Rheological controls on the eruption potential and style of an andesite volcano: a case study from Mt. Ruapehu, New Zealand

G.N. Kilgour¹,²,*, H.M. Mader¹, J.D. Blundy¹, R.A. Brooker¹

¹School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK
²GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo, New Zealand

*Corresponding author
g.kilgour@gns.cri.nz
Tel.: +64 7 3748211

Abstract

The evolving magma rheology of three recent Ruapehu eruptions (1969, 1977, and 1995) is estimated using a combination of thermodynamic models and rheological calculations, supported by textural observations of the erupted scoria. We use a well-established thermodynamic model to determine the composition of these representative Ruapehu magmas from 300 MPa to ∼30 MPa. The outputs of the model provide the changing crystal and bubble content in a closed system (assuming no gas loss), as well as the fractionating melt compositions. We calculate the melt viscosity, and the effect of bubbles and crystals, to quantify the rheology of the magma during ascent (under assumed equilibrium conditions). The moderately high phenocryst content of Ruapehu scoria (∼30%) means that only a small amount of additional microlite crystallisation (∼5%) would result in a yield strength, which may lead the magma to stall. However, if the strain rates are high enough, more crystallisation would be possible without developing a yield stress. This suggests that microlite-rich magmas are almost certain to stall unless they encounter significant fluid addition from a source such as a hydrothermal system, groundwater, or surface water (i.e., Ruapehu’s Crater Lake).

Ruapehu magmas are initially H₂O-undersaturated and as a consequence, crystallisation and bubble growth were suppressed until the magma achieved saturation, at ∼100 to 50 MPa. From this analysis, we suggest that Ruapehu magmas are more likely to erupt compared to magmas of a similar composition that are H₂O-saturated. This partly explains the regular, albeit small-volume eruptions at Ruapehu and the propensity for phreatomagmatic eruptions when the magma:water ratio is low.
1. Introduction

The physical state of a magma controls a range of igneous processes, including crystal and bubble growth (e.g., Llewellin et al. 2002b; Hammer 2008), the ability to exsolve gas (e.g., Gonnermann and Manga 2007), or drive convection (e.g., Huppert and Sparks 1981), and eventually whether the magma erupts or stalls (e.g., Caricchi et al. 2008). During magma ascent, crystallisation and bubble expansion significantly alter the physical properties of a magma. Therefore, a quantitative assessment of magma rheology through time could help to explain the style, duration and size of eruptions. The aim of this work is to develop a method for determining the rheology of magma from storage to eruption using existing constitutive equations. An assessment of the changing rheological properties of magma could provide insights into the generation of seismicity, deformation, and gas efflux; all signals that are regularly monitored at active volcanoes.

Early research into the physical properties of magma were restricted to the liquid phase. Bottinga and Weill (1970, 1972) and Shaw (1972) were the first to describe melt viscosity and density as a function of temperature and composition. More recent work used high temperature (and sometimes pressure) experiments to develop a more robust, universal viscosity equation that fully considers the effect of H_2O and F on melt viscosity (Giordano and Dingwell 2003; Giordano et al. 2004; Hui and Zhang 2007; Giordano et al. 2008). The formulation of Giordano et al. (2008) is currently well accepted and will be used throughout.

The addition of crystals to a melt has been experimentally examined at high temperature and pressure on natural or synthetic suspensions (e.g., Lejeune and Richet 1995; Sato 2005; Ishibashi and Sato 2007; Lavallee et al. 2007; Caricchi et al. 2008; Cordonnier et al. 2009; Ishibashi 2009; Picard et al. 2011; Vona et al. 2011; Picard et al. 2013). Using a variety of crystal shapes and sizes, all of the aforementioned papers showed that the abundance of crystals significantly increased the viscosity of the suspension and that aspect ratio and particle size must be taken into account. As an example, Picard et al. (2011, 2013) examined the effect that a high feldspar (tabular) content had on a two-phase magma. They found that feldspar crystal interactions dominated at a much lower crystal volume fraction (~ 0.3) compared to a magma with a high pyroxene or olivine (cubic) content (~ 0.5).

Analogue experiments on two-phase, crystal-melt mixtures enable variables to be systematically altered including liquid viscosity, crystal shape, density, size, and volume fraction. A number of papers investigated the effect of crystals on the apparent viscosity of the suspension...
In particular, the experiments of Mueller et al. (2010a, 2011) examined a range of crystal sizes, aspect ratios and volume fraction to derive an empirical model for the apparent viscosity of a crystal-melt suspension. Based on the average aspect ratio and size, the formulation of Mader et al. (2013) (using the data from Mueller et al. (2010a, 2011)) can be used to determine the maximum packing fraction; an important parameter for developing yield strength (e.g., Hoover et al., 2001; Saar et al., 2001).

The relative effect of bubbles on a melt has been well characterised by experiments on analogue and natural samples (Bagdassarov and Dingwell, 1992, 1993; Bagdassarov et al., 1994; Manga et al., 1998; Lejeune et al., 1999; Manga and Loewenberg, 2001; Llewellyn et al., 2002a,b; Rust and Manga, 2002; Pal, 2003; Llewellyn and Manga, 2005). These authors showed that bubble shape is strongly controlled by strain rate, which in turn affects the viscosity. The capillary number (the ratio of viscous to restoring forces) therefore, is an important parameter when calculating the viscosity of a bubble-melt mixture. Bubbles that are spherical increase the viscosity while elongated bubbles reduce the viscosity (e.g., Llewellyn et al., 2002b; Rust and Manga, 2002).

In addition, samples that are subjected to shear at high temperature develop areas of strain localisation sub-parallel to the shear plane. These zones have been shown to focus permeability resulting in significant outgassing (e.g., Caricchi et al., 2011; Pistone et al., 2012).

Rheology experiments on natural samples have largely focussed on basalts (e.g., Ishibashi and Sato, 2007; Villeneuve et al., 2008; Ishibashi, 2009; Vona et al., 2011) or rhyolites (e.g., Bagdassarov and Dingwell, 1992, 1993; Bagdassarov et al., 1994), two end member compositions. A small number of studies have examined the multi-phase rheology of trachyte at high pressure and temperature (e.g., Caricchi et al., 2008; Picard et al., 2011, 2013; Vona et al., 2013). Importantly, there are very few that have examined the rheology of andesites. The specific case of andesite dome lavas at very high crystallinities and at atmospheric pressure has been examined by Lavalleec et al. (2007) and Cordonnier et al. (2009). Therefore, a rheological assessment of natural andesite magma using existing physical models would provide a useful contribution to our understanding of andesitic eruptions. However, due to the limited number of rheological experiments on andesite magmas (Mader et al., 2013), it is possible that generic rheological models may require further experimental validation.

The studies discussed so far focus primarily on developing two-phase rheological models, involving either crystal and melt or bubbles and melt (see Mader et al., 2013 and references therein). Few studies exist of the more complex - and realistic - situation of three-phase suspen-
sions (e.g., Shields et al., 2014). These include the rheological study of synthetic high-viscosity magmas containing both crystals and bubbles (e.g., Pistone et al., 2012, 2013). More recently, Truby et al. (2014) present a constitutive model which uses the bubble suspension as an ‘effective medium’ in which the crystals reside, i.e. the apparent viscosity of the bubble suspension is used as the melt viscosity in the two-phase crystal suspension model. Rheological measurements of analogue three-phase suspensions of spheres and bubbles at low capillarity are shown to fit the model well. In this paper, we use a similar approach to that of Truby et al. (2014). Beckett et al. (2014) present a similar calculation for Stromboli basalts and show that there is no significant difference in the calculated viscosity whether the three-phase model is generated using the bubble suspension or the crystal suspension as the effective medium.

Small volume magmatic eruptions potentially provide insights into the minimum conditions required for magma to erupt. This is particularly important at volcanoes that commonly erupt small magma volumes interspersed between larger events. This is the case for Ruapehu, which makes it an excellent case study for this type of process. Historically, the typical erupted volumes are < 0.001 km3. In addition, the mineralogy of Ruapehu magmas is relatively simple for an arc andesite, consisting of abundant plagioclase \gg clinopyroxene and orthopyroxene \pm Fe-Ti oxides (magnetite \gg ilmenite) (Gamble et al., 1999; Price et al., 2012; Kilgour et al., 2013). Therefore, and combined with the bubble volume fraction, the rheology of the magma is approximated by a simple crystal population. The H$_2$O content of Ruapehu magmas is also very low (2 wt % H$_2$O; 1000 ppm CO$_2$), which also makes Ruapehu an interesting case to examine the physical properties of a relatively dry, arc andesite (Kilgour et al., 2013).

