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Abstract

Influenza A virus (IAV) represents a worldwide threat to public health by causing severe morbidity and mortality every year.
Due to high mutation rate, new strains of IAV emerge frequently. These IAVs are often drug-resistant and require vaccine
reformulation. A promising approach to circumvent this problem is to target host cell determinants crucial for IAV infection,
but dispensable for the cell. Several RNAi-based screens have identified about one thousand cellular factors that promote
IAV infection. However, systematic analyses to determine their specific functions are lacking. To address this issue, we
developed quantitative, imaging-based assays to dissect seven consecutive steps in the early phases of IAV infection in
tissue culture cells. The entry steps for which we developed the assays were: virus binding to the cell membrane,
endocytosis, exposure to low pH in endocytic vacuoles, acid-activated fusion of viral envelope with the vacuolar membrane,
nucleocapsid uncoating in the cytosol, nuclear import of viral ribonucleoproteins, and expression of the viral nucleoprotein.
We adapted the assays to automated microscopy and optimized them for high-content screening. To quantify the image
data, we performed both single and multi-parametric analyses, in combination with machine learning. By time-course
experiments, we determined the optimal time points for each assay. Our quality control experiments showed that the assays
were sufficiently robust for high-content analysis. The methods we describe in this study provide a powerful high-
throughput platform to understand the host cell processes, which can eventually lead to the discovery of novel anti-
pathogen strategies.
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Introduction

In the field of infectious diseases, the use of high-content

perturbation screens using siRNAs, shRNAs, and chemical agents

is rapidly expanding. Information regarding cellular factors that

assist viruses and other intracellular pathogens during replication

in the host cell, and on pharmacological agents that affect infection

is increasing. To understand disease mechanisms, and to develop

novel antiviral strategies, it is important to precisely define the

event in the viral replication cycle that is affected. Knowing the

identity of a gene that promotes/inhibits infection, or a drug that

blocks infection is not sufficient. Since the number of ‘hits’

provided by genome-wide and drug screens is generally large, such

a method must be high-throughput. In this study, we describe a

series of such assays for early events of influenza A virus (IAV)

infection in tissue culture cells.

IAVs are enveloped viruses belonging to the family Orthomyx-

oviridae with a negative-stranded, segmented RNA genome. To

deliver their genome in the form of 8 viral ribonucleoproteins

(vRNPs) into host cells, IAVs take advantage of the endocytic and

cytosolic trafficking machinery of the host. After binding to sialic

acid-containing receptors on the plasma membrane, IAV particles

are internalized by clathrin-mediated endocytosis and macro-

pinocytosis [1,2]. After sorting to late endosomes or mature

macropinosomes, they are exposed to low pH (5.5–5.0), which

induces an irreversible conformational change in the viral

hemagglutinin (HA, an envelope glycoprotein), activating its

membrane fusion activity [3]. The viral envelope fuses with the

limiting membrane of the endosome, and the capsid is released

into the cytoplasm. The matrix protein M1 and the vRNPs

dissociate from each other. The vRNPs are imported into the

nucleus for transcription and replication of viral genes [4], whereas

the M1 disperses into the cytosol (Figure 1a).

High rates of mutation and the possibility of re-assortment

facilitate generation of new IAV strains, decreasing the effect of

vaccines and drugs. Therefore, instead of targeting the virus itself,

it may be advantageous to develop antiviral strategies that

interfere with host cell factors essential for viral entry and

replication. For this, systematic identification of processes that

promote viral infection is necessary. Recently, five genome-wide

RNAi screens for IAV infection were performed in tissue culture

cells. Collectively, about 1000 genes were identified as factors that

support the IAV replication cycle [5]. However, the precise role of

most of these factors at different stages of the viral life cycle was

not elucidated. Therefore, development of assays for the sequential

steps in the infectious cycle is warranted to functionally classify hits

according to the step in the entry program affected, and this in a

high-throughput manner.

