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Abstract—The Visual Voice Activity Detection (V-VAD) prob-
lem in unconstrained environments is investigated in this paper.
A novel method for V-VAD in the wild, exploiting local shape
and motion information appearing at spatiotemporal locations
of interest for facial video description and the Bag of Words
(BoW) model for facial video representation, is proposed. Facial
video classification is subsequently performed using state-of-the-
art classification algorithms. Experimental results on one publicly
available V-VAD data set denote the effectiveness of the proposed
method, since it achieves better generalization performance in
unseen users, when compared with recently proposed state-of-
the-art methods. Additional results on a new, unconstrained, data
set provide evidence that the proposed method can be effective
even in such cases in which any other existing method fails.

Index Terms—Voice Activity Detection in the wild, Space-Time
Interest Points, Bag of Words model, kernel Extreme Learning
Machine, Action Recognition

I. INTRODUCTION

The task of identifying silent (vocal inactive) and non-silent
(vocal active) periods in speech, called Voice Activity Detec-
tion (VAD) has been widely studied for many decades using
audio signals. In the last two decades, though, considerable
attention has been paid to the use of visual information, mainly
as an aid to the traditional Audio-only Voice Activity Detection
(A-VAD), due to the fact that, contrary to audio, visual
information is insensitive to environmental noise and can,
thus, be of help to A-VAD methods for speech enhancement
and recognition [1], speaker detection [2], segregation [3] and
identification [4] as well as speech source separation [5], [6]
in noisy and reverberant conditions or in Human Computer
Interfaces (HCIs).

All V-VAD methods proposed in the literature till now
set several assumptions concerning the visual data recording
conditions, which are rather constraining in their vast majority.
In brief, the available data sets used for evaluating the per-
formance of such methods are recorded indoors, under fully
constraint conditions, e.g., using preset static illumination,
simple background and no or negligible background noise
produced by humans speaking or by other sound sources.
Moreover, no or slight speaker movements are encountered
and the recording setting is calibrated so that the entire speaker
face as well as the mouth are always fully visible from
a camera positioned right in front of the speaker, so that
special features describing their shape and/or motion can be
calculated. That is, the human face should have a frontal
orientation with respect to the capturing camera and the facial

Region Of Interest (ROI) should have adequate resolution (in
pixels). Such a scenario restricts the applications, where V-
VAD methods can be exploited. For example, in movie (post-
)production, the persons/actors are free to move and their facial
pose may change over time, as is also the case in all the places
where audio-visual surveillance would be of interest. Most
V-VAD methods proposed in the literature would probably
fail in such an application scenario. Last but not least, most
currently existing methods focus on the accurate detection
of the visually silent intervals in a video sequence, which
in general is not as challenging as the accurate detection of
the visually speaking intervals, due to the fact that the latter
can be easily confused with intervals of laughter, masticas-
ion or other facial activities. The aforementioned difficulty
of distinguishing especially between laughter and speech is
highlighted in [7], where a method exploiting both audio and
visual information aiming at an effective discrimination is
presented.

Non-invasive V-VAD, where the persons under investigation
are free to change their orientation and their distance from the
capturing camera, is within the scope of this paper. Inspired
by relative research in human action recognition [8], [9],
[10], this unconstrained V-VAD problem will subsequently
be mentioned as V-VAD in the wild. While human action
recognition in the wild has been extensively studied in the last
decade and numerous methods addressing this problem have
been proposed, V-VAD in the unconstrained case has not been
addressed yet. In this paper, a method oriented at dealing with
the problem of V-VAD in the wild is proposed, having as only
prerequisite assumption that the faces appearing in the facial
moving region videos being processed can be automatically
detected using a face detection algorithm and tracked for a
number of consecutive frames.

The proposed method is formed by three processing steps.
In the first step, a face detection technique [11] is applied
to a video frame, in order to determine the facial Region
of Interest (ROI), which is subsequently tracked over time
[12], in order for a facial ROI trajectory of the person
under investigation to be created. Such videos are noted as
facial moving regions hereafter. In the second step, local
shape and motion information appearing in spatiotemporal
video locations of interest is exploited for the facial moving
region video representation. To this end, two facial moving
region representation approaches are evaluted, a) Histogram
of Oriented Gradient (HOG) and Histogram of Optical Flow
(HOF) descriptors calculated on Space Time Interest Point
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(STIP) video locations [8] and b) HOG, HOF and Motion
Boundary Histogram (MBHx, MBHy) descriptors calculated
on the trajectories of video frame interest points that are
tracked for a number of L consecutive frames [9]. Both facial
moving region descriptors are combined with the Bag of
Words (BoWs) model [13], [14], in order to determine facial
moving region video representations.

