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 2

ABSTRACT 

Biomaterials that can stimulate stem cell differentiation without growth factor supplementation 

provide potent and cost-effective scaffolds for regenerative medicine. We hypothesize that a 

scaffold prepared from cellulose and silk blends can direct stem cell chondrogenic fate. We 

systematically prepared cellulose blends with silk at different compositions using an 

environmentally benign processing method based on ionic liquids as a common solvent.  We 

tested the effect of blend compositions on the physical properties of the materials as well as on 

their ability to support mesenchymal stem cell (MSC) growth and chondrogenic differentiation. 

The stiffness and tensile strength of cellulose was significantly reduced by blending with silk.  

The characterized materials were tested using MSCs derived from four different patients. 

Growing MSCs on a specific blend combination of cellulose and silk in a 75:25 ratio 

significantly upregulated the chondrogenic marker genes SOX9, aggrecan and type II collagen in 

the absence of specific growth factors. This chondrogenic effect was neither found with neat 

cellulose nor the cellulose/silk 50:50 blend composition.  No adipogenic or osteogenic 

differentiation is detected on the blends suggesting that the cellulose/silk 75:25 blend induces 

specific stem cell differentiation into the chondrogenic lineage without addition of the soluble 

growth factor TGF-β.  The cellulose/silk blend we identified can be used both for in vitro tissue 

engineering and as an implantable device for stimulating endogenous stem cells to initiate 

cartilage repair. 

KEYWORDS: cellulose, silk, ionic liquids, chondrogenesis, stem cell, cartilage tissue 

engineering 
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 3

1. Introduction 

Mesenchymal stem cells (MSCs) have been widely used in cartilage tissue engineering 

studies
1, 2

.  We have used MSCs to create a tissue-engineered trachea that was grown in a 

bioreactor 
3
 and then successfully implanted this in a patient with bronchomalacia 

4
.  This 

method required the use of at least three growth factors, including TGF-β 
5
, and extensive ex 

vivo cell culture.  Most of the current materials known to support MSC chondrogenesis depend 

on the addition of one or more growth factors from the TGF-β superfamily to stimulate MSC 

differentiation and matrix deposition.  Materials with the property of directing specific MSC 

differentiation in the absence of growth factors would simplify in vitro tissue engineering 

procedures and could be implanted into patients without added cells in order to initiate tissue 

regeneration through activation of endogenous MSCs. 

Many studies have established that complex interactions between soluble and extracellular 

matrix molecules regulate intracellular signaling and differentiation. Although direct activation 

of signal transduction by matrix molecules through integrin receptors has been well studied, the 

physical properties of the matrix, such as its elasticity or stiffness, are also important 
6, 7

.  In 

order to progress with controlling stem cell fate without dependence on soluble factors, custom-

engineered artificial or natural materials with controlled surface and biomechanical properties 

can be developed.  One method for achieving this objective involves blending biocompatible 

materials with known properties to support stem cell fate.  Recently, blends of artificial and 

natural polymers have been used to support the chondrogenic differentiation of MSCs 
8
.  In all 

cases, the use of chondrogenic growth factors remained essential for driving MSC differentiation 

and matrix deposition.  
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 4

Cellulose, which is a linear homopolymer of glucose (C6H10O5)n with n ranging from 500 to 

5000, is the most abundant polymer in nature.   It is degradable by enzymes and its solubility in 

water depends on its chain length n 
9
. Cellulose is easily fabricated and thus available in a wide 

range of forms and shapes, e.g. as membrane sponges, microspheres and non-woven, woven or 

knitted textiles. The biocompatibility and robust mechanical properties of cellulose and its 

derivatives is well established 
10, 11

.  Unlike synthetically-produced biomaterials, such as 

polylactic acid and polyglycolic acid which are known to induce inflammation secondary to the 

production of acidic residues during degradation 
12-15

, cellulose degrades to yield glucose. As a 

consequence, cellulose has been used to support embryonic stem cell growth 
16

, neural 

differentiation of mesenchymal stem cells 
17

 and retinal stem-progenitor cell survival and 

proliferation 
18

. 

To date, however, the potential of cellulose for inducing stem cell chondrogenesis has not been 

investigated. Cellulose, which comprises three hydroxyl groups per repeating unit, is 

theoretically a good choice as an initiator of chondrogenesis.  The presence of hydroxyl groups 

on the surface of a biomaterial has been shown to encourage chondrogenic differentiation of 

stem cells 
19

. On the other hand, silk is widely used as a biomaterial for tissue engineering 

applications due to its toughness 
20-24

.  The fibroin protein of silk is composed of a 59-mer amino 

acid repeat sequence organized as pleated sheets 
25

.  Silk and its derivatives can support MSC 

chondrogenesis in the presence of chondrogenic growth factors 
26-28

. By blending cellulose, 

which is a stiff polymer, in different proportions with silk, it should be possible to change the 

stiffness of the blends and the proportion of hydroxyl and amide functional groups present in a 

substrate.  In support of this hypothesis, a few studies have demonstrated a reduction in the 

mechanical properties of cellulose upon blending with silk.  Freddi et al. reported a greater than 
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 5

two-fold reduction in the tensile strength of cellulose after blending with silk at 2:3 ratio 
29

. 