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e68450



Figure 1. Sequential events during host-cell entry of IAV. (a). Entry involves six steps; binding of the virus to the cell membrane (EB),
internalization by endocytosis (EE), acidification in late endocytic vacuoles (EA), fusion of viral and vacuolar membranes (EF), uncoating of
nucleocapsid (EU), and nuclear import of vRNPs (EI). Components of IAV are shown in the right (NA: neuraminidase, M2: proton channel). (b–g). High-
resolution confocal images of the individual assays. (b) Binding (EB assay): (Top) AllStars negative siRNA-treated cells were incubated with IAV for 1 h
in the cold. After washing, cell-bound virus particles were stained by IIF using the Pinda antibody against HA (green). The cells membrane was
visualized with WGA-AF647 (blue). (Bottom) Cells with no virus (c) Endocytosis (EE assay): (Top) Cells were incubated with IAV for 1 h in the cold. After
washing, cells with bound viruses were warmed up to 37uC for 20 min to allow virus internalization. To distinguish between the endocytosed and
extracellular virus particles, the HA epitopes of the virus particles accessible from the medium were masked with the Pinda antibody. The cells were
then permeabilized with detergent and incubated with a mouse monoclonal antibody (HA1). After fluorescently-labeled secondary antibody
treatment, the endocytosed (green) and non-internalized virus particles (red) were identified (Pinda/perm HA). Cell membrane (blue) was stained with
WGA. (Bottom) After virus internalization and fixation, cells were permeabilized with detergent and similar staining procedures were followed. The
endocytosed and extracellular virus particles are not distinguished and both showed same fluorescent signal (red) (perm Pinda/perm HA). (d)
Acidification (EA assay): (Top) Virus particles were allowed to enter the AllStars negative siRNA-treated cells at 37uC for 1.0 h and were stained with A1
antibody to detect the acid-induced conformation of HA (green) in endocytic vacuoles near the nucleus (blue). (Bottom) Cells treated with ATP6V1B2
siRNA showed no A1 signal due to block in endosome acidification. (e) Fusion (EF assay): (Top) Virus particles were labeled with SP-DiOC18 (3) and
R18, and were allowed to enter the AllStars negative siRNA-treated cells at 37uC for 1.5 h, after which the cells were fixed. Fusion of viral and vacuolar
membranes of cells triggered dequenching of DiOC18(3) (green). DiOC18(3) signal colocalized with the R18 (red) signal. (Bottom) Cells treated with
ATP6V1B2 siRNA showed R18 (red) signal only. (f) Uncoating (EU assay): (Top) To detect the dispersal of M1 into the cytoplasm of the cells (blue),
viruses were allowed to enter the AllStars negative siRNA treated cells at 37uC for 3 h. After fixation and permeabilization, mouse monoclonal
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We developed image-based assays to quantify seven steps in the

early stages of the replication cycle as depicted in Figure 1a. These

were: 1) Virus binding to the cell membrane (for brevity, we call

the assay for binding the EB assay), 2) Endocytic uptake of

incoming virus (the EE assay), 3) Acidification of HA in late

endosomes (the EA assay), 4) Fusion of viral and endosomal

membranes (the EF assay), 5) Nucleocapsid uncoating in the

cytosol (the EU assay), 6) Nuclear import of vRNPs (the EI assay),

and 7) Expression of the nucleoprotein (NP), an early viral

product. To quantify the information, we developed protocols for

image and data analysis. In some of the assays, we used single

parametric analysis. For others, where cellular phenotypes were

detectable, but could not be precisely described by a single

parameter, we implemented supervised machine learning.

The assays made it possible to determine the kinetics of crucial

steps during cell entry of IAV, and to define ‘time-windows’ when

each event could be optimally detected. When coupled with high-

content analysis, the techniques can be used to address biological

questions related to IAV entry, and to identify key functions

provided by host factors during the early stages.

Results and Discussion

The influenza A virus strain used in this study was an H3N2

strain called X31, which is a high-growth reassorted strain derived

from the A/Puerto Rico/8/34 (PR8) and A/Hong Kong/1/68

strains. The cells were A549 cells (a human alveolar epithelial

cancer cell line). To be able to monitor the passage of incoming

viruses through steps of the entry program, we developed

fluorescence microscopy-based methods. We will first discuss the

approaches taken to visualize the viruses in different phases of

entry, and then describe how the data was used to design

quantitative high-throughput assays.

Detection of IAV Binding to Cell Membrane (EB Assay)
and Viral Endocytosis (EE Assay)

To detect binding of viruses to cells (EB assay), we incubated

purified IAV with cells at 4uC for 1 h. The cells had been

transfected with scrambled control siRNAs called AllStars, which

we used as a negative control throughout the study. Indirect

immunofluorescence (IIF) using a rabbit polyclonal antibody

(Pinda) against HA [6] was used to label the viruses (green), and a

fluorescent marker (wheat germ agglutinin, WGA) to define the

location of cells (blue) (Figure 1b, Table S1a). By confocal

microscopy, the viruses could be visualized as spots distributed

over the cells. In a control experiment, we treated the cells with

neuraminidase prior to the EB assay. Neuraminidase hydrolyzes

the glycosidic linkages between cellular surface glycoproteins and

sialic acids, the latter being attachment factor for IAV. We

observed almost no binding of IAV particles to the cell membrane

of neuraminidase-treated cells, whereas viral binding was normal

in the mock-treated cells (Figure S1).

