Stereoselective synthesis of protected L- and D-dideoxysugars and analogues via Prins cyclisations†

Ryan J. Beattie, Thomas W. Hornsby, Gemma Craig, M. Carmen Galan* and Christine L. Willis*

A de novo approach for the rapid construction of orthogonally protected L- and D-dideoxysugars and analogues is described. A novel and robust silicon-acetal undergoes Prins cyclisations with a series of homoallylic alcohols in high yield and excellent stereocontrol. Modified Tamao–Fleming oxidation of the resulting silyltetrahydropyrans gives direct access to deoxyglycoside analogues and the approach was showcased in the synthesis of protected L-oliose, a component of the anticancer agent aclacinomycin A.

Introduction

Deoxyglycodies are important components of a wide variety of natural products isolated from plants, fungi and bacteria including compounds exhibiting antitumor and antibacterial activities. Some have proved effective for use in the clinic (e.g. the antibiotic vancomycin and the anthracycline antibiotic altromycin B) or as lead compounds to pharmaceuticals. In addition, deoxyglycodies are also prevalent in bacterial membrane glycoproteins, thus being a viable target for drug discovery and vaccine development.

The ability to fully understand and exploit the glyobiology of rare deoxysugars and analogues is hindered by the challenges of isolating pure materials in reasonable quantities from natural sources. In addition, synthetic approaches from naturally-abundant carbohydrates often require lengthy synthetic routes which make such compounds very expensive. An alternative and potentially more versatile approach is the de novo asymmetric synthesis of deoxy sugars. An ideal synthetic strategy would be efficient, robust and readily adapted for the construction of a series of deoxysugars and derivatives. To this end, we have developed a new approach for the enantioselective synthesis of differentially-protected L- and D-deoxyglycosides and analogues via Prins cyclisations and its utility exemplified by the synthesis of 2,4- and 2,6-dideoxyglycosides including protected L-oliose.

Prins cyclisations involve acid-mediated reactions of homoallylic alcohols I (or derivatives thereof) to form an oxy-carbenium ion I which cyclises via carbocation II and is subsequently trapped by a nucleophile, giving tetrahydropyrans 2 with excellent stereocontrol (Scheme 1). Reddy, Yadav and co-workers have used sugar derivatives as substrates in Prins cyclisations. Success of our proposed approach to deoxyglycosides relied upon use of a suitable electrophile bearing a hydroxyl surrogate (X in Scheme 1) which would need to be both stable to the acidic conditions required for the cyclisation and would readily be converted to a suitable functional group (e.g. acetate 3) for use in glycosylation reactions. An orthoformate was considered as the electrophile to directly introduce a 1-O-alkyl side-chain, but these have rarely been used in Prins cyclisations and are limited to substrates in which the reaction proceeds via a tertiary carbocation.

Results and discussion

A trialkysilane was considered a suitable hydroxyl surrogate as, following cyclisation, a Tamao–Fleming oxidation would lead to the required acetel. Whilst dimethylphenylsilanes have been widely used, Hosomi and co-workers reported the benzylidemethylsilyl group (BDMS) as an attractive alternative that is readily oxidised to alcohols. An important criterion for our synthetic strategy was that the electrophile should be stable and readily prepared on a synthetically valuable scale. Thus, novel silyl acetel 5 was prepared in two steps and 76% overall yield via treatment of 2-liothio-1,3-dithiane with benzylidemethylsilylechloride (BDMSI) to give dithiane 4 followed by mercuric-
mediated deprotection in ethanol (Scheme 2). The reaction was conducted on a multigram scale and the acetal is stable with no apparent decomposition after 6 months on the bench.

Initially, the key Prins cyclisation was optimised using the known (R)-homoallylic alcohol 6 prepared from dilydrocinnamaldehyde via a Nokami crotyl transfer reaction. Several methods have been reported for the introduction of oxygen nucleophiles, and in this case treatment of alcohol 6 and acetal 5 with trifluoroacetic acid (TFA) at 0 °C, then hydrolysis of the resultant ester gave alcohol 7 in 97% yield (Scheme 3). A single diastereomer was isolated in which all four substituents were equatorial.

Our ultimate targets, 2,6- and 2,4-dideoxysugar analogues, lack a substituent at C-2 and their synthesis requires a substrate substituents were equatorial. (Scheme 3). A single diastereomer was isolated in which all four hydrolysis of the resultant ester gave alcohol 7 (prepared via the synthesis of deoxysugars (Scheme 4). Several methods were investigated for the cyclisation, the enantiopurity (97.5 : 2.5 e.r.) of 9 resulting ester gave alcohol 7 in 97% yield (Scheme 3). A single diastereomer was isolated in which all four substituents were equatorial.