There has been no work published on the textures of historically-erupted scoria from Ruapehu. Therefore, the evolving physical state of the magma is not well constrained. For our study, we make some preliminary observations on the erupted scoria, which allows some estimates for the state of Ruapehu magma from storage to eruption. We use these to quantify the possible rheological properties at various stages, including storage processes of cooling and equilibrium crystallisation, and decompression during ascent. During decompression, we attempt to determine the magma rheology at a series of pressure steps, broadly similar to step-decompression experiments (e.g., Gardner et al., 1999; Couch et al., 2003a; Brugger and Hammer, 2010) and similar to the modelling approach of Baker and Alletti (2012), who examined the evolution of the volatile component of a notional magma during ascent. Modelling magma rheology as a continuous pressure drop is beyond the scope of this work, but in future, a more comprehensive account of bubble growth and crystallisation kinetics will make this possible. This will provide a
more comprehensive account of bubble growth and crystallisation kinetics. This work provides a simple, first-order, yet reasonable approximation of decompression, involving microlite crystallisation and bubble growth. We illustrate this method by calculating the evolving rheology of Ruapehu magma and attempt to account for the style and size duration of historical eruptions.

2. Framework for modelling magma evolution

To calculate the evolving rheology of Ruapehu magmas, we use a rather simple framework (Fig. 1). To this end, we consider a typical Ruapehu magma and examine the effect of decompression on crystallisation and gas exsolution. This includes an account of the changing composition of the melt phase due to crystallisation and bubble growth. By doing so, we then calculate the rheology of the melt as a Newtonian fluid (μ), and the apparent viscosities of the bubble-melt (η_b) and crystal-melt suspensions (η_{cr}). Using recently published constitutive equations, we then calculate the magma rheology (η).

We use a starting composition that is representative of erupted scoria from historical eruptions (Gamble et al., 1999; Kilgour et al., 2013) (Table. 1). We examine three representative Ruapehu magmas with different eruption temperatures (915, 977 and 1030 °C), which are determined by mineral-melt equilibria calculations (Kilgour et al., 2013). The melt composition is then calculated at a series of pressures under isothermal conditions, using the thermodynamic software - MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998). Calculations are conducted at variable pressure steps of between 10 and 100 MPa, depending on the relative changes in the model output. We then continue to decompress the magma until the composition of the liquid phase correlates well with the groundmass composition of the natural samples.

Our modelling approach assumes that the magma reaches its final melt composition at the point at which crystallisation ceased i.e. the magma erupted explosively. If further crystallisation occurs to a lower pressures, the crystal content is significantly higher than the scoria exhibits (the melt fraction would also be very low) and the groundmass glass composition becomes overly evolved. For example, continued decompression to low pressure replicates the crystallinity and liquid composition of dome lavas (c.f. Blundy et al., 2008).

2.1. Melt composition

During crystallisation, the residual melt composition evolves significantly. To investigate the changing melt composition due to crystallisation, and the resultant rheological effect, either experimental data or thermodynamic models are required. There are no published data on the
phase relations for Ruapehu magmas as a function of intensive variables, such as pressure and temperature. Although we performed a few limited experiments to confirm the melt vs. crystal proportions, these were very limited and not designed to determine the variation in melt composition for a large number of variable parameters. Until such a database exists, we are limited to using the program MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) to determine the phase relations, melt fraction, and compositions based on equilibrium crystallisation (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998). We also assume that the magma is confined to a closed system, whereby there is no loss or gain of elements, heat, volatiles or crystals. MELTS is a thermodynamic model that calculates the phase assemblage, liquid composition and crystallinity given the bulk composition, temperature and pressure. The model has been calibrated against high pressure and temperature experiments on predominantly dry basaltic and rhyolitic compositions. The model tends to give a poor match to experimental data at high water contents where H_2O thermodynamic models are less well constrained. However, Ruapehu magmas are H_2O-poor and do not contain hornblende or biotite, which reduces the uncertainty of the MELTS calculations.

We test MELTS against our own experimental data from a powdered Ruapehu scoria sample along with andesites of a similar composition to Ruapehu (e.g., Blatter and Carmichael, 1998; Moore and Carmichael, 1998). This enables us to evaluate the ability of MELTS to determine phase relations and compositions for relatively dry, andesite magma. The model replicates the general phase relations and melt composition of the experimental data reasonably well. For example, Blatter and Carmichael (1998) ran a series of experiments at ~ 100 MPa and 950-1100 °C; plagioclase and clinopyroxene proportions are in good agreement with those calculated by MELTS, while the calculated orthopyroxene proportions are lower. However, the melt fraction determined from the model is similar to that measured in experiments of Blatter and Carmichael (1998) and our own (Fig. 2). Calculated and experimental melt compositions are in good agreement for SiO_2, TiO_2, K_2O, and Al_2O_3. The model underestimates $FeO_{(T)}$, MgO, and CaO by ~ 1 wt %, while it overestimates Na_2O by $\sim 1-2$ wt % and H_2O by < 1 wt %. When we propagate those values through to the Newtonian melt viscosity (μ) calculations of Giordano et al. (2008), we record an overestimation of $\sim 0.3 \log \mu$, which we consider as the errors involved in our calculations.

Using MELTS, we determine that for our starting composition and with the stated volatile content, the liquidus temperature is 1150 °C, given an initial pressure of 300 MPa (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998). This is taken from the maximum trapping pressures
calculated from phenocryst-hosted melt inclusions (Kilgour et al., 2013). We then cool three example magmas to their eruption temperature (915, 977, 1030 °C) and allow them to crystallise under equilibrium conditions. Once the eruption temperatures are reached, the magmas are decompressed (assuming adiabatic ascent) at variable stages. At each stage, the melt composition and crystal volume fraction are determined and input into the melt viscosity and rheological calculations.

2.2. Bubble content

While clast vesicularity data for Ruapehu scoria has been completed (see section 5.2), a thorough account of the bubble size distribution of Ruapehu scoria has yet to be attempted and is beyond the scope of this work. Nevertheless, we can approximate the bubble content, if we assume that all of the vapour that partitions from the melt is trapped in bubbles and is not lost through the development of bubble connectivity, leading to significant outgassing (e.g., Jaupart, 1998; Gonnermann and Manga, 2003). A similar approach was taken by Baker and Alletti (2012), who modelled the vesicularity and bulk volume of a modelled magma with decreasing pressure.

We use the volatile content of phenocryst-hosted melt inclusions from Kilgour et al. (2013) to represent the initial H₂O (2 wt %) and CO₂ (1000 ppm) content of the three model magmas. Based on the assumption of a closed system, we use the same bulk composition throughout. Using the solubility model of Papale et al. (2006), we then calculate the amount of vapour (wt %) in the system at a given pressure and temperature, using the melt composition output from the MELTS model. That solubility model is compositionally dependant, which is significant given the intermediate composition of Ruapehu magmas. The ideal gas law enables us to convert the wt % vapour in the system into a bubble volume and bulk density of the gas (Eqs. 1 and 2).

To determine the density of the melt, we use the formulation of Lange and Carmichael (1987) and Kress and Carmichael (1991). This takes into account the effect of pressure and thermal expansion. The results give a bubble volume (cm³) per 100 g and as a result, we then obtain a bubble volume fraction. Clearly, this approach assumes ideal gas behaviour, which at high pressures is unlikely.

\[V = \frac{nRT}{P} \]

where \(V \) is the gas volume (m³), \(n \) is the number of moles, \(R \) is the gas constant (J/mol/K), \(T \) is temperature (K) and \(P \) is pressure (Pa). Substituting density (\(\rho \)) into Eq. (1), (and where M
is the molar mass (g)) we are able to determine the density Eq. (2) and consequently, gas volume as a function of pressure and temperature (in our model, we consider only pressure changes).

$$\rho = \frac{PM}{RT}$$

(2)

To check if our ideal gas results are valid, we compare our results to the equation of state for binary (H$_2$O and CO$_2$) mixtures [Duan et al., 1992; Duan and Zhang, 2006], which accounts for non-ideality of mixing at high pressure and temperature. Their model is a complex physical chemical model and is based on a large number of high pressure and temperature experimental data. They computed a vast number of computer simulations to derive a universal equation of state that covers a broad temperature and pressure range. The Duan and Zhang (2006) model provides a useful tool to determine gas density and volume in addition to other parameters. When we compare the gas volumes derived from the ideal gas calculations with those from the equation of state [Duan and Zhang, 2006], they are in good agreement (i.e., within 15 % relative error to 40 MPa). At > 40 MPa, the relative error increases from ~ 15 to 60 % due to the non-ideality of mixing. However, the gas volume at pressure between 300 and 40 MPa is minimal (< 1 cm3) and consequently, the departure from ideality is considered insignificant for our purposes. Based on this comparison, we are confident that treating H$_2$O and CO$_2$ gases as an ideal mixture is valid at pressures < 300 MPa and for this composition and volatile content.