Kuzmina et al. prepared cellulose and silk blend films using 1-buthyl-3-methylimidazolium 

chloride, and found the tensile strength of neat cellulose to reduce from 50.1 MPa to 31.2 MPa in 

the presence of silk at 90% 
30

.  Finally, Hirano et al. used a viscose-based process to prepare 

cellulose and silk blend fibres with silk content ranging from 0 to 53wt%. They observed a 

decrease in the tenacity (strength) of the fibres from 1.27 g/denier for neat cellulose to 0.15 

g/denier for 53wt% of silk 
31

. 

Despite having these advantages, widescale use of cellulose in stem cell-based tissue 

engineering remains relatively restricted due in part to the lack of a simple, environmentally 

benign processing method for manufacturing it into useable biomaterials. Examples of using 

cellulose with stem cells include preparing bacterial cellulose sponges that support stem cell 

proliferation 
32

, osteogenic differentiation of stem cells on hydroxyapatite-coated bacterial 

cellulose 
33

 and maintenance of myoblasts on cellulose nano-whiskers 
34, 35

.  Cellulose degrades 

before it melts, and therefore it cannot be melt processed. In addition, solvents traditionally used 

for solution casting/spinning cellulose, such as carbon disulphide and sulphuric acid, are highly 

aggressive and hazardous.  Ionic liquids have emerged as a new class of environmentally benign 

solvents which can effectively dissolve natural polymers such as cellulose, silk and chitin 
36-39

, to 

prepare films 
38, 40, 41

, fibres/nanofibres 
36, 42-45

, gels 
41, 46-48

 and foams 
47, 49

.  

In this report, we demonstrate for the first time that a specific blend of cellulose and silk, 

prepared using ionic liquids, provides self-supported membranes with the ability to initiate the 

chondrogenic differentiation of human MSCs in the absence of chondrogenic growth factors. 
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 6

2. Experimental Section 

2.1 Preparation of the natural polymer and blends. Cellulose from wood pulp (degree of 

polymerization, 900) was purchased from Rayonier Inc. (Jacksonville, FL, USA). Bombyx mori 

silk (obtained from Aurora Silk, Portland, OR, USA) was boiled in 0.02M Na2CO3 solution and 

washed before dissolution and preparation of membranes.  The ionic liquid, 1-ethyl-3-

methylimidazolium acetate (EMI Ac) obtained from Sigma Aldrich, was used as a solvent for 

cellulose and silk. All the tissue culture chemicals were purchased from Sigma unless otherwise 

stated.  The 2D membranes of cellulose, and its blends with silk were produced using the 

following procedure: 1.5% (w/w) of cellulose was dissolved in 5 g of EMI Ac in a glass vial with 

continuous stirring and heating at 80 °C. The heating was carried out for 2 h to ensure complete 

dissolution. Subsequently, silk was added to above solution. The amount of cellulose and silk 

were varied to achieve desired cellulose to silk weight fractions in the final membrane. The 

cellulose solution was poured into a glass petri dish and allowed to cool for 3 h.  The cooled 

solution was coagulated by pouring ethanol into the petri dish. Ethanol was added to the 

membranes to selectively dissolve the EMI Ac and coagulate the cellulose membrane. The 

coagulated membrane was soaked in distilled water for two days to remove any trace of EMI Ac. 

The membranes were dried at room temperature to remove the water. To prepare silk and 

cellulose blends, an appropriate amount of silk was dissolved using EMI Ac as a common 

solvent. For the effective coagulation of silk, a mixture of ethanol and acetic acid (90:10) was 

used 
50

. The rest of the membranes were prepared using the same process described above. In 

total, 3 materials were prepared: cellulose alone (100%), cellulose/silk (75:25), cellulose/silk 

(50:50). Preparation of blends with more than 50% silk and pure regenerated silk produced 

brittle membranes that were difficult to handle without breaking. A similar reduction in the 
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 7

mechanical properties of cellulose/silk blends 
51, 52

 and pure regenerated silk 
53

 was also reported 

previously. The films’ thickness measured approximately 7-10 µm. 