An alternative synthetic approach to the silyltetrahydropyrans was to incorporate the silyl moiety into the alkene coupling partner which on reaction with an aldehyde would enable the facile introduction of a range of side-chains at C-5 of the target deoxysugars (Scheme 4). Several methods were investigated for the synthesis of 1,1-silyl-homoallylic alcohol 10 via acid-mediated allylation of acetal 5 (e.g. in the presence of InCl3, AgNO3, SnCl4) but none of the required product was isolated. In contrast, when silyl acetal 5 was treated with allyltributylstannane and LiBF4 in wet acetonitrile, alcohol 10 was isolated in 61% yield. The TFA mediated reaction of 10 with either acetaldehyde or 3-benzyloxypropanal followed by hydrolysis of the resultant ester gave silyltetrahydropyrans 11 and 12 in 89% and 82% yields, respectively, from acetal 5. By varying the reaction conditions the analogous acetates 13 and 14 were readily prepared. Further studies are ongoing to investigate the enantioselective allylation of acetal 5.

The second stage of our synthetic strategy required oxidation of the benzylidemethylsilyl group; Trost and Donohoe have reported the use of tetrabutylammonium fluoride (TBAF) followed by hydrogen peroxide for similar transformations. Following detailed investigations we established suitable conditions for the successful oxidation of silane 7 (Scheme 5). It was evident that two steps are involved. First addition of TBAF converted silane 7 to silanol 15 which could be isolated and characterised.

However, it was not necessary to isolate 15 as it was converted in situ to hemiacetal 16 via a urea hydrogen peroxide oxidation and then directly acetylated to give 17 in 73% yield from silane 7. It proved vital to keep the temperature of the fluoride activation step in the range 0–5 °C, as at higher temperatures disiloxanes were formed from the condensation of two silanols, which were only slowly oxidised under the reaction conditions.

To confirm that the oxidation/acetylation protocol was compatible with different protecting groups commonly used in carbohydrate chemistry, the secondary alcohols in 7 and 9 were converted to acetates (18 and 19) and benzyl ethers (20 and 21) in high yields using standard reaction conditions (Scheme 6). Oxidation of each silane gave the corresponding anomeric acetates (17, 22–24) in 64–80% isolated yield.

Next the optimised cyclisation/oxidation/acetylation strategy was applied to the preparation of protected 2,4-dideoxyglycosides (Scheme 7). Homoallylic alcohol 26 was prepared in 88% overall yield from (S)-glycidol via protection of the alcohol as silyl ether 25 and ring opening of the oxirane with

Scheme 2 Synthesis of acetal 5.

Scheme 3 Cyclisation of homoallylic alcohols 6 and 8.

Scheme 4 Alternative cyclisation strategy to silyltetrahydropyrans.

Scheme 5 Oxidation of silane 7.

Scheme 6 Oxidation of acetoxy and benzyloxy derivatives.

vinylmagnesium bromide and CuCN. Treatment of 26 with silyl acetal 5 and TESOTf in acetic acid gave silyl tetrahydropyran 27 in 65% yield which was readily converted to triacetate 28 as a 1:2 mixture of anomers using the oxidation/acetylation protocol. Interestingly, treatment of the mixture of homoallylic alcohol 26 and acetal 5 with TFA, our standard cyclisation conditions, gave none of the expected product, instead the analogous ethyl ether 29 was isolated. Some deoxysugars indeed have ethers at C-3, for example, D-oleandrose is a component of the highly potent and selective anticancer agent apoptolidin and 1-cymarose, found in the DNA-helicase inhibitor durhamycin A, and so this unexpected result has potential significant synthetic value.

To access orthogonally protected 2,4-dideoxyglycosides, benzyl-protected tetrahydropyran 30 was prepared via a similar protection/vinyl addition/cyclisation strategy from (S)-glycidol benzyl ether in 71% overall yield (Scheme 8). Oxidation of 30 gave diacetate 31 which subsequently was used to glycosylate cyclohexanol in the presence of BF3·Et2O giving 32 as exclusively the α-anomer in 72% yield. The synthetic approach was extended to 2,4-dideoxyglycosides with an axial C-3 oxygenated substituent via hydrolysis of acetate 30 and Mitsunobu inversion to give 33 which was oxidised to protected glycoside 34 in 75% yield.