Finally, facial moving region video classification in visually
silent and visually speaking ones is performed employing a
Single Hidden Layer Feedforward Neural (SLFN) network,
trained by applying the recently proposed kernel Extreme
Learning Machine (kELM) classifier [15], [16]. A facial
moving region verification step is introduced before this step,
in cases where videos not depicting facial images may be
encountered, in order to ensure that only facial moving region
videos are going to be classified as visually silent and non-
silent, by performing facial moving region - non facial moving
region video classification. The proposed approach is evaluated
on a publicly available V-VAD data set, namely CUAVE [17],
where it is shown to outperform recently proposed V-VAD
methods to a large extend. In addition, a new V-VAD data
set, extracted from full length movies in order to evaluate the
performance of the proposed approach on a case of V-VAD
in the wild was created. Experimental results denote that the
proposed approach can operate reasonably well in the cases
where other V-VAD methods fail.

The remainder of this paper is organized as follows. Section
II discusses previous work on V-VAD. The proposed V-VAD
approach is described in Section III. The data sets used in
our experiments and the respective experimental results are
presented in Section IV. Finally, conclusions are drawn in
Section V.

II. PREVIOUS WORK

V-VAD methods proposed in the literature can be roughly
divided in model-based and model-free ones. Model-based
methods require a training process, where positive and nega-
tive paradigms are employed for model learning. In model-free
methods, no direct training is performed, thus circumventing
the need for an a-priori knowledge of the data classes at the
decision stage. Moreover, either visual only or audiovisual
data features can be exploited. In the latter case, combination
of the audio and video modalities can be achieved in two
different ways, either by combining the audio and visual
features (feature/early fusion) or by performing A-VAD and
V-VAD independently and fusing the obtained classification
results (decision/late fusion) [18].

Model-free V-VAD methods, usually rely solely on com-
binations of speaker-specific static and dynamic visual data
parameters, like lip contour geometry and motion [19], or
inner lip height and width trajectories [20] that are compared
to appropriate thresholds for decision making. Emphasis is
given on dynamic parameters due to the fact that identical
lip shapes can be encountered both in silent and non-silent
frames, making static features untrustworthy. In both these
approaches, there is no discrimination between speech and
non-speech acoustic events, which are thus handled as non-
silent sections. Another model-free approach is proposed in

[21], where signal detection algorithms are applied on mouth
region pixel intensities along with their variations, in order to
discriminate between speech and non-speech frames.

Concerning model-based V-VADs, features like lip opening,
rounding and labio-dental touch (a binary feature indicating
whether the lower lip is touching the upper teeth) for lip
configuration followed by motion detection and SVM classi-
fication are proposed in [22], in an attempt to distinguish be-
tween moving and non-moving lips and then between lip mo-
tion originating either from speech or from other face/mouth
activities, e.g., from facial expressions or mastication [19],
[20]. Such a VAD system can constitute the first stage of a
Visual Speech Recognition (VSR) system. The discriminative
power of static and dynamic visual features in V-VAD is
investigated in [23], where the predominance of dynamic ones
is highlighted. The same approach is also adopted in [24],
where facial profile as well as frontal views are used. Though
not providing as much useful information as the frontal ones,
facial profile views are proven to be useful in VAD. A greedy
snake algorithm exploiting rotational template matching, shape
energy constraints and area energy for lip extraction avoiding
common problems resulting from head rotation, low image
resolution and active contour mismatches is introduced in
[25], where adaboost is used for classifier training. Adaboost
is also used in [5] for the V-VAD classifier training, of
a system performing Blind Source Separation (BSS) based
on interference removal, after the extraction of lip region
geometric features. Finally, HMMs are used in [26] to model
the variation of the optical flow vectors from a speaker mouth
region during non-speech periods of mouth activity.

An early-fusion model-based AV-VAD approach is intro-
duced in [27]. 2D discrete cosine transformations (2D-DCTs)
are extracted from the visual signal and a pair of GMMs is
used for classification of the feature vector. V-VAD accuracy is
quite high in the speaker-dependent case. However, it dramat-
ically decreases in the speaker-independent case experiments,
conducted on a simplistic dataset called GRID [28]. Color
information is used in the V-VAD subsystem proposed in [29]
for skin and lip detection, followed by video-based HMMs
aiming to distinguish speech from silence, while lip optical
flow input provided to SVMs is employed in [6] for utilization
of the visual information, subsequently combined with audio
information for multispeaker mid-fusion AV-VAD and Sound
Source Localization (SSL).