The major advantage of this approach is that we can determine the bubble volume at any given pressure. This is in contrast to using the bubble size distribution (BSD) of an erupted scoria. A scoria BSD contains valuable information on late-stage bubble growth during vesiculation, however, the effect of coalescence needs to be considered in order to extract useful information on the evolution of bubbles in the magma. Without a detailed analysis of Ruapehu BSD’s, we are restricted to model calculations. Nevertheless, unpublished vesiculality data from the 1995-1996 eruption episode is used to compare against the model output. None of the other eruptions analysed have sufficient samples in the archives to conduct a similar analysis.

Our modelling approach considers three magmas with identical bulk composition that are decompressed over the same pressure range. The only variable that has been altered between runs is magmatic temperature (i.e., 915, 977, and 1030 °C). Therefore, from Eqs. (1) and (2), magmatic temperature will have a minimal effect on the bubble volume fraction between magmas. Consequently, we use a single, representative bubble volume fraction vs pressure curve to calculate the changing bubble content during decompression.
2.3. Magma crystallinity

The crystal contents of the natural Ruapehu scoria are determined using two methods. Point counting is used to determine the phenocryst content, and for the microlites, we use both backscattered electron (BSE) images and major element compositional maps (following the method of [Muir et al., 2012]) on a Hitachi S-3500N Scanning Electron Microscope (SEM) at the University of Bristol (Fig. 3). This enables us to quantify the size and abundance of each mineral phase and in some respects allows us to determine the impact of foreign crystal entrainment into the magma during ascent (i.e., using crystal size distribution analysis e.g., [Higgins, 2000]).

In order to convert the crystal content into a volume fraction, which is necessary for the rheological calculations, we use the following aspect ratios of 1:2:5 and 1:1:2 (short, intermediate, and long axes) for plagioclase and pyroxene phenocrysts respectively, and 1:1:7 for acicular pyroxene and plagioclase microlites. These values are similar to those determined for pahoehoe and a’ā lava flows from Hawaii and Lava Butte (Hoover et al., 2001) that were then averaged for the numerical model of [Saar et al., 2001]. We then follow the method of [Higgins, 2000, 2002; Higgins and Chandrasekhararam, 2007], using the computer program CSD-Corrections (version 1.4.0.2) to convert two-dimensional greyscale images and element maps into three-dimensional crystal volume fractions. This enables us to calculate the relative viscosity effect of phenocrysts and microlites immediately before eruption. To account for crystal growth during ascent, we require a model that accounts for phase equilibria.

An erupted scoria contains varying amounts of microlites depending on the rate of decompression and undercooling (e.g., [Couch et al., 2003a, b; Hammer, 2008]). However, we have only limited information on the ascent rate prior to eruptions at Ruapehu and so we have chosen to exclude the effect of decompression or undercooling rates. To account for the growth of microlites, we use the output of MELTS to determine the crystallisation path. Ruapehu magmas are H₂O undersaturated, which means that crystallisation will be suppressed until the magma ascent path crosses H₂O saturation.

We assume a linear rate of crystal growth from H₂O saturation to the final crystal content, which we acknowledge to be a simplification of the kinetics of crystal growth (Fig. 4). However, using this method, we are able to determine the volume fraction of microlites, while phenocrysts were assumed to be stable throughout magma ascent (i.e., we ignored crystal resorption).

While we ignore decompression rate and the amount of undercooling, it is worth noting that these are important factors in driving microlite content and texture (see [Hammer, 2008] and [Blundy and Cashman, 2008] for a review of microlite growth kinetics). Furthermore, the analysis
of crystal size distributions is used to estimate growth rates, residence times and the extent of crystal inheritance (e.g., Marsh, 1988; Higgins, 2000, 2002). Hence, a more rigorous account of crystal growth in Ruapehu magmas requires a thorough CSD analysis and potentially, a number of high temperature and pressure experiments to constrain the phase equilibria. In future, this would be a useful contribution, but for this work, we attempt to simplify the system to provide a best-estimate of the absolute conditions.

3. Textural analysis of natural samples

To provide some background to the rheological modelling, we describe the key textures present in Ruapehu scoria as summarised in Tables 2 and 3 and Fig. 5. Ruapehu scoria from historical eruptions exhibit similar mineralogy (as mentioned above), mineral sizes and aspect ratios.

Phenocrysts sizes and aspect ratios are consistent between scoria samples. Plagioclase phenocrysts are up to 4 mm across, but more commonly ∼1-2 mm across. Their aspect ratio is ∼5:1 (length:width), while clinopyroxene and orthopyroxene phenocrysts are of a similar size (i.e., 1-2 mm across) and have a similar aspect ratio of ∼2:1.

The most notable difference between the scoria samples is the abundance of microlites. In particular, the 1969 eruption (915 °C) is microlite-free, while the 1977 (977 °C) and 1995 (1030 °C) eruptions contain 30 and 20 % microlites, respectively.

4. Methods

4.1. Experimental methods

Four phase equilibria experiments were conducted to determine the melt fraction of a representative Ruapehu magma at temperatures of 850, 900, 950, and 1000 °C. This enables us to compare the phase relations of Ruapehu against the thermodynamic predictions of the MELTS model (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) and the experiments of Blatter and Carmichael (1998). The experiments of Blatter and Carmichael (1998) were conducted on a similar andesitic composition, but at higher temperatures (<1125 °C) compared to Ruapehu magmas of interest (915 - 1030 °C).

We used the whole rock powder of a Ruapehu scoria sample from the 1995-1996 eruptions of Ruapehu, which has a similar composition to other historical scoria samples (e.g., Gamble et al., 1999; Kilgour et al., 2013) (Table. 1). Each Au capsule had enough water added for the experiment to be H₂O-saturated and these were welded shut, then pressurised and heated.
in either a Titanium-Zirconium-Molybdenum (TZM) pressure vessel (900, 950, and 1000 °C experiments) or a cold-seal apparatus (850 °C) at the University of Bristol, UK, both with rapid quench capabilities (~200 °C/s). For the TZM experiments, the pressure medium was a mixture of H-Ar gas, which allows for the oxygen fugacity to be buffered at ~ nickel-nickel oxide (NNO). Each TZM experiment ran for 48 hours. The experiments in the cold-seal apparatus, at 850 °C, were pressurized with water and were run for 72 hours before being quenched. Although not controlled, the 'intrinsic' oxygen fugacity in these pressure vessels is between NNO and NNO+1. Only those capsules that weighed the same before and after the experiment were considered successful. The melt fraction of each capsule was determined via image thresholding in ImageJ to estimate the proportions of crystals and glass.

4.2. Method for calculating three-phase rheology

To determine the evolving rheology of Ruapehu magmas, we use the two-phase models of Mader et al. (2013) at a series of discrete pressure steps. These models require a simple account of the bubble fraction (ϕ_b) or vesicularity, relative to the melt phase Eq. (3), and the crystal volume fraction (ϕ_{cr}) relative to the total volume Eq. (4). This allows us to directly calculate the three-phase rheology as a whole. To put it simply, our modelling takes a binary approach whereby we first calculate the bubble-melt suspension rheology (η_b) by ignoring crystals. We then take that rheology to represent the liquid phase, or effective medium, and add phenocrysts and finally microlites to obtain the three-phase magma rheology. Because this method is calculated using models for only two-phase suspensions, this approach neglects the potential non-ideal interactions that may occur between bubbles and crystals in a natural magma. Nevertheless, until a full three-phase model is developed, this is considered the most reasonable approach.

$$\phi_b = V_b / (V_b + V_m)$$ (3)

where V_b is the bubble volume and V_m is the total magma volume

$$\phi_{cr} = V_{cr} / (V_{cr} + V_m)$$ (4)

where V_{cr} is the crystal volume

4.2.1. Melt viscosity

The viscosity of a melt is strongly controlled by its composition. We use the model of Giordano et al. (2008) to calculate the Newtonian viscosity of the melt phase (μ). That model is empirical
and incorporates a large number of experimental data from a wide range of magma compositions, at atmospheric pressures. The model is strongly dependant on the major element composition and the \(\text{H}_2\text{O} \) and F content (in this case, these data were obtained by SIMS analysis - Kilgour et al. (2013)). The final melt viscosity of a magma is calculated from the groundmass glass composition of erupted scoria (Kilgour et al., 2013; Table 3). The initial liquid and its viscosity is determined from the bulk rock composition (Gamble et al., 1999; Kilgour et al., 2013) (Table. 1) above the liquidus temperature.