To detect endocytosis (EE assay), cells with bound viruses were

warmed up to 37uC for 20 min and then fixed with 4%

formaldehyde. To distinguish between particles in the cytoplasm

from virions still on the cell surface, we first masked the HA

epitopes of particles accessible from the medium with the Pinda

antibody. After a second fixation, the cells were permeabilized

with detergent and incubated with a mouse monoclonal antibody

against HA, called HA1 [7]. After staining with appropriate

fluorescently-labeled secondary antibodies, the endocytosed and

non-internalized virus particles could be distinguished by confocal

microscopy (we call this staining procedure ‘Pinda/perm HA’)

(Figure 1c, Table S1b). External viruses were red and internalized

particles were green. As previously reported [8], the internalized

particles were present in brightly fluorescent spots mainly in the

perinuclear region of the cell. If the cells were not allowed to

internalize viruses by keeping them on ice, no virus particles were

detected with the HA1 antibody following the Pinda antibody

treatment (data not shown). If the cells were permeabilized before

the treatment with Pinda antibody, no staining with the HA1

antibody was seen. This indicated that the Pinda antibody masked

the HA epitopes sufficiently (perm Pinda/perm HA) (Fig1c,

bottom). When the cells were not permeabilized at all during

staining (Pinda/HA), only the non-internalized virus particles were

detected.

It was observed that in the non-permeabilized cells (Pinda/HA),

WGA stained both the cell membrane and the nucleus after

fixation, resembling the WGA staining pattern of the permeabi-

lized cells. This indicated that the fixation procedure allowed

WGA to access the cytoplasm of the cells. However, the HA1

antibody did not stain viral HA, the ectodomain of which is

located in the lumen of endosomes. This observation demonstrat-

ed that the EE assay distinguished the endocytosed versus non-

internalized virus particles.

Detection of the Acid-induced Conversion of HA (EA
Assay) and Viral Membrane Fusion (EF Assay)

When IAV is exposed to a pH below 5.5, the HA undergoes an

irreversible conformational change that can be detected using a

monoclonal antibody A1 (EA assay) [9]. When cells with

internalized viruses were subjected to IIF using the A1 antibody,

the labeled HA was, as expected, localized exclusively in the

perinuclear vacuoles (Figure 1d, Table S1c). Conversion of HA to

the acid-induced conformation was inhibited by using siRNA-

based depletion of ATP6V1B2, a subunit of the vacuolar-ATPase

(vATPase) required for endosome acidification (Figure 1d, bot-

tom). Western blotting of AllStars and ATP6V1B2 siRNA-treated

cells showed significant decrease of ATP6V1B2 protein expression

in the cells treated with ATP6V1B2 siRNA (Figure S2).

To monitor fusion between the IAV envelope and cellular

membranes (EF assay), we used a lipophilic dye-based fluorescence

dequenching assay using R18 (red) and SP-DiOC18 (green,

fixable). In the labeled virus, the green fluorescence is suppressed

by both self-quenching of DiOC18 and fluorescent resonance

energy transfer (FRET) from DiOC18 to R18, whereas the red

fluorescence from R18 is partly self-quenched [10]. Labeled virus

was allowed to enter cells for 1.5 h, and then fixed. When viewed

by confocal microscopy, the cells showed numerous perinuclear

vacuoles with both red and green fluorescence. This indicated that

viral fusion had occurred (Figure 1e, Table S1d). Cells in which

acidification of endosomes was inhibited following depletion of

ATP6V1B2, only R18 fluorescence was detected, indicating that

fusion did not take place (Figure 1e, bottom).

antibody HB64 was used to stain the viral M1 (green). (Bottom) Block in uncoating due to ATP6V1B2 siRNA treatment, where the virus particles
(green) accumulated in the endocytic vacuoles. (g) Nuclear import (EI assay): (Top) In the AllStars negative siRNA-treated cells, virus particles were
allowed to enter at 37uC for 3.5 h. Incoming NP proteins (green) were detected within the nucleus (blue) by the treatment with mouse monoclonal
antibody HB65. (Bottom) Import of NP (green) was blocked in cells treated with ATP6V1B2 siRNA. Scale bar = 5 mm.
doi:10.1371/journal.pone.0068450.g001
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Detection of Nucleocapsid Uncoating (EU assay), Nuclear
Import of vRNPs (EI Assay), and NP Translation

The acid-activated fusion of IAV envelope with the limiting

membrane of endocytic vacuoles results in the transfer of the

capsid into the cytosol. We monitored uncoating of the capsid by

following the M1 protein, the major component of the capsid (the

EU assay). When the capsids undergo dissociation, M1 disperses

into the cytosol and becomes more accessible to a monoclonal

antibody (HB64) [11]. Thus, uncoating resulted in M1 redistribu-

tion throughout the cytoplasm and a dramatic increase in signal

intensity (Figure 1f, Table S1e). In control cells with the vATPase

inhibited, no uncoating was detected (Figure 1f, bottom).

The vRNPs liberated through the uncoating process have

nuclear import signals, and are imported into the nucleoplasm. In

the EI assay, we followed the nuclear accumulation of vRNPs (11).