III. PROPOSED V-VAD METHOD

The proposed method operates on grayscale facial moving
regions. Face detection and tracking [11], [12] techniques are
used to find such regions in a video. After determining the
facial Regions of Interest (ROIs) in each facial video sequence,
we find the union R = {∪Rk, k = 1, . . . ,K} of all ROIs Rk

within this video sequence. Then, we use this new ROI R for
positioning the face in each video frame and we resize it to a
fixed size of H ×W pixels in order to produce the so called
facial video segments. Subsequently, we apply the proposed
V-VAD method. In this Section, we describe each step of the
proposed V-VAD method in detail.
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A. STIP-based facial video representation

Let U be an annotated facial video segment database con-
taining N facial videos, which are automatically preprocessed,
in order to determine the relevant set of STIPs. In this
paper, the Harris3D detector [30], which is a spatiotemporal
extension of the Harris detector [31] is employed, in order
to detect spatiotemporal video locations, where the image
intensity values undergo significant spatiotemporal changes.
After STIP localization, each facial video is described in terms
of local shape and motion by a set HOG/HOF descriptors
(concatenation of L2 normalized HOG and HOF descriptors)
pij , i = 1, . . . , N, j = 1, . . . , Ni, where i refers to the facial
video index and j indicates the STIP index detected in facial
video i. In the conducted experiments, the publicly available
implementation in [32] has been used for the calculation of
HOG/HOF descriptors. An example of STIP locations on

Fig. 1. Examples of detected STIPs on facial videos.

facial videos is illustrated in Figure 1. pij , i = 1, . . . , N, j =
1, . . . , Ni are clustered by applying K-Means [33] and the
cluster centers vk, k = 1, . . . ,K form the so-called codebook,
i.e., V = {v1, . . . ,vK}. The descriptors pij , j = 1, . . . , Ni are
subsequently quantized using V and l1 normalized in order to
determine the BoW-based video representation of facial video
i, si ∈ RK . si are noted as facial motion vectors hereafter.

B. Dense Trajectory-based facial video representation

In Dense Trajectory-based facial video segment description
[9], video frame interest points are detected on each video
frame and are tracked for a number of L consecutive frames.
Subsequently, D = 5 descriptors, i.e., HOG, HOF, MBHx,
MBHy and the (normalized) trajectory coordinates, are calcu-
lated along the trajectory of each video frame point of interest.
The publicly available implementation in [9] for the calcula-
tion of the Dense Trajectory-based video description was used
in the conducted experiments. An example of Dense Trajectory
locations on facial videos is illustrated in Figure 2. Let us
denote by sdij , i = 1, . . . , N, j = 1, . . . , Ni, d = 1, . . . , D the
set of descriptors calculated for the N facial video segments in
U . Five codebooks Vd, d = 1, . . . , D are obtained by applying
K-Means on sdij for the determination of K prototypes for

each descriptor type. The descriptors sdij , j = 1, . . . , Ni are
subsequently quantized using Vd in order to determine D
BoW-based video representations for facial video i.

Fig. 2. Examples of Dense Trajectories on facial videos.

C. Facial video segment verification

Due to the fact that the proposed method aims to be
applicable in the wild, and on real life recordings, it would
be rather inaccurate and optimistic to consider that the face
detection and tracking algorithms [11], [12] applied, perform
flawlessly and, thus, only facial video segments are produced.
For this reason, and in order for a fully automatic approach,
not requiring human intervention, to be proposed, a facial
video segment verification step had to be introduced before
the facial video segment classification as visually silent and
visually speaking. In this step, videos are being indeed facial
videos or not. Both the STIP and the Dense Trajectory-based
video representations are employed in this step, and thus, when
a test video is introduced to the pretrained SVM or the SLFN
network, the corresponding descriptors are calculated on the
video locations of interest and transformed to feature vectors,
which are subsequently quantized with the aid of the codebook
vectors, in order to produce the facial vector and introduce it
to the trained classifiers. Based on the obtained responses, the
video is classified as being a facial video segment or not,
and the videos identified as non-facial moving regions are
discarded from the data set, thus not introduced to the second
layer of classifiers, performing V-VAD.