4.2.2. Rheology of a melt-bubble suspension

The rheology of a bubble-melt suspension is strongly dependant on the shape and size of the bubbles. It has been shown that spherical bubbles increase the viscosity of the suspension, while elongated bubbles create free-slip surfaces and therefore viscosity is reduced (Llewellin et al., 2002a,b; Rust and Manga, 2002; Mader et al., 2013). Bubble shape is governed by the ratio between the deforming, viscous stress and the restoring stress due to surface tension, termed the Capillary number \((Ca)\). Therefore, a small \(Ca \) will result in spherical bubbles while for a large \(Ca \), elongated bubbles are produced.

To simplify our rheological calculations including bubbles, we initially assume that there is either no flow (i.e., the bubbles are spherical) or rapid flow (i.e., the bubbles are elongated), which means that for this work, we only consider the bubble volume fraction and its effect on the bubble-melt rheology (assuming a closed system). This allows us to account for the end member effects of bubble shape on the apparent viscosity of the bubble suspension \((\eta_{r,b})\), which in the case of bubbles is categorised by Eqs. (7) and (8) (Mader et al., 2013).

\[
\eta_{r,b,o} = \mu(1 - \phi)^{-1}
\]

\[
\eta_{r,b,\infty} = \mu(1 - \phi)^{\frac{2}{3}}
\]

where \(\phi_b \) is the bubble volume fraction given in Eq (3) and \(\mu \) is the Newtonian viscosity of the melt phase.

It is usual to give the apparent viscosity as a dimensionless relative viscosity such that:

\[
\eta_{r,b,o} = (1 - \phi)^{-1}
\]
These expressions provide the upper ($\eta_{rb,o}$) and lower ($\eta_{rb,\infty}$) limits of relative viscosity. $\eta_{rb,o}$ assumes that all bubbles are spherical and therefore increases the viscosity of a suspension in a similar fashion to a solid crystal, while $\eta_{rb,\infty}$ accounts for the effect of elongation, in equilibrium with the strain. As a result, the relative viscosity decreases.

While it is useful to model the system without considering a range in bubble sizes and the strain rate, it is clearly an artificial construct. The only constraints we have from ascent rate and therefore strain rate, are from diffusion chronometry (Kilgour et al., 2014). They showed that magma interactions that finally triggered each historical eruption at Ruapehu occurred within one month. These data provide an estimation of the ascent rate from the storage region, which is located between 2 and 9 km depth (Kilgour et al., 2013). Ideally, diffusion timescales are used in conjunction with pre-eruption seismicity, however, Bryan and Sherburn (1999) showed that prior to the 1995 and 1996 eruptions of Ruapehu, seismicity was minor and inconsistent. Therefore, we are restricted to using the end member effects of bubbles at high ($\eta_{rb,\infty}$) and low ($\eta_{rb,o}$) capillary number.

4.2.3. Rheology of a melt-crystal suspension

The effect that crystals exert on the suspension viscosity has been largely determined from analogue experiments involving a variably viscous liquid phase, and glass or ceramic beads of varying sizes and shapes (Mueller et al., 2010b). Other experiments were conducted on synthetic magmas at high temperature and pressure (Caricchi et al., 2007), which were then built into a model that considered the influence of crystals on a suspension viscosity (Costa et al., 2009). For consistency, we have accounted for the effect of crystals (and bubbles) on the relative viscosity (η_{rcr}) using the equations of Mader et al. (2013), which are mainly based on Mueller et al. (2010a, 2011). A series of steps are required to determine the relative effect of crystals, which take into account the shape, size and maximum packing fraction of crystals within the suspension.

Firstly, it is necessary to determine the maximum packing fraction (ϕ_m) using Eq (9). We assume that crystals are rough particles (i.e., ϕ_{m_s} and b are 0.55 and 1 respectively), which is reasonable for natural crystal shapes (Mader et al., 2013).

This leads to

$$\phi_m = \phi_{m_s} \exp \left[-\frac{(\log_{10} r_p)^2}{2b^2} \right]$$

(9)
where r_p is the crystal aspect ratio.

Using a modified Maron-Pierce equation, the relative consistency (K_r) (analogous to relative apparent viscosity i.e., K/μ) will depend on the crystal content (ϕ_{cr}) with respect to ϕ_m, thus

$$K_r = \left(1 - \frac{\phi_{cr}}{\phi_m}\right)^{-2} \tag{10}$$

According to Mader et al. (2013), if $\phi_{cr}/\phi_m < 0.5$, then $\eta_{r,cr} = K_r$, because the rheology is adequately considered to be behaving as a Newtonian fluid. If $0.5 < \phi_{cr}/\phi_m < 0.8$, then η_{cr} requires a power law to describe the magma rheology (Eq 11) due to the effect of shear thinning. This is clearly only valid for very dilute suspensions. At high crystal contents, the rheology of the suspension must account for non-Newtonian behaviour. Consequently, the Herschel-Bulkley equation considers the strain rate and the development of a yield stress (Eq 12).

$$\eta_{r,cr} = K_r \dot{\gamma}^{n-1} \tag{11}$$

where $\dot{\gamma}$ is strain rate and n is the flow index, which considers the aspect ratio and crystal content of the magma.

At high crystal content i.e., when $\phi_{cr}/\phi_m > 0.8$, yield stress (τ) must be overcome and as a result, the Herschel-Bulkley equation is used to determine the magma rheology.

$$\tau = \tau_o + K \dot{\gamma}^n \tag{12}$$

where τ_o is yield stress at which flow may commence and K is consistency.

To account for the effect of shear thinning due to crystal alignment, Mueller et al. (2010a) developed an empirical model (Eq. 13) for the flow index (n) as

$$n = 1 - 0.2r_p \left(\frac{\phi_{cr}}{\phi_m}\right)^4 \tag{13}$$

5. Results

5.1. Melt composition and viscosity

Using MELTS to determine the melt composition during decompression, we model the changing melt viscosity through time (Fig. 6a and d). As expected, crystallisation causes the melt to chemically evolve (Fig. 6b). From 300 to 100 MPa, minor resorption results in a very small change in the melt composition. This results in a slight increase in melt fraction as pressure is
reduced (Fig. 6c). With continued decompression (< 100 MPa), extensive crystallisation leads to increased SiO$_2$ and H$_2$O, two elements that exert a strong control on melt viscosity (Giordano et al., 2008). In this work, we ignore the effects of small variations in F during decompression as the variations in F abundance are small (Kilgour et al., 2014). The three model magmas crystallise inversely proportional to their magmatic temperatures. For example, the SiO$_2$ content (a simple proxy for melt evolution) at temperatures of 1030, 977 and 915 °C increases upon decompression by 2, 4 and 5 wt % respectively (Figs. 6a and b). We also note that the onset of rapid crystallisation (i.e., the rapid change in slope within the SiO$_2$ vs Pressure plot) occurs at much lower pressures in the 1030 °C magma (∼ 50 MPa) compared to the lower temperature magmas (i.e., ∼ 80 MPa - 977 °C and ∼ 100 MPa - 915 °C) (Fig. 6). This variation in crystallisation with pressure is reflected in the change in melt fraction. For the 1030 °C magma, the melt fraction decreases from 0.82 to 0.71 from 40 to 25 MPa (within 15 MPa), while a similar decrease in melt fraction occurs over a 25 and 50 MPa pressure range for the 977 (0.62 to 0.52) and 915 (0.52 to 0.41) °C melts respectively.