2.2 Chemical and mechanical characterization. The chemical composition of the pure 

cellulose, and its blends with silk, was assessed using Fourier transform infrared spectroscopy 

(FTIR) analysis.  The analysis was carried out in transmission mode using a Spectrum 100 FTIR 

spectrometer (PerkinElmer, Waltham, MA, USA). Scanning electron microscopy (SEM) 

imaging was performed using a field emission gun scanning electron microscope (JEOL Ltd., 

Tokyo, Japan) with an accelerating voltage of 15.0 kV and working distances between 15 mm 

and 6 mm. Thin 2D membranes of cellulose and its blends with silk were fixed to an aluminum 

stub with carbon pad. In order to avoid surface charging gold was sputtered onto the samples 

with an EMITECH sputter coater. Raman Spectroscopy was carried out using a Renishaw 

Ramanscope 1000 system with at least 10 spectra being collected at different positions along the 

length of each sample. Here HeNe laser was used (wavelength = 633 nm) with a laser spot size 

of 10 microns. AFM images were taken using either a Bruker (formerly Veeco) Dimension 3100 

or Bruker Multimode IIIa. Images were taken in tapping mode in air, using AppNano ATC-25 

silicon cantilevers with a nominal tip radius of 10 nm and resonant frequency of 307 kHz. Drive 

amplitudes were often high to combat surface adhesion, but set points were kept at 80% of free 

amplitude. Two and ten micron height and phase images, 512 x 512 pixels in resolution, were 

collected.  Mechanical testing of the membranes was carried out using a Textechno Favimat 

(Mönchengladbach, Germany) that is ideally suited for measuring the tensile strength, stiffness 

and linear density of very thin samples such as fibres and films. Membranes were cut into 20 mm 

x 3 mm pieces and gripped between two jaws of the Favimat testing machine.  The sample was 

pulled apart until failure at an elongation rate of 2 mm min
-1

 for all of the tests. Readings for 
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 8

linear density via mechanical resonance measurements enabled the data to be plotted as specific 

strength and specific stiffness (expressed in cN Tex
-1

, which is numerically equivalent to GPa 

SG
-1

, where Tex = g km
-1

 and SG is specific gravity). The stress (cN/tex) and strain (% 

displacement of sample) data were logged using the data acquisition and analysis software 

provided by Favimat. The stress was calculated by dividing applied load value by linear density 

of the sample (tex), while the ultimate tensile strength (cN/tex) was calculated as maximum load 

(cN) before sample failure divided by the linear density of the film (tex). The slope of the stress-

strain curve generated was used to calculate the stiffness (cN/tex) of the sample. 

2.3 Cell culture. Bone marrow plugs were collected from the femoral heads of patients (n=4) 

undergoing complete replacement hip arthroplasty. All patients provided informed consent and 

the study was carried out according to local ethical guidelines. Cells were suspended in stem cell 

expansion medium consisting of low glucose Dulbecco’s Modified Eagles Medium 

supplemented with 10 % (v/v) Fetal Bovine Serum (FBS, Thermo Scientific Hyclone, 

Loughborough, UK), 1% (v/v) Glutamax (Sigma, Poole, UK) and 10 % (v/v) Penicillin G 

(10,000 units/ml)/Streptomycin (10,000 mg/ml) antibiotic mixture (P/S; Sigma) P/S. The serum 

batch was selected to promote the growth of MSCs 
54

. The medium was also supplemented with 

2 ng/ml fibroblast growth factor 2 (FGF-2, PeproTech, London, UK) to enhance MSCs 

proliferation 
55

. The cell suspension was separated from any bone in the sample by repeated 

washing with media. The cells were centrifuged at 500 g for 5 min and the supernatant/fat 

removed. The resulting cell pellet was resuspended in medium, and then plated at a seeding 

density of between 1.5 and 2.0x10
5
 nucleated cells per cm

2
. These flasks were incubated at 37 °C 

in a humidified atmosphere of 5% CO2 and 95% air. Four days were allowed before the first 

medium change and then the medium was changed every other day until adherent cells reached 
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 9

90% confluence and were ready for passaging. All experiments were done with passage three 

cells. 

 2.4 Preparation of 2D membranes for cell seeding. The dry cellulose and cellulose/silk blends 

were cut as circular discs with an 8 mm diameter biopsy punch and placed in a 24-well tissue 

culture plate. They were disinfected with 70% (v/v) ethanol for 30 minutes and washed a few 

times with sterile phosphate buffered saline (PBS).  Standard tissue culture plastic (Corning) was 

used as a control for cell adherence.  The polystyrene surface has been modified using corona 

discharge to make the surface hydrophilic and negatively charged when medium is added 
56

.  The 

expansion medium used for growing MSCs on this surface is accepted as a criterion for 

maintaining the multipotent state of MSCs 
57

.  The membranes or plastic were coated with 

fibronectin (100 µg/ml; Sigma) for 5 h at 37 °C, washed with PBS and transferred to an ultralow 

attachment plate to dry overnight. 

2.5 Cell seeding and culture. The cells were loaded on the fibronectin-coated materials at a 

density of 28x10
3
 cells per cm

2
. The seeded cells were cultured in expansion medium as 

described above with FGF-2 at 10 ng/ml. Cells seeded on plastic as positive controls were 

maintained in the same medium.  The medium was changed twice a week. The cells were 

incubated for 14 days before downstream analysis.  