Next we turned out attention to the synthesis of protected 2,6-dideoxy sugars as all diastereoisomers of α- and β-2,6-dideoxyhexoses have been found in biologically active natural products e.g. β-olivose is a component of angucycline antibiotic landolin and L-cymarose, found in the DNA-helicase inhibitor heliquinomycin and so this unexpected result has potential significant synthetic value.

To access orthogonally protected 2,4-dideoxyglycosides, benzyl-protected tetrahydropyran 30 was prepared via a similar protection/vinyl addition/cyclisation strategy from (S)-glycidol benzyl ether in 71% overall yield (Scheme 8). Oxidation of 30 gave diacetate 31 which subsequently was used to glycosylate cyclohexanol in the presence of BF3·Et2O giving 32 as exclusively the α-anomer in 72% yield. The synthetic approach was extended to 2,4-dideoxyglycosides with an axial C-3 oxygenated substituent via hydrolysis of acetate 30 and Mitsunobu inversion to give 33 which was oxidised to protected glycoside 34 in 75% yield.

Next we turned out attention to the synthesis of protected 2,6-dideoxy sugars as all diastereoisomers of α- and β-2,6-dideoxyhexoses have been found in biologically active natural products e.g. β-olivose is a component of angucycline antibiotic landolin and L-cymarose, found in the DNA-helicase inhibitor heliquinomycin and so this unexpected result has potential significant synthetic value.

To access orthogonally protected 2,4-dideoxyglycosides, benzyl-protected tetrahydropyran 30 was prepared via a similar protection/vinyl addition/cyclisation strategy from (S)-glycidol benzyl ether in 71% overall yield (Scheme 8). Oxidation of 30 gave diacetate 31 which subsequently was used to glycosylate cyclohexanol in the presence of BF3·Et2O giving 32 as exclusively the α-anomer in 72% yield. The synthetic approach was extended to 2,4-dideoxyglycosides with an axial C-3 oxygenated substituent via hydrolysis of acetate 30 and Mitsunobu inversion to give 33 which was oxidised to protected glycoside 34 in 75% yield.

Next we turned out attention to the synthesis of protected 2,6-dideoxy sugars as all diastereoisomers of α- and β-2,6-dideoxyhexoses have been found in biologically active natural products e.g. β-olivose is a component of angucycline antibiotic landolin and L-cymarose, found in the DNA-helicase inhibitor heliquinomycin and so this unexpected result has potential significant synthetic value.

To access orthogonally protected 2,4-dideoxyglycosides, benzyl-protected tetrahydropyran 30 was prepared via a similar protection/vinyl addition/cyclisation strategy from (S)-glycidol benzyl ether in 71% overall yield (Scheme 8). Oxidation of 30 gave diacetate 31 which subsequently was used to glycosylate cyclohexanol in the presence of BF3·Et2O giving 32 as exclusively the α-anomer in 72% yield. The synthetic approach was extended to 2,4-dideoxyglycosides with an axial C-3 oxygenated substituent via hydrolysis of acetate 30 and Mitsunobu inversion to give 33 which was oxidised to protected glycoside 34 in 75% yield.

Next we turned out attention to the synthesis of protected 2,6-dideoxy sugars as all diastereoisomers of α- and β-2,6-dideoxyhexoses have been found in biologically active natural products e.g. β-olivose is a component of angucycline antibiotic landolin and L-cymarose, found in the DNA-helicase inhibitor heliquinomycin and so this unexpected result has potential significant synthetic value.

To access orthogonally protected 2,4-dideoxyglycosides, benzyl-protected tetrahydropyran 30 was prepared via a similar protection/vinyl addition/cyclisation strategy from (S)-glycidol benzyl ether in 71% overall yield (Scheme 8). Oxidation of 30 gave diacetate 31 which subsequently was used to glycosylate cyclohexanol in the presence of BF3·Et2O giving 32 as exclusively the α-anomer in 72% yield. The synthetic approach was extended to 2,4-dideoxyglycosides with an axial C-3 oxygenated substituent via hydrolysis of acetate 30 and Mitsunobu inversion to give 33 which was oxidised to protected glycoside 34 in 75% yield.

Next we turned out attention to the synthesis of protected 2,6-dideoxy sugars as all diastereoisomers of α- and β-2,6-dideoxyhexoses have been found in biologically active natural products e.g. β-olivose is a component of angucycline antibiotic landolin and L-cymarose, found in the DNA-helicase inhibitor heliquinomycin and so this unexpected result has potential significant synthetic value.