As a consequence of crystallisation and the resultant change in melt composition, the melt viscosity changes significantly. Because each magma is modelled at different temperatures, the initial viscosity of each magma is different. The initial melt viscosity for the 915 °C magma is log µ = 4.4, where µ is in Pa s. For the 977 °C and 1030 °C magmas, the initial melt viscosity is log µ = 3.9 and log µ = 3.3, respectively. Broadly similar to the SiO$_2$ trend, log µ of the residual melts for all temperatures increases rapidly at the onset of significant crystallisation, due to the evolution of the melt phase (∼ 100 to 50 MPa). The viscosity increase due to crystallisation is variable, depending on magmatic temperature. An increase of ∼ 1.7 (915 °C), ∼ 1.2 (977 °C), and ∼ 0.7 Pa s (1030 °C) log units is observed (Fig. 6) for each of the modelled magmas.

5.2. Effect of bubbles on viscosity

The volatile content (2 wt % H$_2$O and 1000 ppm CO$_2$) of all three modelled Ruapehu magmas is kept constant; the only parameter that varies between the runs is the magmatic temperature. The variation in bubble volume fraction with pressure is also the same in all models (Fig. 7). From 300 to ∼ 50 MPa, the bubble volume fraction is minimal. At ∼ 50 MPa, a rapid increase in bubble volume fraction, due to bubble expansion and exsolution of volatiles from the magma occurs to ∼ 0.55 at 5 bars (near atmospheric pressure). We investigate the rheological effect of an increased volatile content for the same bulk composition (3, 4, and 5 wt % H$_2$O with no increase in CO$_2$). There appears to be minimal difference between the 2 and 3 wt % H$_2$O runs, but with
more volatiles (4 and 5 wt%), the differences are more marked. For the 5 wt % H$_2$O run, bubbles begin to form at \sim 150 MPa, while for the 4 wt % H$_2$O run, bubble formation begins at \sim 100 MPa. All volatile-rich (> 3 wt % H$_2$O) runs reach a final bubble volume fraction of 0.7 to 0.8 at 5 MPa.

We compare the modelled bubble volume fractions against existing unpublished data from the 1995-1996 eruption scoria. This dataset involved the measurement of the bubble volume fraction of more than 200 individual scoria clasts (courtesy of M. Rosenberg pers. comm.) using the Archimedes method [Houghton and Wilson 1989]. Figure 8 shows that the bulk of the subunits record a range between 0.3 and 0.7, with an overall mean of \sim 0.55. This is in excellent agreement with the modelled data for the 2 wt % H$_2$O magma.

As a consequence of gas expansion, the bulk volume of the magma increases substantially at low pressures (Fig. 9). Gas expansion occurs at higher pressures in the volatile-rich simulations and as a result, the bulk magma volume increases at higher pressures than the volatile-poor runs. As with the bubble volume fraction data, the final magma volume is similar between all modelled magmas.

Changes in relative viscosity (η_b) due to bubbles, alongside the bubble volume fraction (ϕ_b) are shown in Figure 10. The range in η_b increases with decreasing pressure because of the disparate effect of bubble shape (due to capillary number) as the bubble fraction becomes large. At very low pressures, where $\phi_b \to 0.6$, the divergence in $\eta_{r,b}$ ranges from \sim 0.2 to 2.6. The point at which fragmentation likely occurs (\sim 25 MPa) has a range in $\eta_{r,b}$ of \sim 0.75. At greater confining pressures, $\eta_b \to 1$ for both the upper ($\eta_{r,b,\infty}$) and lower ($\eta_{r,b,0}$) endmembers, which is to be expected as bubbles are not added to the magma until H$_2$O saturation.

5.3. Effect of crystals on viscosity

Ruapehu groundmass glass is variably populated by microlites (crystals < 100 µm) consisting of plagioclase, clinopyroxene and orthopyroxene. Within the microlite population, plagioclase and pyroxene form acicular laths (typically on the order \sim 5 to 20 µm long) with average aspect ratios (r_p) \sim 7. From greyscale BSE images of the most microlite-bearing glass (Fig. 3), we obtain an average area fraction for pyroxene \sim 0.16 and for plagioclase \sim 0.10. Using CSDCorrections, we determined a microlite volume fraction (ϕ_{cr}) of \sim 0.3. Using the same method for the 977 ºC magma, $\phi_{cr} = 0.2$ and for the 915 ºC magma, the glass is considered microlite-free (i.e., $\phi_{cr} = 0$).

We assume a linear microlite growth rate from H$_2$O saturation to the final crystallinity (Fig.
4). This enables us to estimate the crystal volume fraction as a function of pressure. For the 915 °C magma, the rheology of the two-phase suspension is simplified to the viscosity of the melt and the relative viscosity due to the addition of phenocrysts. Figure 4 shows the evolution of microlite content with pressure, under isothermal conditions. The onset of crystallisation occurs at relatively low pressures (~ 50 MPa) for the 1030 °C magma compared to the 977 °C magma (~ 80 MPa). In addition, the growth rate of the 1030 °C magma is significantly faster than the 977 °C magma.

The effect of differing microlite growth rates causes significant changes to \(\eta_{cr} \). We consider three different strain rates (\(\dot{\gamma} \)) of 0.1, 1, and 10 s\(^{-1}\), and for the 1030 °C magma, \(\eta_{cr} \) ranges from ~ 2 - 50, while for the 977 magma the range is ~ 2 to 5. Using Eq. (11), the effect of large \(\eta_{cr} \) due to microlite growth causes the viscosity (log \(\eta \)) to increase by ~ 1.5 to 2 log units (Fig. 11).

The phenocryst (crystals > 500 \(\mu m \)) assemblage of Ruapehu scoria is dominated by plagioclase (~ 0.20 area fraction) with subordinate orthopyroxene (~ 0.05) and clinopyroxene (~ 0.05). Based on point counting, the area fraction of these phenocrysts is similar in all scoria analysed at ~ 0.30 to 0.35. Combined with the aspect ratio of typical plagioclase (1:2:5) and pyroxene (1:1:2) crystals, we obtain a phenocryst volume fraction of ~ 0.35. Because we consider phenocrysts to be a static phase, and using Eq (11), \(\eta_{cr} \) is constant with decreasing pressure at ~ 3, 8, and 20 for \(\dot{\gamma} \) of 0.1, 1, and 10 s\(^{-1}\) respectively.

The addition of phenocrysts to the melt phase results in a viscosity increase of ~ 1 log unit in all three magmas. Shallow microlite crystallisation, with the addition of phenocrysts, leads to a viscosity increase of ~ 2 log units above the melt viscosity. The final apparent viscosity (log \(\eta_{cr} \)) of all three magmas is between 6 and 7 (i.e., \(10^6 \) - \(10^7 \) Pa s).

6. Discussion

6.1. Implications of MELTS modelling for three-phase rheology

The MELTS model reproduces the mineral assemblage and melt composition of Ruapehu scoria reasonably well and this suggests that Ruapehu magmas can be modelled under equilibrium conditions to low pressures (<25 MPa). The best match between the model outputs and the natural scoria (groundmass glass composition and melt fraction) is achieved at ~ 25 to 30 MPa (~ 1 km depth) for all three explosively erupted magmas. Therefore, Ruapehu magmas are inferred to have ascended until ~ 25-30 MPa (~ 1 km below the crater floor). From this depth, we suggest
that rapid ascent occurred soon before each eruption. Hurst (1998) showed that the base of the active hydrothermal system extends to \(\sim 1\) km and this may suggest that eruptions are driven in part by the interaction of magma and the active hydrothermal system. These implied magma-water interactions increase the potential to generate phreatomagmatic and phreatic eruptions at Ruapehu (e.g., Kilgour et al., 2010). Alternatively, rapid ascent may occur at this level due to vesiculation (see below).

By combining the bubble-melt suspension rheology with crystals (both microlites and phenocrysts), we calculate an approximate three-phase rheology for Ruapehu magmas. \(\eta_{rb}\) for the bubble-melt suspension varies with pressure from \(\sim 0.2\) to 2.6, while \(\eta_{rcr}\) for the crystal-melt suspension ranges from \(\sim 1\) to 1000, which is strongly strain rate (\(\dot{\gamma}\)) dependent. By combining the two relative viscosities, the three-phase magmas (\(\eta\)) span \(\log \eta \sim 4\) to 6.4, significantly higher than the melt viscosity (Fig. 12). Crystals exert a much greater influence on magma rheology than bubbles and hence, magma ascent dynamics are principally controlled by the amount and composition of the evolving crystal assemblage. A full understanding of crystal kinetics will inevitably improve the accuracy of the rheology as a function of depth. Nevertheless, our simple linear relationship seems to model the evolving crystal assemblage well and we can therefore draw conclusions with some confidence.