2.6 Cell adhesion and viability assay. Live monitoring of cell adhesion and viability was 

conducted using the LIVE/DEAD Viability/Cytotoxicity Kit for mammalian cells (Invitrogen, 

Paisley, UK) as per manufacturer instructions. Cell-loaded materials were incubated for 72 h at 

37 °C in a humidified atmosphere of 5% CO2 and 95% air. The constructs were washed with 

PBS and incubated with the kit reagent that stains live cells with green fluorescent dye (calcein 

AM, emission 488nm) and dead cells with red fluorescent dye (ethidium homodimer-1, emission 
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 10

568nm). Negative controls consisting of cells killed with methanol and positive controls 

consisting of cells grown on a tissue culture plastic plate were run with each set of experiments. 

The plates were viewed under a widefield fluorescence microscope system (Leica DMIRB 

inverted microscope, Houston, TX, USA).  

2.7 Quantitative real-time polymerase chain reaction. Total RNA was extracted using the 

RNeasy Mini Kit (Qiagen, Netherlands). RNA concentration and purity were determined 

spectrometrically at 260 and 280 nm. Complementary DNA (cDNA) was synthesized using 

Takara Primescript 1st Strand cDNA Synthesis kit (Shiga, Japan) according to the 

manufacturer’s protocol. Quantitative real time polymerase chain reaction (qRT-PCR) was 

performed as described previously 
5, 54

. A 25 µl reaction consisted of 12.5 µl of the SYBR 

Premix Ex Taq (Perfect Real Time; Takara), 5 µl of the cDNA reaction mixture, and 300 nM 

primers using the Rotorgene 6000 Cycler (Qiagen, Crawley, UK). The amplification programme 

consisted of initial denaturation at 95 °C (2 min) followed by 40 cycles of denaturation at 95 °C 

(15 s) and annealing/extension at 58 °C (30 s). After amplification, melt analysis was performed 

by heating the reaction mixture from 60 °C to 95 °C at a rate of 0.2 °C/s.  The cycle threshold 

(Ct) value for each gene of interest was measured for each sample. The Ct value for β-Actin was 

used as an endogenous reference for normalization.  Real time RT-PCR assays were done in 

duplicate or triplicate and repeated two to four times. Primers for cartilage specific genes were 

designed and optimized as previously described 
5, 54

. The sequences of the primers used were  

SOX9 (F) CTTTGGTTTGTGTTCGTGTTTTG, SOX9 (R) AGAGAAAGAAAAAGGGAA 

AGGTAAGTTT, Aggrecan (F) AGGGCGAGTGGAATGATGTT, Aggrecan (R) GG 

TGGCTGTGCCCTTTTTAC, Collagen II α1 (A+B) (F) CAACACTGCCAACGTCCAGAT, 

Collagen II α1 (A+B) (R) CTGCTTCGTCCAGATAGGCAAT, Collagen I α2(I) (F) TCT GGA 
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 11

TGG ATT GAA GGG ACA, Collagen I α2(I) (R) CCA ACA CGT CCT CTC TCA CC, β-Actin 

(F) GACAGGATGCAGAAGGAGATTACT, β-Actin (R) TGATCCACATCTGCTGGAAGGT. 

 

2.8 Assessment of MSC multipotential.  Chondrogenic differentiation on blends or plastic was 

stimulated by adding differentiation medium consisting of DMEM containing 4.5 g/l glucose 

supplemented with 10 ng/ml of transforming growth factor-3 (TGF-β3; R&D Systems), 1 mM 

sodium pyruvate (Sigma), 50 µg/ml ascorbic acid-2-phosphate (Sigma), 1×10
-7

 M 

dexamethasone (Sigma), 1% ITS (Invitrogen), and 1% (v/v) Penicillin (100 U/ml) /Streptomycin 

(100 µg/ml) (Invitrogen). Medium was changed every 2 to 3 days. Negative controls were 

incubated in differentiation medium without TGF-β3. In all cultures, the medium was replaced 

every 3 to 4 days for a period of 21 days. The cells were washed with PBS and fixed with 4% 

(w/v) paraformaldehyde at room temperature. The cells were permeabilized with 1% (w/v) BSA 

in PBS containing 10% (v/v) normal donkey serum and 0.3% (v/v) Triton X-100 at room 

temperature.  After blocking with 1% BSA/PBS, the films were incubated with goat anti-human 

aggrecan antibody (R&D systems) or mouse anti-human type II collagen antibody (Santa Cruz) 

overnight at 2-8 °C. The films were incubated with fluorescent secondary antibody 

(NorthernLights 557 Fluorochrome-conjugated donkey anti-goat secondary antibody; R&D 

Systems) for 60 minutes at room temperature.  The membranes were washed with 1% BSA/PBS 

and images taken using a Leica widefield fluorescence microscope. Negative controls included 

samples incubated with or without normal donkey serum at the appropriate corresponding 

concentrations of the primary antibodies.  For osteogenic positive controls MSCs were grown to 