D. SLFN classification

After the calculation of the facial vectors si ∈ RK , i =
1, . . . , N obtained by using the STIP or the Dense Trajectory-
based facial video representation, they are used to train a SLFN
network. Since both face verification and V-VAD correspond
to two-class problems, the network should consist of K input,
L hidden and one output neurons, as illustrated in Figure
3. The number L of hidden layer neurons is, usually, much
greater than the number of classes involved in the classification
problem [10], [15], i.e., L ≫ 2.



4

L

wout

K

oi
si

W in b

Fig. 3. SLFN network topology for V-VAD.

The network target values ti, i = 1, . . . , N , each corre-
sponding to a facial vector si, are set to ti = 1 or ti = −1,
depending on whether the respective video segment i is a
facial video segment in the facial video verification case or
on whether the facial video segment depicts a talking or a
non-talking human face in the case of V-VAD, respectively. In
ELM-based classification schemes, the network input weights
Win ∈ RK×L and the hidden layer bias values b ∈ RL are
randomly assigned, while the network output weight w ∈ RL

is analytically calculated. Let us denote by vj and wj the j-th
column of Win and the j-th element of w, respectively. For
an activation function Φ(·), the output oi of the SLFN network
corresponding to the training facial vector si is calculated by:

oi =
L∑

j=1

wj Φ(vj , bj , si). (1)

It has been shown [34], [35] that almost any nonlinear
piecewise continuous activation functions Φ(·) can be used
for the calculation of the network hidden layer outputs, e.g.,
the sigmoid, sine, Gaussian, hard-limiting and Radial Basis
Functions (RBF), Fourier series, etc. In our experiments, we
have employed the RBF − χ2 activation function, which has
been found to outperform other choices for BoW-based action
classification [36].

By storing the network hidden layer outputs corresponding
to the training facial vectors si, i = 1, . . . , N in a matrix Φ:

Φ =

 Φ(v1, b1, s1) · · · Φ(v1, b1, sN )

· · ·
. . . · · ·

Φ(vL, bL, s1) · · · Φ(vL, bL, sN )

 , (2)

equation (1) can be expressed in a matrix form as o = ΦTw.
In order to increase robustness to noisy data, by allowing

small training errors, the network output weight w can be
obtained by solving for:

Minimize: J =
1

2
∥w∥2

2 +
c

2

N∑
i=1

∥�i∥2
2 (3)

Subject to: wT ϕi = ti − �i; i = 1; :::; N; (4)

where ξi is the error corresponding to training facial vector
si, ϕi is the i-th column of Φ denoting the si representation in

the ELM space and c is a parameter denoting the importance
of the training error in the optimization problem. The optimal
value of parameter c is determined by applying a line search
strategy using cross-validation. The network output weight w
is finally obtained by:

w = Φ

(
K+

1

c
I

)−1

t, (5)

where K ∈ RN×N is the ELM kernel matrix, having elements
equal to [K]i,j = ϕT

i ϕj [16], [37].
By using (5), the network response ol for a test vector xl ∈

RD is given by:

ol = WT
outϕl = T

(
ΦTΦ+

1

c
I

)−1

kl, (6)

where kl ∈ RN is a vector having its elements equal to kl,i =
ϕT

i ϕl.
The RBF − χ2 similarity metric provides the state-of-the-

art performance for BoW-based video representations [36],
[38]. Therefore, RBF − χ2 kernel function is used in our
experiments:

K(i, j) = exp

(
− 1

4A

K∑
k=1

(sik − sjk)
2

sik + sjk

)
, (7)

where the value A is set equal to the mean χ2 distance between
the training data si.

In order to employ the Dense Trajectory-based facial video
representation to train the kernel ELM network described
above, a multi-channel kernel learning approach [39] is fol-
lowed, where:

K(i, j) = exp

(
−

D∑
d=1

(
1

4A

K∑
k=1

(sdik − sdjk)
2

sdik + sdjk

))
. (8)

In most applications where ELM-based classification is
performed, classification decision is made solely based on
the sign of ot. However, due to the fact that high precision
values, i.e., high true positive rate, are mainly of interest here,
a threshold α was introduced in the training phase and fine
tuning was performed in order to identify the threshold value
giving the best classification precision values.