Extensive crystallisation occurs at relatively shallow depths for \(\text{H}_2\text{O}\) undersaturated andesite magmas. This is because a magma will only begin to crystallise when it becomes \(\text{H}_2\text{O}\) saturated (Blundy and Cashman, 2001). Ruapehu magmas are relatively dry compared to other arc andesites (Wallace, 2005; Kilgour et al., 2013) and as a consequence, crystallisation is suppressed during ascent. According to MELTS, Ruapehu magmas encounter \(\text{H}_2\text{O}\) saturation at low pressures (\(\sim 100\) and 40 MPa), before the onset of crystallisation.

6.2. Ruapehu magmas: erupt or stall?

Textural analysis of historical Ruapehu scoria shows that the phenocryst abundance (\(\sim 30\) %) and proportions are similar between eruptions, while the microlite content is variable (Table. 2). Importantly, because plagioclase is the dominant mineral phase (i.e., 15 vol %), the relatively high aspect ratio has a significant effect on the magma rheology. Therefore, with a phenocryst content of \(\sim 30\) %, and from Mueller et al. (2010a), yield stress develops when the crystal volume fraction is more than 80 \% of the maximum packing fraction (i.e., \(\phi_{cr}/\phi_m > 0.8\)), our calculations show that there is no yield stress developed until microlite growth because \(\phi_{cr}/\phi_m = 0.70\), when \(r_p = 5\). Because \(\phi_m\) is strongly dependant on the aspect ratio \(r_p\), it is possible
that the mixed pyroxene and plagioclase crystal population results in a lowered average aspect ratio, and therefore a reduced ϕ_m. This then would allow for further microlite growth before a yield stress is developed.

Once microlites are added to the overall crystal content of the magma, yield stress will almost certainly develop. From the textural analysis, microlites are generally high aspect ratio crystals (i.e., $r_p \leq 5$), which with limited crystallisation, would decrease ϕ_m and result in a yield stress. Indeed, any microlite growth, for instance during decompression-driven crystallisation in the shallow subsurface (e.g., [Blundy and Cashman, 2001]) would clearly result in the development of a yield stress. As a result, the magma is very likely to stall unless driving pressures and strain rates ($\dot{\gamma}$) were high. At high $\dot{\gamma}$ (> 10 s^{-1}), shear thinning would result in a lower apparent viscosity (due to crystal alignment and crystal fracturing) and potentially enable continued flow to eruption. However, if $\dot{\gamma}$ were low (< 0.1 s^{-1}), the magma would be unable to flow without first overcoming the yield strength. This implies that the strain rates at Ruapehu must be relatively high in order for these magmas to erupt. However, the strain rates are unlikely to be very high as there is no clear microlite alignment, which would be likely under high strain conditions.

The large effect of crystals on magma rheology can partly explain the transition from effusive to explosive behaviour in a range of settings and for a wide range in magma compositions. [Caricchi et al., 2008] examined the products of the Monte Nuovo eruption (trachyte) and found that strombolian episodes were driven by high overpressures within a relatively low crystal content ($\phi_{cr} \sim 0.2-0.3$) magma, while the explosive event that followed, had $\phi_{cr} \sim 0.4-0.6$. They suggested that extensive crystallisation prior to the violent explosion created a plug of highly viscous magma within the upper conduit. This formed a barrier to gas flow, eventually generating a pressurised gas pocket beneath the plug. This plug eventually failed, resulting in a Vulcanian eruption ([Caricchi et al., 2008]). At Mt Etna, [Giordano et al., 2010] modelled basaltic ascent within the conduit and showed that the style of basaltic eruptions was strongly influenced by the crystal content (due to variable crystallisation rates) of magma. They concluded that the transition from fire-fountaining to strombolian eruption styles was determined by the presence of a crystal-rich cap to the magma column. If present, this crystal-rich magma cap would act to destabilise the system and favour strombolian eruptions. The absence of a magma plug would favour fire-fountaining due to the free expansion of volatiles at low pressures.

Because Ruapehu magmas are H_2O undersaturated, the suppression of microlite crystallisation (and the development of a yield stress) until the magma ascends to low pressures increases the potential for Ruapehu magmas to erupt. This is in contrast to H_2O saturated (‘wet’)
arc andesites. Undersaturated magmas ascend without decompression crystallisation occurring until gas expansion begins to drive rapid ascent and fragmentation. In contrast, H$_2$O saturated magmas crystallise continuously during ascent. As a consequence, H$_2$O saturated magmas must ascend fast enough that high undercoolings and rapid decompression inhibit crystal growth (Cashman and Blundy, 2000).

The presence of an active hydrothermal system and a large crater lake, coupled with the ability for H$_2$O undersaturated magmas to ascend, increases the potential for magma-water interactions at Ruapehu. If we assume a constant volume of relatively cool water, the interaction between Ruapehu magma and the hydrothermal system will generally result in a low magma:water ratio. This will inevitably lead to phreatomagmatic or phreatic eruption styles (e.g., Houghton et al., 1987; Hackett and Houghton, 1989; Johnston et al., 2000; Kilgour et al., 2010). This style of eruption is clearly dominant at Ruapehu (Scott, 2013; Kilgour et al., 2014), whereby only a small minority of eruptions are magmatic. These only occurred after Crater Lake had been expelled due to prolonged phreatomagmatic eruptions (e.g., 1995-1996 eruption episode).

From ~ 50 MPa, our calculations show that gas expansion (bubble growth) takes place rapidly. Without appreciable gas-loss, an increased bubble volume fraction within an increasingly viscous magma will generate significant bubble overpressures. As the bubble volume fraction continues to increase with decreasing pressure, gas expansion will cause the overall magma volume to increase, or if the overpressure exceeds the strength of the surrounding melt, the magma will fragment. This will almost certainly depend on the glass transition, coupled with the additional strength of crystals.

From our simple calculations, the expansion of bubbles will only begin when the magma has reached a pressure of < 50 MPa. At this pressure, an initial overpressure will start to drive magma ascent. Gas loss along conduit walls (e.g., Rust et al., 2004; Jaupart, 1998) or through a gas permeable network (e.g., Melnik et al., 2005) will significantly reduce gas overpressure and this may result in a more effusive eruption. From our results, extensive crystallisation due to nucleation-dominated crystal growth (e.g., Hammer and Rutherford, 2002), occurs at slightly higher pressures than significant (i.e., $\phi_b > 0.3$) bubble growth. Therefore, bubbles will begin to grow in an increasingly viscous melt-crystal suspension. A consequence of this will be hindered gas expansion, which will exacerbate the potential for bubble overpressure. This may explain why most Ruapehu eruptions are explosive, if not large volume.
6.3. Rheological impact of magma interactions

In a simple magmatic system, whereby the ascent of a buoyant magma occurs in effective isolation, we have shown that magma rheology can be calculated in a relatively straightforward manner using [Mader et al. (2013)]. However, it is clear that ascending magma often interacts with other magmas or crystal mush zones [Nakamura 1995; Nakagawa et al. 1999, 2002; Kilgour et al. 2013]. Research into the dynamics of magma-magma and magma-mush interactions is ongoing, but a clear consequence of this process is the addition of foreign crystals along with more evolved melt into the rising magma. The additional input of crystals will greatly increase the apparent viscosity of the magma. These magmatic interactions will cause the apparent viscosity of the magma to increase dependant on the efficacy of the mixing process. In some cases, this may lead to the build-up of large tracts of high level, failed intrusions.

7. Conclusions

We have determined the rheology of Ruapehu magma from storage to eruption by characterising the bulk, crystal, and glass compositions, and volatile content of recently erupted Ruapehu scoria. We input these data into the thermodynamic model MELTS, to track the liquid composition and crystal content with decreasing pressure (300 to \sim 25 MPa). From the melt composition, we were able to determine the melt viscosity using [Giordano et al. 2008]. We then examined the relative viscosity of crystals and bubbles in order to assess the evolution of magma rheology.

Using the model of [Mader et al. 2013], we showed that crystals exert a much more significant control on the apparent magma viscosity compared to the addition of bubbles. As a result, the rheology of a magma will be largely determined by the amount and rate of crystallisation during ascent. High crystal growth rates may cause a magma to develop a yield strength, potentially resulting in a stalled plug of magma, while limited crystal growth will more readily promote weak strombolian eruptions.