50-70% confluency on blend membranes and plastic and incubated in osteogenic medium 

containing 100 nM dexamethasone, 0.2 mM ascorbic acid and 10 mM β-glycerolphosphate 
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 12

(Sigma). Negative controls were cultured without β-glycerolphosphate stimulation. In all 

cultures, the medium was replaced every 3 to 4 days for a period of 21 days. The cells were then 

washed with PBS, fixed in a solution of ice-cold 70% ethanol for 1 h, and stained for 10 min 

with 1 ml of 40 mM Alizarin red (pH 4.1; Sigma). For adipogenic differentiation, 50-70% 

confluent BMSCs were incubated in complete medium supplemented, in positive control 

cultures, with 0.5 µM hydrocortisone, 0.5 mM isobutyl-methylxanthine and 60 µM indomethacin 

(all from Sigma). Negative controls were cultured in complete medium without the supplements. 

In all cultures, the medium was replaced every 3 to 4 days for a period of 21 days. Cells were 

washed with PBS, fixed in 10% formalin for 10 min, and stained for 15 min with fresh Oil Red-

O solution (Sigma). 

 

2.9 Statistical analysis. All experiments were done with individual patient samples in duplicate 

or triplicate. The sample sizes n reflects the number of individual patient samples used for each 

experiment. Comparison of differences between individual groups was by Student’s t-test. 

Multiple group comparisons were made using either analysis of variance using (ANOVA) or the 

non-parametric Kruskal–Wallis test. Where significant variance was demonstrated, differences 

between individual groups were determined using the Bonferroni correction or Dunn’s test post 

hoc, as appropriate. In all cases, p < 0.05 was taken as significant. 

 

3. Results 

3.1 Scanning electron microscopy. Blends of cellulose and silk at various ratios were 

prepared as described above.  The blends were fabricated as thin membranes that were cut into 8 

mm discs (Figure 1A).  Scanning electron microscopy (SEM) analysis was carried out to 
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investigate the surface structure and morphology of membranes prepared from pure cellulose and 

its blends with silk (Figure 1 B-G). In each case, the surface of the membranes appeared to be 

rough with no observable difference between blends.  Importantly, cross-sections of the films 

showed no indication of phase separation of the blends proving homogenous dispersion of 

cellulose and silk within the membranes. 

3.2 FTIR Analysis. The chemical compositions of the cellulose and cellulose/silk hybrid 

membranes were studied using FTIR analysis.  Figure 2 (A) shows a comparison of the FTIR 

data for regenerated pure cellulose, cellulose/silk 75:25 blend, cellulose/silk 50:50 blend and 

regenerated pure silk. The pure cellulose does not have an amide group in its molecular structure, 

hence it does not show amide peaks, but as silk is added amide peaks begin to appear. Thus the 

spectrum of the cellulose/silk 75:25 blend showed an amide I peak at 1624 cm
-1

 and an amide II 

peak at 1530 cm
-1

 which are signature peaks of the silk component 
58

.  The cellulose/silk 50:50 

blend also showed amide I and amide II peaks at the slightly lower frequencies of 1621 cm
-1

 and 

1515 cm
-1

, respectively.  These data demonstrate that the blending had no effect on the inherent 

chemical functionalities associated with cellulose and silk. 

3.3 Raman Spectroscopy and AFM. A potential limitation when using cellulose as a 

substrate for MSCs is its inert capacity in not adhering this type of cell.  In order to overcome 

this limitation, the membranes were precoated with fibronectin, an extracllular matrix protein 

known to enhance MSC adhesion to biomaterials 
5
.  Raman spectroscopy was carried out in 

order to probe the effect of fibronectin coating on the availability of the functional groups 

present in the membrane. Figure 3 shows the Raman spectra of cellulose (Figure 3, A-B), 

cellulose/silk 75:25 (Figure 3, C-D) and cellulose/silk 50:50 (Figure 3, E-F) blends with 

fibronectin coating. In each case, the samples clearly show a distinct peak at 2889cm
-1

 which 
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correspondences to CH and CH2 bond stretching peak in cellulose 
59

. Similarly, the cellulose 

glycosidic ring breathing mode peak at 1095cm
-1

 
60

 is present. The Raman spectra can probe the 

depth up to a few hundred nanometers 
61

.  Since the cells will interact with the membranes in the 

wet state, it was hypothesized that fibronectin conformation may change.  Figure 3 demonstrates 

there was no detectable difference between the cellulose peaks in the dry and wet states.  Taken 

together, the results clearly demonstrate that motioned functional groups can be detected by 

Raman spectroscopy techniques even after coating with fibronectin in dry and wet states, 

indicating that fibronectin does not mask the functional groups present in the membranes.  