E. Facial video segment classification (test phase)

In the test phase, a test facial video segment is introduced to
the SLFN network. When the STIP-based facial video segment
representation is employed, HOG and HOF descriptors are cal-
culated on STIP video locations, L2 normalized and concate-
nated, in order to form the corresponding HOG/HOF feature
vectors ptj ∈ RD, j = 1, . . . , Nt. ptj are quantized by using
the codebook vectors vk ∈ RD, k = 1, . . . ,K determined in
the training phase and L1 normalized, in order to produce
the facial vector st. st is subsequently introduced to the
trained kernel ELM network using (7) and its responses ot are
obtained. Similarly, when the Dense Trajectory-based facial
video representation is employed, HOG, HOF, MBHx, MBHy,
and Trajectory descriptors are calculated on the trajectories of
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densely-sampled video frame interest points and D = 5 BoW-
based video representations sdt , d = 1, . . . , D are produced.
sdt are subsequently introduced to the trained kernel ELM
network using (8) and its responses ot are obtained. Finally,
the test facial video is classified to the visually talking class if
ot ≥ α, or to the visually non-talking class if ot < α. In facial
video segment verification testing, feature vectors consisting
solely of HOG descriptors are also used, both with STIP and
with Dense Trajectory-based video segment representation.

In facial video segment verification testing, feature vectors
consisting solely of HOG descriptors are also used, both
with STIP and with Dense Trajectory-based video segment
representation.

IV. EXPERIMENTS

In this section, experiments conducted in order to evaluate
the performance of the proposed approach on V-VAD are
presented. One publicly available data set, namely CUAVE
as well as a new movie data set containing visual voice
activity samples in the wild, were used to this end. A short
description of these data sets is provided in the following
subsections. Experimental results obtained by SVM and ELM-
based classification are subsequently given. Regarding the
optimal parameter values used in our method, they have been
determined by applying a grid search strategy using the values
c = 10r, r = −6, . . . , 6 and α = 0.1e, e = 0, . . . , 5.

The classification performance metrics adopted for the eval-
uation of the classification results achieved by the various
methods are classification accuracy (CA), precision (P), F1
measure (F1), miss rate (MR), false acceptance rate (FAR)
and half total error rate (HTER = FAR + MAR/2). Moreover,
it should be clear by now that, in case no or very slight motion
is encountered in a facial video, the adopted video description
techniques detect no points of interest, and as a consequence,
calculate no descriptors. Even though these videos are omitted
during classification, they are taken into consideration in the
calculations of the aforementioned performance metrics in the
evaluation phase as we make the assumption that they depict
either visually silent facial videos or background images which
are considered to belong to the visually silent class, too.

A. CUAVE data set

CUAVE [17] is a speaker-independent data set which can
be used for voice activity detection, lip reading and speaker
identification. It consists of videos of 36 speakers, recorded
both individually and in pairs uttering isolated and connected
digits standing still in front of a simplistic background of solid
color, or slightly moving. The participants are both male and
female, with different skin complexions, accents and facial
attributes, as can be seen in Figure 4. The facial videos used
in our experiments were extracted at a resolution of 195×315
pixels.

Experiments on this data set are usually conducted by
performing multiple training-test rounds (sub-experiments),
omitting a small percentage of the speakers and using 80%
of the remaining for training and the rest 20% for testing,
as suggested in [23], [24] and adopted in our experiments.

The performance of the evaluated method is subsequently
measured by reporting the mean classification rate over all
sub-experiments.

Fig. 4. Sample speakers of the CUAVE data set.

B. Movie data set
The motive for the construction of a data set consisting of

facial image videos extracted from full-length movies, was the
absence of a data set suitable for (audio)-visual voice activity
detection, speech recognition or speaker identification, in the
wild (i.e., resembling real-life conditions), as the vast majority
of the currently available public data sets are recorded in
constrained conditions, e.g., with participants usually standing
still in front of a plain background uttering digits, letters,
or small phrases. Our data set was, thus, constructed after
performing automatic face detection and tracking [11], [12], in
three full-length movies. The detected ROIs containing facial
images were cropped and resized to fixed size facial images of
195×315 pixels. In some initial exploratory experiments such
a resolution was proven adequate for this particular problem.
In this way, 4194 video sequences depicting facial image
trajectories of 126 actors were extracted in a fully automated
way, consisting of facial videos of people of different ages,
gender and maybe origin appearing at random poses perform-
ing unconstrained movements and talking normally. Moreover,
indoor, as well as outdoor shots are encountered, with both
stationary and moving complicated backgrounds.