Ruapehu magmas are H_2O undersaturated for most of their ascent history. Therefore, crystallisation is suppressed until the magma reaches saturation. According to the outputs from MELTS, this results in extensive crystallisation at 100 to 50 MPa, at significantly lower pressures than for a similar composition, yet H_2O saturated andesite. Due to this delay in crystallisation, Ruapehu magmas are more likely to erupt and this partly explains the high frequency and small volume of historical eruptions.
The microlite content of Ruapehu scoria is variable and because they significantly increase the apparent viscosity of the magma, an understanding of the kinetics of crystal growth in undersaturated Ruapehu magmas would greatly enhance our model and increase our understanding of the processes involved. Undersaturated crystallisation is suppressed until low pressures (100 to 50 MPa) and so it should be possible to use continuous decompression experiments to constrain microlite textures and abundance. This, in turn could be used as a geospeedometer that could determine magma ascent rates at Ruapehu. For instance, scoria from the 1969 eruption are microlite-free, while the 1996 scoria has a microlite volume fraction of ~ 0.3. From this, two key questions arise 1) are magmas ascending at different rates? and 2) what are those ascent rates? Determining these constraints would be a valuable study, which we hope will be conducted in the near future.

8. Acknowledgements

This work was funded by the New Zealand Ministry of Science and Innovation (MSI) Geological Hazards Programme (GHZ) in the form of a PhD studentship to GK at the University of Bristol. JB is supported by ERC Advanced Grant CRITMAG and a Royal Society Wolfson Research Merit Award. We would also like to thank Luca Caricchi for discussions on magma rheology and Chris Mathew for technical assistance. We thank Bruce Houghton for use of the clast vesicularity data held at GNS Science. The comments of an anonymous reviewer and A. Vona were very positive and thorough, which significantly improved the clarity of the final version.

9. References

Contributions to Mineralogy and Petrology, 119:197–212.

10. Figure and table captions

Table 1 Bulk composition of a representative Ruapehu scoria (sample number - 1977A). This starting composition was used for all rheological modelling. Volatiles (*) were determined from SIMS analysis [Kilgour et al., 2013].

Table 2 Representative crystallinity [Kilgour et al., 2013] and vesicularity (GNS Science, unpublished data) of Ruapehu scoria. Microlite content and mean aspect ratios (length:width) were determined in this study. Vesicularity values were determined from thin section point counts (*) or by the Archimedes method (†) [Houghton and Wilson, 1989].

Table 3 Average major element composition of groundmass glass from historical Ruapehu eruptions from [Kilgour et al., 2013]. H₂O values are the maximum obtained from melt inclusion analyses, after [Kilgour et al., 2013]. Standard deviations are given in parentheses.

Fig. 1 Theoretical model set-up of calculations. The decrease in temperature and pressure is not to scale, but shows the main changes that will lead to rheological changes with decreasing temperature and pressure.

Fig. 2 A comparison between melt fraction as a function of temperature determined experimentally (at ~ 100 MPa and H₂O-saturated conditions) against the thermodynamic model (MELTS). Our experimental data along with that of [Blatter and Carmichael, 1998] compare favourably to MELTS [Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998]. This gives us confidence in the model outputs for the subsequent chemical and rheological calculations.

Fig. 3 An example of a microlite-bearing groundmass glass from the 1996 eruption of Ruapehu. We obtained SEM-derived X-ray element maps of the groundmass (a), which we in turn converted to binary images of Al (b) and Mg (c) with image analysis software. We then extracted the abundance of plagioclase (b) and pyroxene (c) crystals from the groundmass using
image analysis software (ImageJ). The area and volume fraction of plagioclase and pyroxene microlites were then calculated. The scale bar in all images is 25 µm.

Fig. 4 (a) Profile of the microlite growth curves used in the model. Nucleation occurs rapidly at the onset of decompression, trending towards the final microlite content. For this model, we assume isothermal conditions. Relative viscosities due to microlite growth for the 977 °C (b) and 1030 °C (c) magmas are also shown at a range of strain rates (\(\dot{\gamma}\)).

Fig. 5 Back scattered electron images of three representative scoria from Ruapehu. These images illustrate the vesicle, phenocryst, and microlite textures in scoria from 1969, 1977, and 1995. Plagioclase (pl), pyroxene (py), and glass (gl) are highlighted. Note the difference in vesicularity and microlite content. The scale bar in each image is 100 µm in all images.

Fig. 6 Variations in melt composition and melt viscosity (log\(\mu\)) with pressure and composition. The thermodynamic model MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) enabled us to calculate equilibrium crystallisation conditions from the same bulk rock composition and also determine the melt composition. At each step, we calculated the melt viscosity using Giordano et al. (2008).

Fig. 7 Bubble volume fraction (\(\phi_b\)) as a function of pressure calculated using the solubility model of Papale et al. (2006) and assuming an ideal gas mixture. Due to the similarity between the 1969, 1977 and 1996 magmas, the curves are almost identical. For clarity, only the 977 °C and 2 wt % H\(_2\)O magma is plotted on this diagram. Here we compare Ruapehu magmas that are volatile-poor (i.e., 2 wt % H\(_2\)O and 1000 ppm CO\(_2\); Kilgour et al., 2013) with magmas of the same composition and CO\(_2\) content, but with 3, 4, and 5 wt % H\(_2\)O.

Fig. 8 Measured clast vesicularity (bulk bubble volume fraction) from the June-July, 1996 eruption of Ruapehu from a proximal source to the vent. Upper, middle and lower refer to the stratigraphic position of the identified subunits. Black diamonds represent average values within the range (minimum and maximum). The vertical dashed line is at the overall average of 55% - the approximate bubble volume fraction determined from the modelling (Fig. 7). These are unpublished data from GNS Science courtesy of M. Rosenberg pers. comm.
Fig. 9 The effect of bubble growth on the magma volume (for 100 g of magma) as a function of pressure. The gas volume was calculated using the solubility model of Papale et al. (2006) and assuming an ideal gas mixture.

Fig. 10 Relative viscosity (η_b) of Ruapehu magma due to bubble growth. All three model magmas have very similar bubble volume fraction and consequently, the η_b due to bubbles is almost identical. For clarity, only results for the 977 °C magma are shown. ϕ_b refers to the bubble volume fraction, while upper ($\eta_{b,o}$) and lower ($\eta_{b,\infty}$) refer to the bounding relative viscosities. The upper boundary assumes that all bubbles are spherical (low Capillary number) and the lower boundary assumes elongated bubbles (high Capillary number). We ignore the effect of flow, i.e., $\dot{\gamma} = 0$.

Fig. 11 Newtonian melt viscosity (log\(\mu\)) and apparent viscosity (log\(\eta_{cr}\)) of Ruapehu magmas due to the addition of microlites and phenocrysts. Here, \(\mu\) and η are in Pa s. (a) The 915 °C magma is microlite-free and contains a phenocryst volume fraction of ~ 0.3. With the addition of microlites for the 977 °C magma (b) and and the 1030 °C magma (c), the suspension viscosity increases significantly. For these calculations, we assumed a constant strain rate ($\dot{\gamma}$) of 1 s$^{-1}$. Note that in the modelling (see text), we calculate the melt + phenocrysts and then add microlites.

Fig. 12 Three-phase apparent viscosity of Ruapehu magmas. This plot shows the combined effect of crystals (microlites and phenocrysts) and bubbles on the apparent magma viscosity (log \(\eta\)), where \(\eta\) is in Pa s. The effect of bubbles is assumed to have a high capillary number, i.e., bubbles are considered to have become elongated due to high shear stress within the upper conduit leading to a reduction of apparent viscosity.
Table 1: Bulk composition of a representative Ruapehu scoria (sample number - 1977A). This starting composition was used for all rheological modelling. Volatiles (*) were determined from SIMS analysis [Kilgour et al., 2013].

<table>
<thead>
<tr>
<th>Eruption year</th>
<th>1977</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample number</td>
<td>1977A</td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>60.44</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>16.43</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>7.65</td>
</tr>
<tr>
<td>MnO</td>
<td>0.07</td>
</tr>
<tr>
<td>MgO</td>
<td>3.62</td>
</tr>
<tr>
<td>CaO</td>
<td>7.08</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>2.55</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>1.39</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.66</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.14</td>
</tr>
<tr>
<td>H$_2$O*</td>
<td>2.00</td>
</tr>
<tr>
<td>CO$_2$*</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 2: Representative crystallinity [Kilgour et al., 2013] and vesicularity (GNS Science, unpublished data) of Ruapehu scoria. Microlite content and mean aspect ratios (length:width) were determined in this study. Vesicularity values were determined from thin section point counts (*) or by the Archimedes method (†) [Houghton and Wilson, 1989].