They could be visualized by IIF using a monoclonal antibody

(HB65) against NP, the major protein component of vRNPs

(Figure 1g, Table S1f). The vRNPs failed to accumulate in the

nucleus in the cells in which ATP6V1B2 was depleted (Figure 1g,

bottom).

Finally, the synthesis of NP in cells infected at low multiplicities

of infection in the absence of cycloheximide was used as an

indication of early viral protein transcription and synthesis (Figure

S3, Table S1g). This was our assay for infection.

Image Acquisition and Data Quantification
For automated, high-throughput analysis, we optimized the

procedures for the 96-well-plate format and automated microsco-

py using a 206 objective, and developed robust quantification

methods. Typical images acquired with automated microscopy are

shown in Figure S4. All the results were based on at least three

experiments performed on separate days.

To quantify the data, we used two approaches. The first was to

extract and analyze a single parameter to describe the biological

phenomenon (Figure 2a, left). The second and more novel, was to

extract multiple (many dozens to hundreds) of parameters per cell

and to use machine learning [12,13] to reduce complexity

(Figure 2a, right).

The single parameter approach was used for virus binding (EB

assay), endocytosis (EE assay), HA acidification (EA assay), and

fusion (EF assay). This was because in these assays, the signal was

homogenous, and the phenotypes were distinct. For the post-

fusion assays i.e. the uncoating (EU assay), nuclear import (EI

assay), and the NP translation assay, the signal was more

heterogeneous and non-synchronous. This was most likely due

to the increased involvement of cytoplasmic cellular factors in

these processes. Therefore, for quantification we chose the second

method and utilized all available cellular features. We initially

tested a single parameter method (spot detection) for the EI assay.

However, the reliability was low as shown by the low Z’ factor [14]

scores between ATP6V1B2-depleted and AllStars negative con-

trols. (Figure 3e and Figure S5c, d).

After image acquisition, individual cell nuclei, cell borders, and

virus particles were segmented. For the EB, EE, EA, and EU

assays, the exact cell shape was determined. For the EI assay, a 12-

pixel-wide ring around the nucleus was used to represent the

cytoplasm (Figure 2e). In the EE assay, the number of virus-

containing endosomal vacuoles was detected using ‘a trous’

wavelet transform [15] (Figure 2b). For the EA assay, the

integrated intensity of A1 staining was determined (Figure 2c).

For the EU and EI assays, the texture, intensity, and morpholog-

ical features were extracted based on the segmented regions. These

features were later used for machine learning. Image analysis was

performed with a customized version of the CellProfiler program

[16]. Details of the analysis can be found in the Materials and

Methods section and Table S2.

For the EU, EI and NP translation assays, supervised machine

learning was used. This method is useful for quantifying samples

whose features cannot be described with a single feature (Figure 2d,

e). Since it was not known which of the different machine learning

methods was most optimal for single cell-based (SCB) analysis, we

tested the most conventional methods and found that the logistic

regression classifiers with boosting gave the most reliable results

(Figure 2d, Figure S6). For SCB labeling and classification, we

used the Advanced Cell Classifier program [12] (Figure S7), which

incorporates learning algorithms from the WEKA package [17].

The phenotype recognition accuracy was above 95% for the EU

and EI assays. A description of the analyzed classification methods

is provided in Materials and Methods. A list of extracted features,

the custom CellProfiler modules, and the pipelines for image

analysis of the individual assays can be found on the website www.

highcontentanalysis.org.

Defining Optimal Time Points for Detection
To determine the optimal time points for each of the six IAV

entry assays and the NP translation assay, detailed time course

experiments were performed. As shown in Figure 3, the time point

at which the respective signal peaked or plateaued followed the

expected order of IAV entry steps: endocytosis at 20 min; HA

acidification at 1 h; fusion at 1.5 h; uncoating at 3 h; nuclear

import at 3.5 h; and NP synthesis at 8 h (Figure 3). This is to our

knowledge the first time that time course of steps during IAV entry

has been analyzed in any detail. While each step showed non

synchrony, the apparent half times suggested a 12 min lag

between endocytosis and HA acidification, a 15 min lag between

acidification and fusion, a 45 min lag between fusion and

uncoating, and a further 30 min lag between uncoating and

vRNP import into the nucleus.

Based on the time-course experiments, optimal time points for

the high-throughput assays were defined. The reduction in the

signal following the peaks in the EE, EA, and EU assays was

probably due to modification or degradation of the respective viral

antigens (Figure 3a, b, and d). Depletion of ATP6V1B2 blocked

HA acidification and subsequent processes, but binding of virus to

the cell membrane remained unperturbed (Figure S8).

