiple collection fibres inside a hypodermic needle provides 

improved overall signal collection efficiency in lymph nodes compared with the previous 2-fibre 

probe design. Utilizing all collection fibres of the probe gives an improvement in SNR of around 

2.5 times over that achieved with single fibre collection. 

 The collection efficiency of a single fibre in the flat probe tip is lower than an equivalent bevelled 

tip when coupling to a scattering sample of PTFE in air. The multi-fibre probe with flat tip collects 

photons more efficiently and from a larger volume than the bevelled tip probe when submerged in 

scattering materials such as tissue phantoms or human tissues; Monte-Carlo simulations 

additionally support this conclusion (see Electronic Supplementary Material Fig. S1). The later 

measuring scenario is most relevant to the biological sampling necessary for clinical use of this 

probe.  

While the Raman needle probe with more collection fibres has a slightly larger overall needle 

diameter than the previous 2-fibre version, the improvement in SNR will allow for quicker 

measurements to make diagnostic discrimination. This instrument is much less invasive than 

surgical excision of lymph nodes, or core needle biopsy utilizing a standard biopsy needle of 1.8 

mm diameter. 

We have measured the sampling depth of this probe in tissue phantoms, and have demonstrated 

that these phantoms are an appropriate model for lymph node tissue by performing comparative 

measurements in excised lymph nodes; phantom design should closely match the optical properties 
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of the tissue target.  Sampling from a relatively large volume of the lymph node will be appropriate 

for diagnostic purposes [29,30]. 

While the new needle probe has multiple collection fibres, the measurements presented here were 

acquired with each collection fibre individually to study and account for any variation in signal 

from the different individual fibres. Some variations in signal intensity in the individual fibre 

spectra are observed, however this difference is most evident in the silica background (+/-4%).  

The spectral differences have not been shown to correspond with slight differences in distance 

between the collection and excitation fibres in the tip, which are expected to have a negligible 

effect on the SNR given the sampling volume of our probe.  This was also verified by Monte Carlo 

simulations (data not shown). 

The performance of the multi-fibre probe has been shown to be sufficient to provide Raman SNRs 

from lymphoid tissues (within 5s with 20mW 830nm illumination) in excess of those demonstrated 

elsewhere to discriminate lymph node pathologies. This leads us to conclude that similar 

discrimination to that in Lloyd et al. [28] should be possible in vivo in 1-2s with the same 

illumination.  
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