To access orthogonally protected 2,4-dideoxyglycosides, benzyl-protected tetrahydropyran 30 was prepared via a similar protection/vinyl addition/cyclisation strategy from (S)-glycidol benzyl ether in 71% overall yield (Scheme 8). Oxidation of 30 gave diacetate 31 which subsequently was used to glycosylate cyclohexanol in the presence of BF3·Et2O giving 32 as exclusively the α-anomer in 72% yield. The synthetic approach was extended to 2,4-dideoxyglycosides with an axial C-3 oxygenated substituent via hydrolysis of acetate 30 and Mitsunobu inversion to give 33 which was oxidised to protected glycoside 34 in 75% yield.

Next we turned out attention to the synthesis of protected 2,6-dideoxy sugars as all diastereoisomers of α- and β-2,6-dideoxyhexoses have been found in biologically active natural products e.g. β-olivose is a component of angucycline antibiotic landolin and L-cymarose, found in the DNA-helicase inhibitor heliquinomycin and so this unexpected result has potential significant synthetic value.

To access orthogonally protected 2,4-dideoxyglycosides, benzyl-protected tetrahydropyran 30 was prepared via a similar protection/vinyl addition/cyclisation strategy from (S)-glycidol benzyl ether in 71% overall yield (Scheme 8). Oxidation of 30 gave diacetate 31 which subsequently was used to glycosylate cyclohexanol in the presence of BF3·Et2O giving 32 as exclusively the α-anomer in 72% yield. The synthetic approach was extended to 2,4-dideoxyglycosides with an axial C-3 oxygenated substituent via hydrolysis of acetate 30 and Mitsunobu inversion to give 33 which was oxidised to protected glycoside 34 in 75% yield.
and the axial C-4 protected hydroxyl. Finally oxidation of silane 41 gave protected l-olivoce 42 in 77% yield as a 1:1 mixture of anomers. The methodology could be extended to the synthesis of l-olivoce via protected alcohol 44 which was prepared from epoxide 43 using the same conditions as for assembly of the diastereomer 40 (Scheme 11). Interestingly, reaction of 44 with acetal 5 under the standard conditions gave a mixture of products due to migration of the carbamoyl group but on reduction of the mixture with LiAlH4, diol 45 was isolated in 57% yield. It is possible that neighboring group participation by the carbamoyl group traps the intermediate carbocation in the Prins cyclisation giving II and resulting in migration of the carbamoyl group but this has not been proven.

Conclusions

In conclusion, a de novo approach for the rapid construction of a series of orthogonally protected l- and d-deoxyglycosides and analogues is described from simple starting materials. A stable acetal 5 was prepared in two high yielding steps and used in a series of acid-mediated Prins cyclisations with different homoallylic alcohols to give the corresponding tetrahydropryanos in good yield and excellent diastereoselectivity. These reactions are readily performed on gram scales. A modified Tamao–Fleming oxidation/acylation protocol gave the target 2,4-deoxy sugars with an acetyl group at the anomeric position. Extending the utility of the new methodology to the synthesis of 2,6-deoxy sugars revealed the importance of the choice of protecting group to avoid formation of tetrahydrofurans. The enantioselective synthesis of protected l-olivoce is described using \(N,N \)-diisopropylcarbamoyl as a protecting group. Silane 41 has potential value for the synthesis of other 2,6-deoxyhexoses for example methylation of the free hydroxyl group will lead to protected \(l \)-diginoso while Mitsunobu inversion will give \(l \)-bovinose derivatives and subsequent methylation to \(l \)-sarmentose and these investigations are ongoing in our laboratories.

Acknowledgements

We thank the Bristol Chemical Synthesis Centre for Doctoral Training for the provision of PhD studentships EP/G036764/1 (RJB, TWH) and EPSRC EP/L001926/1 and EP/J002542/1 (MCG).

Notes and references

3 Recently some elegant strategies have been reported for the synthesis of \(\nu \)-deoxyglycosides starting from readily available carbohydrates, e.g. M. Emmadi and S. S. Kulkarni, Org. Biomol. Chem., 2013, 11, 3098–3102.

9 Prins cyclisations have been used to assemble tetrahydropryans with a hydroxymethyl side-chain which then can be oxidatively cleaved to give lactones, see for example, J. S. Yadav, M. S. Reddy and A. R. Prasad, Tetrahedron Lett., 2005, 46, 2133–2136.