The synthesis of NP was used as a read-out for IAV infection

(Figure 3f). Other methods to detect influenza virus infection

have been used for high-throughput analysis, such as detecting

the surface expression level of HA [18]. In another study, a

reporter virus was generated that encoded Renilla luciferase [19],

and luciferase activity at different time points post-infection

served as an indicator of viral replication. To infect Drosophila

DL1 cells, a modified influenza virus was generated in which

the HA was replaced with the glycoprotein of vesicular

stomatitis virus (VSV-G), and the neuraminidase gene with

Renilla luciferase [20].

To evaluate our high-throughput platform, we tested cellular

factors known to mediate steps in IAV entry. IAV uses clathrin-

mediated endocytosis as one of its endocytic mechanisms [1],

and the GTPase dynamin is required for pinching off the

newly-formed vesicles. We found that a pharmacological

inhibitor of dynamin, dynasore, blocked IAV endocytosis by

80% at 20 min (Figure S9). When we knocked down two

additional components of the vATPase other than ATP6V1B2,

namely ATP6AP2 and ATP6V1A, HA acidification was

significantly reduced (Figure S9). Cullin-3 (CUL3), a scaffolding

subunit in a large family of E3 ubiquitin ligases, is involved in

late endosome maturation and promotes IAV capsid uncoating

High-Content Analysis of IAV Entry Events
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Figure 2. Data analysis steps. (a) Data analysis pipeline. Alternative concepts: (left column) single parameter-based statistics, (right column)
machine learning. (b) Spot detection for the EE assay. Spot intensities with the desired size (black arrows) were amplified, while noise (red arrow) and
uneven background was suppressed. (c) Analysis of the EA and EF assays. GFP intensity was thresholded, and the detected objects were filtered by

High-Content Analysis of IAV Entry Events
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[21]. We confirmed that in CUL3-depleted cells uncoating was

blocked. CSE1L depletion inhibited vRNP import as shown

previously [8] (Figure S9). All these results confirmed the

reliability of our assays.

To further assess the robustness of our analyses, the Z’ factor

[14] was determined for every time-point in all the assays

(Figure 3). The z’ factor was higher than 0.5 for all the peak/

plateau time-points. This indicated the robustness of the readout

values and an excellent separation between positive and negative

controls.

Conclusions
Through image processing programs, it was possible to

computationally analyze and quantify the effects of perturbations

with high confidence in all major steps of IAV entry, and in NP

synthesis (Figure 3). The advantage of the single parameter

approach is that one can interpret the results intuitively. In

contrast, machine learning does not require additional analysis

steps by a computer vision expert, and the decision-making

process is based solely on the expertise of the biologist. Our assay

systems are sufficient to analyze the IAV entry pathway. In a

modified form, they can be easily applied to other viruses and

intracellular pathogens. They provide a platform to promote the

understanding of dynamic biological processes through high-

content screening and will contribute to the discovery of anti-viral

strategies that target host cell factors.

Materials and Methods

Cell Culture and Virus Preparation
A549 ATCC cells were cultured in Dulbecco’s modified Eagle’s

medium (D-MEM) (Invitrogen), supplemented with 10% FCS, 1%

GlutaMAX and 1% non-essential amino acids. The cells were

grown as monolayers and passaged biweekly. Influenza A X31

strain (an H3N2 reassorted strain derived from the A/Puerto

Rico/8/34 (PR8) and A/Hong Kong/1/68 strains) was purchased

from Virapur (CA, USA) in purified form. To propagate the

influenza virus, 60 pathogen-free chicken eggs were inoculated

with the virus and incubated at 33–37uC for 2 days. The allantoic

fluid was harvested and clarified by low-speed centrifugation,

which was then concentrated by high-speed centrifugation. To

further concentrate the virus, two rounds of 10–40% sucrose

gradient centrifugation were carried out. Viral bands were

harvested, pooled and re-suspended in formulation buffer (40%

sucrose, 0.02% BSA, 20 mM HEPES pH 7.4, 100 mM NaCl,

2 mM MgCl2). The viral titer was determined (2.46105 TCID50

infectious units/ml) in MDCK cells. The virus was aliquoted and

stored at 280uC until use.

siRNA Transfection
siRNAs (AllStars, ATP6V1B2, ATP6AP2, ATP6V1A, CUL3,

and CSE1L) were purchased from QIAGEN and reverse-

transfection was carried out with a final concentration 10 nM

onto A549 cells in 24-well plates containing coverslips or 96-well

optical-bottom Matrix plates (Thermo Scientific). The sequences

of the above siRNAs are enlisted in the Table S3. Lipofectamine

size. (d) (Left) EU assay confusion matrix. (Right) Comparison of classification methods using 10-fold cross validation. Logistic regression classifiers with
boosting (LogitBoost) were the most accurate (,98%) (red arrow). (e) EI assay (Left) Original image. (Middle) Segmentation result. (Right) Phenotypic
classification of cells: [1] import-negative [2] import-positive.
doi:10.1371/journal.pone.0068450.g002