We considered it important to analyze the topography and surface roughness of the membranes 

at the highest resolution possible.  To this end, we employed AFM imaging for all membranes 

(Figure 4). Typical images of cellulose films showed granular surface morphology (Figure 4A). 

However, doping of silk had a significant effect on the surface topography of the films. As silk 

concentration was increased films exhibited smooth surface morphology (Figure 4, B and C).  

The data suggests that cellulose/silk blending impacts the surface topography at the nanolevel. 

3.4 Mechanical properties. We hypothesize that cellulose and silk blends can direct stem cell 

fate in part due their elastic properties 
7
.  The mechanical properties of all the regenerated 

polymer membranes were tested using a Favimat testing machine, as described above. Figure 5 

(A) shows the stiffness (elasticity) of pure cellulose and its blends with silk. Statistically 

significant decreases in the stiffness of cellulose/silk blends were observed as compared to the 

pure cellulose polymer.  Figure 5 (B) shows the comparison of the tensile strength of pure 

cellulose and the 75:25 and 50:50 cellulose/silk blends. A significant reduction in the tensile 

strength was observed in the cellulose/silk blends as compared to pure cellulose polymer.    
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3.5 MSC viability and morphology. MSCs seeded on each of the blends were tested for 

viability and growth using the LIVE/DEAD
®

 viability assay. Cell morphology was assessed by 

microscopic analysis.  It is hypothesiszd since pure silk can encourage MSC adhesion 
28

, 

cellulose/silk blends may attain this capacity.  Initial experiments were conducted to assess the 

adhesion and viability of MSCs on all blends without fibronectin coating.  There was a very 

weak improvement in the adhesion of MSCs with an increase in the silk concentration of the 

blends (data not shown); however this weak improvement was not sufficient to eliminate the 

need for fibronectin.  From this point onwards, fibronectin coating was used to facilitate MSC 

adhesion onto the membranes.  A high number of live cells (green) attached to the membranes 

after 3 days and they continued to grow for 14 days (Figure 6). A negligible number of dead cells 

(red) were detected irrespective of the polymer, blend or time point. Positive controls using cells 

seeded on plastic (Figure 6 G-H) or negative controls using cells killed by methanol (Figure 6 I) 

are shown for comparison.  The cells maintained their typical fibroblastic morphology on pure 

cellulose (Figure 6 A-B) similar to plastic (Figure 6 G-H) suggesting maintenance of the 

undifferentiated phenotype on cellulose.  On the other hand, the cells assumed a more diffuse 

and dense appearance on the blends (Figure 6 C-F and I-L). The observed change of phenotype 

for MSCs grown on the blends suggested these have undergone auto-differentiation.  

3.6 Chondrogenic induction. In order to assess the multipotential of MSCs seeded on the 

blends, qPCR analysis for chondrogenic, adipogenic and osteogenic marker genes was 

conducted. Figure 7 shows qPCR analysis for the chondrogenic markers, SOX9, aggrecan, and 

type II collagen.  Type I collagen, which is not normally synthesized by chondrocytes, was 

included to assess the degree of chondrocyte dedifferentiation.  There was a small upregulation 

of chondrogenic marker genes aggrecan, type II collagen and SOX9 for MSCs grown on pure 
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cellulose compared to cells grown on plastic. This upregulation increased to a significant level 

when cells were grown on the cellulose/silk 75:25 blend membrane (Figure 7). Type I collagen 

was not significantly upregulated under any condition.  The ratio of collagen II to collagen I is a 

measure of chondrogenic quality with a higher level indicating more chondrogenesis and less 

dedifferentiation.  This ratio was significantly higher for MSCs grown on the cellulose/silk 75:25 

blend than on any other material.  Analysis of gene expression for the osteogenic marker 

osteocalcin, and the adipogenic marker, adipose most abundant gene transcript-1 (AMP-1), 

showed no detectable signal by RT-PCR analysis (data not shown) suggesting selective 

commitment of MSCs to the chondrogenic lineage on the cellulose/silk 75:25 blend. 

3.7 Cartilage formation. The deposition of the extracellular matrix proteins, type II collagen 

and aggrecan is a hallmark of committed hyaline chondrocytes.  In order to confirm that the 

observed upregulation of chondrogenic genes is not transient, MSCs were grown on the 

cellulose/silk 75:25 blend membrane for 21 days then stained for type II collagen and aggrecan. 