In order for the proposed method to be evaluated on this
data set, the leave-one-movie-out cross-validation protocol
was applied. Thus, mean classification accuracy results are
reported. It should be noted here that, due to the fact that
the face detection and tracking were fully automated, some
video sequences not depicting facial images also emerged.
However, such videos should not exist in a data set oriented
for testing V-VAD methods and thus were removed from the
data set. This removal can be done either manually or in an
automated way. The automatic approach entails the addition
of another classification step, prior to the V-VAD step. In
this step, the videos are classified based on the presence or
absence of human faces in them, using the method described
in Section III. Only those classified as facial image videos are
fed to the second layer of classifiers, in order to be classified
as visually speaking or silent. This preliminary classification
step was performed both using all the descriptor histograms
calculated for visual speech/silence classification, and utilizing
only HOG histograms.

C. Experimental Results
The proposed method has been applied on the CUAVE data

set by using the experimental protocols suggested in [23],
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[24] after a preprocessing step, which was necessary in order
to get frame based results by the proposed method, which
normally conducts video based classification. Specifically, a
sliding window of length equal to 7 frames moving with step
equal to 1 frame was applied on the original videos, in order
to split them in smaller parts and labels were assigned to the
resulting videos using majority voting on the labels of the
frames constituting them. Frame based classification was thus
performed, as in [23], [24]. The sliding window length, was
chosen in such a way that the number of frames used in V-VAD
by the proposed method was equal to the number of frames
used for the calculation of the dynamic features exploited by
methods [23], [24] for the same purpose.

Table I summarizes in terms of classification accuracy (CA)
and visually talking class precision (P) the performance ob-
tained for each experimental setup and each video description
method by the aforementioned classification algorithms. As
can be seen in this Table, satisfactory visual voice activity
detection performance is obtained by applying the proposed
method. In more details, the STIP-based video description
seems to be more suitable for this data set than Dense
Trajectory-based description (DT), achieving better classifica-
tion accuracies by approximately 15% in both experiments.
This can be explained, by taking into account that the com-
bination scheme derived from the second video description
method is very complicated, while the visual data set is quite
simplistic, thus leading to overtraining and poor generalization
in testing.

TABLE I
CLASSIFICATION RATES AND TALKING CLASS PRECISION ON THE CUAVE

DATA SET.

CUAVE DS Experiment [23] Experiment [24]
CA P CA P

STIPs SVM 87.2% 87.4% 86.7% 88.0%
ELM 87.6% 87.0% 86.8% 88.9%

DT SVM 74.2% 76.7% 71.4% 73.7%
ELM 73.8% 75.7% 70.3% 72.4%

Comparison results with other state-of-the-art methods eval-
uating their performance on the CUAVE data set, are provided
in Table II. As can be seen, the proposed method outperforms
the classification accuracy of the methods reported in [23], [24]
by 15.9% and 12.7%, respectively, on the two experimental
setups used in the CUAVE data set, thus achieving great gen-
eralization ability on new data. Moreover, in both experiments
the proposed method has significantly lower error rates while
method [21] seems to be unable to handle the problem posed
by this data set.

The results obtained after applying the proposed method
on the new, fully unconstrained data set without removing the
videos which do not depict facial images are presented in Table
III. Satisfactory performance is achieved by both description
methods, with a half error rate (HTER) of approximately 30%,
that is comparable to the respective performance obtained by
state-of-the-art in constrained visual data sets. In addition,
dense trajectory-based approach outperforms the STIP-based
in all the reported metrics, contrary to what was the case in the
CUAVE data set. This can be explained by the fact that in our

data set, head movements as well as complex background are
encountered. Thus, the descriptors calculated using the dense
trajectories method seem to be more efficient, enabling good
estimation of face contour and its distinctive motion from that
of the background, resulting in better classification rates than
those obtained using STIP points description.

The problem whose results were reported on Table III was
not the usual V-VAD one, since a third class of samples was
also present in the data set, consisting basically of noise. In
order to test our method in the real V-VAD problem, we
manually removed all the irrelevant videos and performed the
experiments again. The results on the ”clear” data set are
presented in Table IV. By comparing the reported results with
those in Table III, a fall in performance metrics rates is noticed
in Table IV, especially in the visual silence class, emanating
from the removal of irrelevant videos, which were correctly
classified as visually silent cases in the previous experiment.