Figure 3. Time-course of IAV entry as shown by individual assays. (a) Kinetics of IAV endocytosis in the ‘Pinda/perm HA’, ‘Pinda/HA’ and
‘perm Pinda/perm HA’ cells. Endocytosed IAV signal in the ‘Pinda/perm HA’cells peaks at 20 min post-infection. (b) Acidification time-course in the
cells treated with AllStars negative and ATP6V1B2 siRNAs, and the cells treated with 50 nM Bafilomycin A1 (BafA1) to block endosomal acidification.
The acidification signal in the AllStars negative siRNA-treated cells reaches the peak at 1 h post-infection. (c) Kinetics of viral fusion, which shows the
dequenching signal from DiOC18(3) in the AllStars negative siRNA-treated cells peaks at 1.5 h post-infection. (d) Nucleocapsid uncoating time-course
indicating the peak of M1 dispersal signal is at 3 h post-infection. (e) Nuclear import time course shows that the import plateaus at 3.5 h post-
infection in the control cells. (f) Kinetics of infection (transcription and translation of NP), which shows that the optimal time for the detection of cells
with newly synthesized NP is 8 h post-infection. Z’ factor values are represented by * - between 0 and 0.5; ** - between 0.5 and 0.8; and ***.0.8.
doi:10.1371/journal.pone.0068450.g003
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RNAiMax (Invitrogen) and D-MEM were mixed at a ratio 1:150.

siRNAs were added, gently mixed, and incubated at room

temperature (RT) for 1 h. Cells were trypsinized, counted and

plated directly onto the siRNA-lipofectamine complex mixture.

The number of cells plated in each well of the 24-well and 96-well

plates was 12500 and 1500, respectively. Following transfection,

the cells were kept in a 5% CO2 incubator at 37uC for 72 h, after

which the entry assays were performed.

Antibodies and Reagents
Anti-X31 rabbit polyclonal antibody (Pinda) and anti-HA

monoclonal antibody (A1) specific for the post-acid conformation

of HA have been previously described [6,7]. Hybridoma cell lines

producing monoclonal antibody against IAV matrix protein

(HB64), and nucleoprotein (HB65) were purchased from ATCC.

Anti-ATP6V1B2 and anti-b actin antibodies were purchased from

LifeSpan Biosciences and Sigma-Aldrich, respectively. R18 and

SP-DiOC18(3) (Invitrogen) were re-suspended in EtOH and used

at a final concentration of 0.4 mM and 0.2 mM, respectively.

Labeling was performed as previously described [10]. DRAQ5

was purchased from Biostatus Limited. Hoechst 33258 and wheat

germ agglutinin (WGA) were purchased from Invitrogen.

Bafilomycin A1 (BafA1), cycloheximide, and formaldehyde solu-

tion (36%) were from Sigma-Aldrich.

Western Blot
A549 cells were transfected with 10 nM siRNA for 3 days. Cells

were then harvested and subjected to Western blotting.

Detection of the ATP6V1B2 and b actin proteins was done with

anti-ATP6V1B2 (1:1000 dilution) and anti-b actin (1:3000)

antibodies, respectively.

IAV Entry Assays
Indirect immunofluorescence techniques were used to detect

viral components at different steps of IAV entry. Both confocal

laser-scanning and automated high-content fluorescence micros-

copy were used to acquire the images as described below:

A. Virus Internalization Conditions
IAV diluted in infection medium (D-MEM, 50 mM HEPES

pH 6.8, 0.2% BSA) at 4uC for 1 h were allowed to bind to siRNA-

transfected A549 cells on ice. The cells were then washed with ice-

cold infection medium to remove the unbound virus particles. The

bound particles were allowed to internalize at 37uC in a CO2

incubator for different time periods. To prevent the synthesis of

new viral proteins in the EE, EA, EF, EU, and EI assays 1 mM

cycloheximide was included in the infection medium during IAV

binding and internalization. In the EU and EI assays, fresh

infection medium containing cycloheximide was exchanged every

2 h post-internalization to ensure optimal efficacy of the drug. For

the control of the EA, EF, EU, EI and infection assays, cells were

either transfected with siRNA ATP6V1B2 targeting a vATPase

subunit, or treated with 50 nM BafA1 during internalization. In

both the control samples, acid-exposure of IAV in late endosomes

was prevented, and as a consequence of which HA activation and

down-stream processes in entry were blocked. The virus amounts

used from the stock (2.46105 TCID50 infectious units/ml) in each

well of a 24-well or 96-well plate and the detection time point for

each assay are summarized in Table S1.