Figure 8 shows strong staining for aggrecan and type II collagen in the absence of the 

chondrogenic stimulation of TGF-β.  There was no detectable staining for MSCs grown on 

plastic.  When MSCs on plastic were incubated with TGF-β, strong staining was observed for 

aggrecan and type II collagen (Figure 8A).  The results confirm that the cellulose/silk 75:25 

blend is not only inductive of chondrogenesis as shown by qPCR but also a driver of 

chondrogenic MSC maturation and cartilage matrix deposition.  The observed specific 

chondrogenic stimulation of MSCs by the cellulose/silk 75:25 blend was confirmed by assessing 

the blend’s capacity for osteogenic and adipogenic induction.  Figure 8B shows an absence of 

osteogenesis and adipogenesis, characterized by calcium deposition and the presence of fatty 

acid vacuoles, respectively.  MSCs grown on plastic in the presence of soluble osteogenic and 
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adipogenic supplements showed strong staining for calcium and fatty acids, respectively.  Taken 

together, the data confirms the specific capacity of the cellulose/silk 75:25 blend to direct MSCs 

into chondrogenic differentiation and not adipogenic or osteogenic lineages. 

 

4. Discussion 

We have shown that a specific blend of cellulose and silk processed using an environmentally 

benign common solvent can stimulate human mesenchymal stem cell chondrogenic 

differentiation.  In this way the stiffness and proportion of hydroxyl and amide groups in the 

membranes was systematically varied to provide a material composition that can be used as a 

growth-factor independent method for controlling MSC differentiation. 

Smart biomaterials that can induce stem cell differentiation without the need for external 

stimuli such as growth factors could result in major advances in the field of regenerative 

medicine. Such smart materials can cut the cost of clinical delivery by minimizing the need for 

long-term MSC cultures in expensive growth factors.  They can also facilitate cell-free 

therapeutic modalities for stimulating endogenous stem cells, an approach favored by regulatory 

bodies and industry. Previous studies have shown that engineering the physical/chemical 

properties and architecture of biomaterials can be tuned to enhance differentiation of stem cells 

to a specific lineage. For example, Dalby et al. designed a range of nanoscale patterns on the 

surface of stem cell scaffolds and showed that a specific configuration promotes osteogenic 

differentiation even in the absence of an osteogenic supplement 
62

.  Similarly, Engler et al. 

showed that stem cell lineage specification can be controlled solely by manipulation of scaffold 

elasticity 
7
. In addition, the presence of specific chemical functional groups on the scaffold 

surface can play a role in lineage specification of stem cells in the absence of external growth 

factors. Curran et al. showed that silane-treated glass surfaces functionalized with carboxyl (–
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COOH) and hydroxyl (–OH) groups initiated chondrogenic marker mRNA expression in MSCs 

in the absence of chondrogenic growth factors, whereas amine (–NH2) functional groups 

encouraged osteogenic differentiation of stem cells in the absence of osteogenic supplements 
19

. 

Our current work builds on these earlier studies by showing significantly enhanced chondrogenic 

differentiation of MSCs when using a specific combination of cellulose and silk blend membrane 

even without use of the standard chondrogenic growth factor, TGF-β. We hypothesize that the 

cellulose/silk 75:25 blend provides an optimum combination of membrane elasticity and 

appropriate combination of hydroxyl and amino functional groups to enhance the chondrogenic 

differentiation of stem cells.  The AFM analysis revealed peculiar topography and surface 

roughness for the cellulose/silk 75:25 blend that is intermediate between the pure cellulose and 

cellulose/silk 50:50 blends.  This suggests the interaction of MSCs with the cellulose/silk 75:25 

blend is influenced not just by its chemical composition and mechanical properties, but also by 

the nano profile of the surface 
62

.  Understanding the molecular signalling events associated with 

that profile remains to be investigated. 

Despite their abundance in nature, excellent mechanical properties and biocompatibility 
63-68

, 

the use of cellulose in tissue engineering applications has been limited in part due to the lack of 

an environmentally benign processing method. Our approach for using ionic liquids both as 

common, environmentally benign solvents to dissolve pure cellulose and for blending with silk 

may help overcome any reluctance to use these natural materials as scaffolds for chondrogenic 

differentiation of stem cells.   A potential drawback of the ionic liquid process is that it is 

coagulation based and diffusion of the liquid from coagulated biopolymers can take a long time. 

However this approach remains safer and easier to control than the traditionally used viscose and 

N-methylmorpholine-N-oxide process 
10

.  
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Cellulose is a macromolecule of glucose monomers, which are naturally occurring 

biochemicals in the human body, hence its release from degrading cellulose in vivo is less likely 

to cause inflammation than common artificial materials such as polyglycolic acid and polylactic 

acid 
12-15

.  The contribution of glucose, as a cellulose degradation product, to the chondrogenic 

differentiation process of MSCs remains to be established.  It is worth noting however that the 

standard media recipe for driving MSC chondrogenesis includes a high glucose concentration 
69

. 

Our results indicate that preferential stem cell differentiation on substrates prepared from 

polymer blends compared to those fabricated from pure polymers is associated with decreased 

MSC proliferation (data not shown).  The proliferation rate of MSCs is known to slow down as 

they differentiate down various lineages 
70, 71

, which further supports our finding that the blends 

do influence MSC function even in the absence of soluble differentiation factors.  Whether the 

observed slowing down is associated with the same molecular pathways found in differentiating 

MSCs on plastic remains to be investigated 
70

. 