Mean classification results obtained on the three full-length
movies constituting the constructed data set, detailed in Sec-
tion IV-B, are presented in Table V. As can be seen, the
facial video segment verification step performs quite well.
Very low miss rates are obtained using STIPs and the face class
precision as well as the the overall accuracy are satisfactory.
Even better results are obtained using Dense Trajectory based
description and representation, reaching 93% precision rate,
thus allowing the use of this step in the construction of the
fully automatic system proposed in this paper, even though the
miss rates are slightly worse (∼2 − 4%) than those reported
for STIPs.

TABLE V
FACIAL VIDEO SEGMENT VERIFICATION RATES ON THE FULL MOVIE DATA

SET.

MOVIE DS CA P MR F1

STIPs

KSVM 83.6% 85.8% 3.4% 90.8%
HOG KSVM 84.0% 85.0% 1.7% 91.2%

KELM 83.8% 86.5% 4.2% 90.9%
HOG KELM 83.8% 86.1% 3.8% 90.8%

DT

KSVM 94.8% 91.0% 5.2% 92.8%
HOG KSVM 88.1% 91.5% 5.8% 92.8%

KELM 89.1% 93.0% 6.3% 93.3%
HOG KELM 87.7% 92.1% 7.0% 92.5%

Table VI summarizes the classification results obtained by
all the classifier pairs adopted for the automatic removal
of non-facial videos from the data set and the subsequent
classification of the facial videos as visually speaking and
non-speaking. According to them, our approach performs very
well, even in the wild, as the classification rates reported are
similar to those obtained by other already existing methods
on the several simplistic data sets available. Moreover, as
already mentioned, STIP-based facial video description is
proven inadequate for classification purposes in this case,
leading to ∼10% lower precision rates and ∼5% higher HTER
rates than the Dense Trajectory-based method. However, a
universal choice of one of the classifier pairs, reported as the
best one, would not be right, as depending on the applica-
tion, different performance metrics are considered the most
important. By taking this into consideration, the combination
of two neural network based classification steps using Dense-
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TABLE II
COMPARISON RESULTS ON THE CUAVE DATA SET.

CUAVE DS Experiment [23] Experiment [24]
CA HTER FAR MR CA HTER FAR MR

Method [21] 52.8% 47.1% 40.8% 53.3% 52.6% 47.2% 41.0% 53.5%
Method [23] 71.3% 25.6% 31.8% 28.7% - - - -
Method [24] - - - - 74.1% 25.9% 24.2% 27.6%

Proposed method 87.2% 11.3% 14.1% 8.5% 86.8% 11.4% 11.5% 11.3%

TABLE III
CLASSIFICATION RATES ON THE FULL MOVIE DATA SET.

CONSTRUCTED DS Full data set Visual silence Visual speech
CA HTER P FAR F1 P MR F1

STIPs 70.8% 37.7% 71.8% 8.9% 80.2% 68.6% 66.4% 44.0%
DT 76.4% 30.5% 76.1% 7.3% 83.6% 77.6% 53.8% 57.9%

TABLE IV
CLASSIFICATION RATES ON THE ”CLEAR” MOVIE DATA SET.

CONSTRUCTED DS Full data set Visual silence Visual speech
CA HTER P FAR F1 P MR F1

STIPs 67.8% 35.5% 68.5% 15.4% 75.5% 67.8% 55.6% 52.8%
DT 71.1% 31.3% 69.9% 13.2% 77.2% 74.8% 49.4% 60.3%

Trajectory based facial video description can be regarded as
the best alternative. This is in line with the remark that in
our experiments, we mainly focus on the minimization of
false detection error, and thus, on the maximization of visually
speaking class precision metric.

TABLE VI
CLASSIFICATION RATES ON THE AUTOMATICALLY CLEARED MOVIE DATA

SET.