B. Entry Assay Techniques
1. Binding (EB assay). siRNA-transfected A549 cells were

incubated with IAV in infection medium at 4uC for 1 h. After

washing 3 times with ice-cold PBS, the cells were fixed with 4%

formaldehyde at RT, rewashed and stained with WGA-AF647 in

PBS (1:250 dilution) for 30 min at RT. After a further washing

step, the cells were incubated with Pinda antibody (1:10000) in

blocking solution (BS) (1% BSA, 5% FCS in PBS) for 1 h at RT,

washed with PBS, and stained with secondary anti-rabbit IgG-

AF488 conjugate in BS (1:1000) together with Hoechst 33258

(1:10000) for 1 h at RT.

2. Endocytosis (EE assay). siRNA-transfected cells were

incubated with virus in the cold as in B1, and the bound virus

allowed to be internalized for different time periods as describe

above. After washing, they were fixed, washed with PBS, and

the cell membrane was stained with WGA-AF647 in PBS

(1:250) for 30 min at RT and washed again to remove unbound

WGA-AF647. The epitopes of extracellular HA were blocked

overnight at 4uC with Pinda antibody (1:500) in BS, and the

cells stained with secondary anti-rabbit IgG-AF594 conjugate in

BS (1:1000) for 1 h at RT. After fixation in 4% formaldehyde

for 20 min and washing, a permeabilization solution (PS) (0.1%

saponin, 1% BSA, 5% FCS in PBS) was added for 30 min

followed by incubation with a mouse monoclonal antibody

specific for HA1 in PS (1:100) for 2 h at RT. After washing, the

cells were incubated with secondary anti-mouse IgG-AF488

(1:1000) in PS for 1 h, and the nuclei were stained by Hoechst

33258 (1:10000) for high-content automated microscopy. This

method (referred to as Pinda/perm HA) efficiently distinguishes

between the endocytosed and the non-internalized particles. In

control samples, the antibody staining was done exclusively

either in PS (perm Pinda/perm HA) or in BS (Pinda/HA). In

cells following the perm Pinda/perm HA procedure, the

endocytosed virus particles could not be distinguished from

the non-internalized particles. In Pinda/HA cells, only the non-

internalized particles were detected.

3. Acidification (EA assay). The cells were permeabilized

with PS for 30 min at RT. The cells were then incubated with

mouse monoclonal A1 antibody in PS (1:1000) for 2 h, washed

with PBS, and incubated with secondary anti-mouse IgG-AF488

(1:1000) in PS for 1 h together with either DRAQ5 (1:1000) or

Hoechst 33258 (1:10000) in PS.

4. Fusion (EF assay). IAV stocks were diluted in PBS to

0.1 mg/ml and labeled for 1 h at RT with R18 and SP-DiOC18

(3) at final concentrations of 0.4 mM and 0.2 mM, respectively.

The labeled virus particles were filtered through a 0.22 mM-pore

filter (Millipore) and stored at 4uC in the dark till use. After

internalization and fixation, nuclei were stained with either

DRAQ5 (1:1000) or Hoechst 33258 (1:10000) in BS.

5. Uncoating (EU assay). The cell membrane was stained

with WGA-AF647 as described above. The cells were permeabi-

lized with PS for 30 min at RT, and incubated with purified

mouse monoclonal antibody HB64 in PS (1:250) for 2 h to stain

the viral M1. The cells were washed with PBS, followed by

incubation with secondary anti-mouse IgG-AF488 (1:1000). Nuclei

were stained with Hoechst 33258 (1:10000).

6. Nuclear import (EI assay). The cells were permeabilized

with PS for 30 min at RT, and incubated with mouse monoclonal

antibody HB65 (hybridoma supernatant) in PS (1:10) for 2 h to

stain the incoming viral NP. The cells were washed with PBS,

followed by incubation with secondary anti-mouse IgG-AF488

(1:1000). Nuclei were stained with either DRAQ5 (1:1000) or

Hoechst 33258 (1:10000).

7. Infection. Newly synthesized NP was detected as described

in 6.
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Image Acquisition
For high-resolution imaging, specimen on coverslips from 24-

well plates were mounted on a glass slide with Immu-mount

(Thermo Scientific) and viewed on a Zeiss LSM 510 laser scanning

confocal microscope. Both 1006 and 636 objectives (1.4

numerical aperture and 161 binning) were used to acquire

images. Automated image acquisition of 96-well Matrix plates was

performed with a 206objective (0.75 numerical aperture and 161

binning) using Molecular Devices ImageXpress Micro imaging

system. From each well, 9 images (363) were acquired for each

channel.