<table>
<thead>
<tr>
<th>Eruption date</th>
<th>1969</th>
<th>1977</th>
<th>1995</th>
<th>Aspect ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total phenocryst (%)</td>
<td>29</td>
<td>31</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Total groundmass (%)</td>
<td>71</td>
<td>69</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Microlite (vol%)</td>
<td>0</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Mean clast vesicularity (%)</td>
<td>42*</td>
<td>20*</td>
<td>55†</td>
<td></td>
</tr>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>20</td>
<td>22</td>
<td>18</td>
<td>5:1</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2:1</td>
</tr>
<tr>
<td>Orthopyroxene</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>2:1</td>
</tr>
</tbody>
</table>
Table 3: Average major element composition of groundmass glass from historical Ruapehu eruptions from Kilgour et al. (2013). H_2O values are the maximum obtained from melt inclusion analyses, after Kilgour et al. (2013). Standard deviations are given in parentheses.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>72.07 (1.24)</td>
<td>67.93 (1.07)</td>
<td>63.20 (1.24)</td>
<td>67.34 (1.07)</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>13.32 (0.91)</td>
<td>13.95 (0.43)</td>
<td>15.34 (0.59)</td>
<td>15.34 (0.59)</td>
</tr>
<tr>
<td>FeO</td>
<td>3.20 (0.52)</td>
<td>6.07 (0.39)</td>
<td>6.47 (0.55)</td>
<td>6.47 (0.55)</td>
</tr>
<tr>
<td>MnO</td>
<td>0.05 (0.02)</td>
<td>0.09 (0.02)</td>
<td>0.11 (0.04)</td>
<td>0.11 (0.04)</td>
</tr>
<tr>
<td>MgO</td>
<td>0.49 (0.32)</td>
<td>1.22 (0.17)</td>
<td>2.50 (0.61)</td>
<td>2.50 (0.61)</td>
</tr>
<tr>
<td>CaO</td>
<td>2.06 (0.51)</td>
<td>3.90 (0.30)</td>
<td>5.58 (0.60)</td>
<td>5.58 (0.60)</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>3.83 (0.31)</td>
<td>2.33 (0.67)</td>
<td>3.18 (0.61)</td>
<td>3.18 (0.61)</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>4.15 (0.30)</td>
<td>3.05 (0.16)</td>
<td>2.45 (0.26)</td>
<td>2.45 (0.26)</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.68 (0.08)</td>
<td>1.19 (0.05)</td>
<td>0.99 (0.08)</td>
<td>0.99 (0.08)</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.13 (0.05)</td>
<td>0.25 (0.04)</td>
<td>0.17 (0.08)</td>
<td>0.17 (0.08)</td>
</tr>
<tr>
<td>H_2O</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>n</td>
<td>36</td>
<td>31</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

35
Figure 1: Theoretical model set-up of calculations. (1) The liquidus for this magma is 1150 °C, which means that above this temperature, the rheology of the magma is largely constrained by the bulk composition, H$_2$O content and temperature using the viscosity model of Giordano et al. (2008). (2) Isobaric cooling of the magma to its final eruption temperature (915, 977, and 1030 °C), allows plagioclase (plag), clinopyroxene (cpx), and orthopyroxene (opx) to crystallise. Without gas exsolution, the rheology of the magma is a crystal-melt, two-phase suspension. (3) Adiabatic decompression results in gas exsolution and bubble growth along with microlite formation. (4) Continued adiabatic decompression causes further bubble expansion and microlite growth. During bubble and microlite growth, we model the three-phase rheology of the system using the constitutive two-phase equations of Mader et al. (2013).
Figure 2: A comparison between melt fraction as a function of temperature determined experimentally (at ~100 MPa and H2O-saturated conditions) against the thermodynamic model (MELTS). Our experimental data along with that of Blatter and Carmichael (1998) (B & C) compare favourably to MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998). This gives us confidence in the model outputs for the subsequent chemical and rheological calculations.
Figure 3: An example of a microlite-bearing groundmass glass from the 1996 eruption of Ruapehu. We obtained SEM-derived X-ray element maps of the groundmass (a), which we in turn converted to binary images of Al (b) and Mg (c) with image analysis software. We then extracted the abundance of plagioclase (b) and pyroxene (c) crystals from the groundmass using image analysis software (ImageJ). The area and volume fraction of plagioclase and pyroxene microlites were then calculated. The scale bar in all images is 25 µm.
Figure 4: (a) Profile of the microlite growth curves used in the model. Nucleation occurs rapidly at the onset of decompression, trending towards the final microlite content. Here, the microlite crystal fraction is relative to the total volume. For this model, we assume isothermal conditions. Relative viscosities due to microlite growth for the 977 °C (b) and 1030 °C (c) magmas are also shown at a range of strain rates ($\dot{\gamma}$).
Figure 5: Back scattered electron images of three representative scoria from Ruapehu. These images illustrate the vesicle, phenocryst, and microlite textures in scoria from 1969, 1977, and 1995. Plagioclase (pl), pyroxene (py), and glass (gl) are highlighted. Note the difference in vesicularity and microlite content. The scale bar in each image is 100 µm.
Figure 6: Variations in melt composition and melt viscosity (log\(\mu\)) with pressure and composition. The thermo-
dynamic model MELTS (Ghiorso and Sack 1995; Asimow and Ghiorso 1998) enabled us to calculate equilibrium
crystallisation conditions from the same bulk rock composition and also determine the melt composition and melt
fraction (relative to the total volume). At each step, we calculated the melt viscosity using Giordano et al. (2008).
Figure 7: Bubble volume fraction (ϕ_b) as a function of pressure calculated using the solubility model of Papale et al. (2006) and assuming an ideal gas mixture. Due to the similarity between the 1969, 1977 and 1996 magmas, the curves are almost identical. For clarity, only the 977 °C and 2 wt % H$_2$O magma is plotted on this diagram. Here we compare Ruapehu magmas that are volatile-poor (i.e., 2 wt % H$_2$O and 1000 ppm CO$_2$; Kilgour et al., 2013) with magmas of the same composition and CO$_2$ content, but with 3, 4, and 5 wt % H$_2$O.
Figure 8: Measured clast vesicularity (phenocryst-free) from the June-July, 1996 eruption of Ruapehu from a proximal source to the vent. Upper, middle and lower refer to the stratigraphic position of the identified subunits. Black diamonds represent average values within the range (minimum and maximum). The vertical dashed line represents the bubble volume fraction at ~ 5 MPa ($\sim 55\%$) determined from the solubility modelling (Fig. 7). These are unpublished data from GNS Science courtesy of M. Rosenberg and B. Houghton pers. comm.
Figure 9: The effect of bubble growth on the magma volume (for 100 g of magma) as a function of pressure. The gas volume was calculated using the solubility model of Papale et al. (2006) and assuming an ideal gas mixture.
Figure 10: Relative viscosity ($\eta_r b$) of Ruapehu magma due to bubble growth. All three model magmas have very similar bubble volume fraction and consequently, the $\eta_r b$ due to bubbles is almost identical. For clarity, only results for the 977 °C magma are shown. ϕ_b refers to the bubble volume fraction, while upper ($\eta_{r,b,o}$) and lower ($\eta_{r,b,\infty}$) refer to the bounding relative viscosities. The upper boundary assumes that all bubbles are spherical (low Capillary number) and the lower boundary assumes elongated bubbles (high Capillary number). We ignore the effect of flow, i.e., $\dot{\gamma} = 0$.

45
Figure 11: Newtonian melt viscosity (log μ) and apparent viscosity (log η_{cr}) of Ruapehu magmas due to the addition of microlites and phenocrysts. Here, μ and η are in Pa s. (a) The 915 °C magma is microlite-free and contains a phenocryst volume fraction of ~ 0.3. With the addition of microlites for the 977 °C magma (b) and the 1030 °C magma (c), the suspension viscosity increases significantly. For these calculations, we assumed a constant strain rate ($\dot{\gamma}$) of 1 s$^{-1}$. Note that in the modelling (see text), we calculate the melt + phenocrysts and then add microlites.
Figure 12: Three-phase apparent viscosity of Ruapehu magmas. This plot shows the combined effect of crystals (microlites and phenocrysts) and bubbles on the apparent magma viscosity ($\log \eta$), where η is in Pa s. The effect of bubbles is assumed to have a high capillary number, i.e., bubbles are considered to have become elongated due to high shear stress within the upper conduit leading to a reduction of apparent viscosity.