MOVIE DS CA HTER P

STIPs

KSVM-KSVM 68.5% 37.0% 62.2%
HOG KSVM-KSVM 70.9% 35.9% 67.5%

KSVM-KELM 69.7% 37.8% 68.2%
HOG KSVM-KELM 70.8% 36.7% 68.2%

KELM-KSVM 70.1% 36.4% 67.3%
HOG KELM-KSVM 70.7% 35.8% 67.5%

KELM-KELM 69.3% 37.3% 64.9%
HOG KELM-KELM 69.6% 37.2% 65.8%

DT

KSVM-KSVM 73.0% 29.8% 70.9%
HOG KSVM-KSVM 73.0% 29.6% 71.2%

KSVM-KELM 73.1% 31.0% 76.5%
HOG KSVM-KELM 73.2% 30.7% 77.5%

KELM-KSVM 72.5% 29.7% 71.1%
HOG KELM-KSVM 72.6% 29.8% 71.0%

KELM-KELM 73.2% 30.3% 78.8%
HOG KELM-KELM 73.4% 30.3% 78.6%

Finally, based on the results reported in Table VII, our
method is proven to be much more efficient than one of
the current state-of-the-art methods for visual voice activity
detection, as it outperforms it by 23.8%. More specifically,
method [21] which was tested only on facial videos of
frontal images, seems to fail in dealing with the unconstrained
problem, while the proposed method achieves satisfactory
classification accuracy. The poor performance of the method
[21] in this data set was to a great extend expected, as its
implementation utilizes face proportions in order to perform
mouth detection. This approach is successfully applicable only
in frontal facial images and apparently fails in cases, where

face rotation of more than ∼30◦ horizontally and/or ∼10◦

vertically are encountered, which are very frequent in our data
set.

V. CONCLUSIONS

In this paper, we proposed a novel method for Visual
Voice Activity Detection in the wild that exploits local shape
and motion information appearing at spatiotemporal locations
of interest for facial video description and the BoW model
for facial video representation. SVM and Neural Network-
based classification based on the ELM using the BoW-based
facial video representations leads to satisfactory classification
performance. Experimental results on one publicly available
data set denote the effectiveness of the proposed method, since
it outperforms recently proposed state-of-the-art methods in a
user independent experimental setting. The respective results
on the fully unconstrained data of a new movie data set
especially constructed for dealing with the V-VAD problem
in wild, prove the efficiency of the proposed method even in
the unconstrained problem, in which state-of-the-art methods
fail.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 287674
(3DTVS). This publication reflects only the author’s views.
The European Union is not liable for any use that may be
made of the information contained therein.

REFERENCES

[1] G. Zhao, M. Barnard, and M. Pietikainen, “Lipreading with local
spatiotemporal descriptors,” IEEE Transactions on Multimedia, vol. 11,
no. 7, pp. 1254–1265, November 2009.



8

TABLE VII
COMPARISON RESULTS ON THE CONSTRUCTED DATA SET.

CONSTRUCTED DS Full data set Visual silence Visual speech
CA HTER P FAR F1 P MR F1

Method [21] 49.6% 49.2% 57.2% 64.9% 43.1% 45.2% 33.5% 53.8%
Proposed method 73.4% 30.3% 71.5% 9.3% 80.0% 78.6% 51.4% 60.0%

[2] C. Zhang, P. Yin, Y. Rui, R. Cutler, P. Viola, X. Sun, N. Pinto, and
Z. Zhang, “Boosting-based multimodal speaker detection for distributed
meeting videos,” IEEE Transactions on Multimedia, vol. 10, no. 8, pp.
1541–1552, December 2008.

[3] K. Nathwani, P. Pandit, and R. Hegde, “Group delay based methods
for speaker segregation and its application in multimedia information
retrieval,” IEEE Transactions on Multimedia, vol. 15, no. 6, pp. 1326–
1339, October 2013.

[4] M. Sargin, Y. Yemez, E. Erzin, and A. Tekalp, “Audiovisual synchroniza-
tion and fusion using canonical correlation analysis,” IEEE Transactions
on Multimedia, vol. 9, no. 7, pp. 1520–1403, November 2007.

[5] Q. Liu, A. Aubrey, and W. Wang, “Interference reduction in reverberant
speech separation with visual voice activity detection,” IEEE Transac-
tions on Multimedia, vol. 16, no. 6, pp. 1610–1623, October 2014.

[6] V. Minotto, C. Jung, and B. Lee, “Simultaneous-speaker voice activity
detection and localization using mid-fusion of SVM and HMMs,” IEEE
Transactions on Multimedia, vol. 16, no. 4, pp. 1032–1044, June 2014.

[7] S. Petridis and M. Pantic, “Audiovisual discrimination between speech
and laughter: Why and when visual information might help,” IEEE
Transactions on Multimedia, vol. 13, no. 2, pp. 216–234, April 2011.

[8] I. Laptev, “On space-time interest points,” International Journal of
Computer Vision, vol. 64, no. 2–3, pp. 107–123, September 2005.
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