Image Analysis
Image analysis steps were performed using the CellProfiler

program [16]. The analysis of all screens involved five major steps:

(1) Image intensities were converted from standard microscopic

format (tiff, 12 bit) to real values. (2) Cell nuclei and cytoplasm

were identified. These segmentation steps thresholded the image

using adaptive methods and cells touching each other were split

using watershed method. (3) Identification of subcellular struc-

tures. In case of the EE assay, a spot detection algorithm was

implemented based on ‘a trous’ wavelet transform, to amplify the

signal of spots in a given size and to suppress noise, background

instabilities, and objects out of the size range [15]. (4) For the EU

and EI assays, intensity, morphological, and textural cellular

properties were extracted. (5) Refactoring of the analysis data. For

the EE assay, the output was the number of virus containing

particles per cell. For the EB, EA and EF assays, the integrated

viral intensity per cell was extracted. For the EF assay, the mean

background green fluorescence value of time point zero was

subtracted from all the measurements. For the EU, EI, and the

infection assays, the output consisted of 27–48 features per cell.

Table S2 contains the detailed list of performed steps for each

assay. The image analysis calculations were done on a high-

performance cluster machine. The usual runtime of the calculation

was ,1 minute/site/node. (e.g. a 96-well plate, 9 sites/well,

running 32 parallel jobs takes 27 min). The CellProfiler pipelines,

the custom modules, the refactoring functions, and a detailed list of

features can be downloaded in www.highcontentanalysis.org.

Multi-parametric Phenotype Classification
For the EU, EI, and the NP translation assays, single cell-based

(SCB) phenotypic profiling was used based on multi-parametric

analysis. For this purpose, we used the Advanced Cell Classifier

program [12] (www.cellclassifier.org), which allows the user to

assign predefined phenotypes to cells. The computer uses this

training set to learn a model and to classify unassigned cells

through several machine learning methods (Figure S5). To find the

best method, we compared the 10-fold cross validation accuracy of

the most commonly used classification methods i.e. Multilayer

Perceptron ( = Artificial Neural Networks), Logit Boost ( = logistic

regression with boosting), Support Vector Machine, Random

Forest, and K-nearest Neighbor. Logit Boost with minor

improvements was the most optimal method for all of the assays.

We also tested the Naive Bayesian method and found that using

advanced methods significantly increased accuracy [12] (Figure 2d,

Figure S6a). The WEKA implementation of the machine learning

methods was used with default parameters [17]. In Figure S6b we

show the receiver operating characteristics (ROC) curves [22] for

the EI assay. Both the cross validation and ROC analysis show

high recognition rates (CV .95% and AUC .0.99), making the

analysis robust.

Supporting Information

Figure S1 IAV binding in the neuraminidase and mock-
treated cells. A549 cells were treated with 0.25 units/ml

neuraminidase at 37uC for 4 h, followed by EB assay. Images were

acquired with a confocal microscope. The HA of IAV was stained

with Pinda antibody (green), and the cell membrane was stained

with WGA (blue).

(TIF)

Figure S2 Western blot showing the protein amount of
ATP6V1B2 in the cells treated with AllStars and
ATP6V1B2 siRNAs. b-actin actin was used as loading control.

(TIF)

Figure S3 IAV infection in AllStars negative and
ATP6V1B2 siRNA-treated cells. The cells were fixed 8 h

after viral inoculation, and processed for staining. In the infected

cells, NP (green) is expressed. Nuclei are stained with Hoechst

(blue).

(TIF)

Figure S4 High-throughput microscopy images of the
individual assays (EB, EE, EA, EF, EU, and EI assays),
acquired with a 206 objective.

(TIF)

Figure S5 Sample images acquired by screening micro-
scope. (a) Uncoating (EU assay). Sample cells highlighted: 1.

Uncoated cell with homogenous signal, 2. Uncoated cell

containing several dots, 3. Non-uncoated cell without dots, 4.

Non-uncoated cell with pronounced dots. (b) Nuclear import (EI

assay). 1. and 2. EI positive cells with and without dots, 3. EI

negative cell with dots. (c) Time-course plot of the EI assay using

average number spots per cell as readout. The separation is not as

clear and consistent between consecutive time-points compared to

using machine learning-based separation (see Figure 3e). (d) Z’

factor and significance levels for using machine learning and

simple spot detection to distinguish AllStars and ATP6V1B2

siRNA-treated cells.

(TIF)

Figure S6 Comparison of different machine learning
method performance for the EI assay. (b) ROC plot for EI

using LogitBoost method.

(TIF)

Figure S7 Screenshot of the Advanced Cell Classifier
program for the EU assay.

(TIF)

Figure S8 Binding of IAV on the cell membrane (EB
assay) of AllStars negative and ATP6V1B2 siRNA-treated
cells.

(TIF)

Figure S9 Validation of the EE, EA, EU, and EI assays
with relevant positive controls.

(TIF)

Table S1 Summary of the virus amounts and the
detection time-points of the EB, EE, EA, EF, EU, EI,
and infection assays.

(TIF)

Table S2 Image analysis steps of each assay.

(TIF)

Table S3 Sequences of siRNAs targeting ATP6V1B2,
ATP6AP2, ATP6V1A, CUL3, and CSE1L genes.
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(TIF)
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