The MSCs used in this study were taken from the bone marrow of different patients so that the 

effects of different materials could be determined across a range of donors.  Whilst this approach 

introduces greater biological variation, we believe that this is a more rigorous method than using 

multiple runs for the same patient as usually demonstrated in other studies.  We have carefully 

taken into account the higher variation by using a robust statistical approach of ANOVA with a 

post hoc correction for multiple comparisons.  MSCs exhibit heterogeneity at the transcriptome 

and proteome levels depending on their preparation 
72

, source 
73

 and subset populations 
74

.  In 

order to assess how broad in scope the blends can drive MSC chondrogenic differentiation, 

future work will involve testing MSCs from other sources such adipose tissue, umbilical cord 

and from pluripotent stem cell lines.  
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 5. Conclusions 

We have identified a specific blend of cellulose and silk polymers as a potent stimulator of 

MSC chondrogenic maturation independent of any chondrogenic growth factor stimulation.  The 

use of ionic liquids as appropriate solvents enabled the preparation of a range of cellulose/silk 

membranes from which we were effectively able to screen the desired blend ratio to optimize the 

material’s physical and chemical properties.  The cellulose/silk blend identified here could be 

used both for in vitro tissue engineering and as an implantable device for stimulating endogenous 

stem cells to initiate cartilage repair.  Future work will focus on preparing 3D scaffolds of the 

blend for preclinical studies. 
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Figure Captions 

Figure 1. Macroscopic and microscopic presentation of polymer membranes.  Sheets of polymer 

membranes were cut into 8 mm discs (A).  Scanning electron microscopy images showing cross 

sections of polymer membranes prepared from cellulose, and its blends with silk. B, D, F are low 

resolution images and C, E and G are high resolution images. 

Figure 2. The chemical composition of regenerated cellulose, silk and cellulose/silk blends. 

Polymers and their blends were analyzed by FTIR and peaks of amide I and II were used to 

confirm the presence of silk components in the blends. 

Figure 3. The influence of fibronectin coating on the blends’ functional groups.  Raman spectra 

of the neat cellulose (A-B), cellulose/silk 75:25 blend (C-D) and cellulose/silk 50:50 blends (E-

F) which shows presence of functional groups associated with cellulose even after coating the 

surface of the membranes with fibronectin. The Raman spectra were collected according to the 

details given in the Experimental Section. 

Figure 4.  Topography and surface roughness of blends. Topography and surface roughness 

measurements of synthesized blend films were recorded by AFM imaging under ambient 

conditions.  Two and ten micron height and phase images, 512 x 512 pixels in resolution, were 

collected. (A) Cellulose, (B) Cellulose/silk 75:25, and (C) Cellulose/silk 50:50. 

Figure 5.  Mechanical properties of pure and blended polymers.  Samples were processed on a 

Textechno Favimat for stiffness and tensile strength according to the Experimetal Section.  (A) 

The stiffness (elasticity) of the cellulose and cellulose/silk blends.  (B) The tensile strength of 
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cellulose and cellulose/silk blends.  *p< 0.05 and **p<0.01 by ANOVA with a Bonferroni post 

hoc correction. 

Figure 6.  Viability of MSCs on polymer membranes. Cells were seeded on the scaffolds and 

stained with the LIVE/DEAD viability stain according to the Experimental Section (A-F). Green 

cells are live cells and red cells are dead cells due to the excitation of florescent dye, calcein AM 

at 490nm.  The left column shows cells three days after seeding, and the right column shows 

cells seven days after seeding. Live cells (green) on plastic as positive control (G-H).  Dead cells 

(red) treated with methanol (I). 

Figure 7. Chondrogenic gene expression of MSCs on polymer membranes.  The RNA of MSCs 

(n=4) grown on different polymers for 14 days was harvested and transcribed into cDNA for 

quantitative PCR analysis of the chondrogenic markers SOX9, aggrecan and type II collagen.  

Type I collagen was used as a marker of dedifferentiation.  Relative gene expression was 

normalized to β-Actin as a housekeeping gene. Error bars denote SEM. *p<0.05 by Kruskal-

Wallis with a Dunn post hoc correction. 

Figure 8.  Chondrogenic commitment of MSCs on polymer membranes. MSCs (n=4) were 

grown on different polymers or plastic for 21 days in the presence or absence of the 

chondrogenic growth factor, TGFβ (A). Similarly, MSCs were incubated with or without 

adipogenic and osteogenic soluble supplements (B).  Chondrogenic differentiation of MSCs was 

assessed by staining for aggrecan (red fluorescence antibody) and type II collagen (green 

fluorescence antibody).  Adipogenic differentiation was assessed by staining fatty vacuoles with 

Oil Red O.  Osteogenic differentiation was assessed by staining calcium with Alizarin Red. 
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Figure 1  
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 7 
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Figure 8 
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