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E�cient Modal Design Variables

Applied to Aerodynamic Optimization

of a Modern Transport Wing

C.B. Allen �, D.J. Poole y, T.C.S. Rendallz

Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR, U.K.

Aerodynamic shape optimization of a transonic wing using mathematically-extracted
modal design variables is presented. A novel approach is used for deriving design variables
using a proper orthogonal decomposition of a set of training aerofoils to obtain an e�cient,
reduced set of deformation ‘modes’ that represent typical design parameters. A major
advantage of this extraction method is the production of orthogonal design variables, and
this is particularly important in aerodynamic shape optimization. These design parameters
have been tested previously on geometric shape recovery problems and aerodynamic shape
optimization in two dimensions, and been shown to be e�cient at covering a large portion of
the design space, hence the work is extended here to consider their use in three dimensions.
It has been shown previously that fewer than 10 aerofoil modes are required to obtain shock
free solutions from initial strong shock, highly-loaded aerofoils. Wing shape optimization
in transonic ow is performed here using an upwind ow-solver and parallel gradient-based
optimizer, and a small number of global deformation modes are compared to a section-based
local application of these modes and to a previously-used section-based domain element
approach to surface deformations. The modal approach is shown to be particularly e�ective,
with local application of modal design variables resulting in a shock-free solution and a 30%
reduction in drag.

I. Introduction and Background

Numerical simulation methods to model uid ows are used routinely in industrial design, and increasing
computer power has resulted in their integration into aerodynamic shape optimization (ASO) frameworks.
The aerodynamic model is used to evaluate some metric against which to optimize, which in the case of
ASO is an aerodynamic quantity, most commonly drag, subject to a set of constraints which are usually
aerodynamic or geometric. Along with the uid ow model, the ASO framework requires a surface param-
eterization scheme, which describes mathematically the aerodynamic shape being optimized by a series of
design variables. Changes in the design variables, which are made by a numerical optimization algorithm,
result in changes in the aerodynamic surface. Numerous advanced optimizations using compressible compu-
tational uid dynamics (CFD) as the aerodynamic model have been performed previously,1,2, 3, 4, 5 and the
authors have presented work in this area, having developed a modularised, generic optimization tool, that
is ow-solver and mesh type independent, and applicable to any aerodynamic problem.6,7, 8

The �delity of results obtained by the optimization process are dependent on the �delity and quality
of each of the three individual components of the ASO process; optimization algorithm, shape parame-
terization and aerodynamic model. To facilitate optimum compatibility between these components, each
is often designed in a modular manner such that, for example, the aerodynamic model is independent of
the parameterization scheme used. A high �delity numerical aerodynamic model with good capture of the
true physics is important in producing optimum aerodynamic designs, particularly at transonic conditions,
and the aerodynamic model also de�nes the parameter space of the problem, which is the de�nition of the
aerodynamic outputs based on ow �eld inputs such as Mach number and angle of attack.
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The quality of the optimization result obtained is driven, primarily, by the quality and type of numerical
optimization algorithm used in the ASO framework, and the two primary types of optimization algorithms
are local methods and global methods. Local methods are usually built around the gradient-based approach,
which uses the local gradient of the design space as a basis around which to construct a search direction. These
approaches are the most common methods used in the ASO framework (9,10,4 for example), driven primarily
by the low cost associated with them compared to global methods.11 Global optimization algorithms, on
the other hand, tend to be based around a swarm intelligence approach, where candidate solutions scattered
throughout the design space cooperate together to locate the global optimum solution. These algorithms
are much less prone to converging in local optimum solutions that are not necessarily close to the global
optimum. However, they are often considerably more expensive than the local algorithms, and handling of
constraints can be di�cult and is often done on an ad hoc basis, and so the use of global optimizers in ASO
is more restricted than local methods, although it is becoming more common.12,13

The aerodynamic model de�nes the parameter space of the problem, however the problem design space,
which the optimization algorithm interrogates, is constructed by the de�nition of a surface parameterization
scheme. The ability of the optimizer to fully interrogate the true design space (which contains every possible
design) is driven by the ability for the degrees of freedom of the parameterization scheme to represent any
shape within the design space, and so this is a critical aspect of any optimization scheme. Furthermore,
the use of a low number of design variables is generally advantageous, particularly if global optimization
algorithms are used where good convergence of these algorithms tends to correlate with small numbers of
design variables.

An important aspect of any parameterization scheme is orthogonality of the design variables. Orthogonal
design variables means that a shape is represented by a unique set of inputs, often leading to a design space
that is more e�cient meaning it can be represented with many fewer design variables.14 It also tends to
simplify considerably the design space against non-orthogonal design variables and leads to greater coverage
of the design space, i.e. the design variables can represent a greater number of aerodynamic shapes; the
design space of N design variables is always contained within the design space of N + n design variables.

The work presented in this paper considers aerodynamic shape optimization using a novel method of
deriving design variables. The design variables used here are derived by a mathematical technique that is
based on proper orthogonal decomposition (POD), that extracts an orthogonal set of geometric ‘modes’.
The method itself has been presented recently by the authors,15 and has been shown to outperform other
commonly used parameterization schemes16 when considering geometric inverse design in two dimensions,
often requiring less than a dozen variables to represent a large design space.

The aim of the work presented here is to develop an e�ective method to apply these novel mathematically-
extracted design variables in three dimensions, and determine their e�ectiveness when applied to aerodynamic
optimization, in particular drag minimisation of wings in transonic ow.

I.A. Aerofoil Parameterization and Deformation Approaches

A surface parameterization scheme de�nes a design space by a number of design variables. A separate
problem to this, though often considered alongside, is the deformation of the subsequent surface during the
optimization process, which is required to allow deformation of a body-�tted CFD mesh. The e�ectiveness
of a parameterization method is i) being exible and robust enough to cover the design space, and ii) e�cient
enough to represent a given shape with as few design variables as possible. Methods are classi�ed as either
constructive, deformative or uni�ed. In-depth reviews have been presented by Samareh,17 Nadarajah et
al.14,18 and Masters et al.16

Constructive methods consider the de�nition of the surface and the deformation of the surface separately.
Examples of these methods are CST,19 PARSEC,20 PDEs21 and splines.22 Other approaches that combine
various parameterizations in a hybrid approach, such as that of Zhu and Qin23 can also be found. Due to
the constructive nature of these approaches, perturbation of the base geometry through the optimization
process therefore requires that the new surface be reconstructed, which subsequently requires automatic
mesh generation tools for production of a new surface and volume mesh. This extra di�culty can make it
advantageous to consider approaches that manipulate an existing mesh.

An alternative to constructive are deformative methods which unify the geometry creation and pertur-
bation. This tends to make them simpler to integrate with mesh deformation tools and allows the use
of previously generated meshes; a considerably cheaper alternative to regeneration, although the mesh de-
formation scheme is a separate algorithm. Analytic1 and discrete24 methods are examples of deformative
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approaches.
A further re�nement of unifying geometry creation and perturbation is the integration with a mesh

deformation algorithm. Methods of this type typically have some interpolation that describes a link between
the surface and volume, often via a set of control points that are independent of both, such that deformation
of the control points results in deformation of the surface and CFD mesh. These approaches are commonly
used in ASO, and the methods included in this uni�ed category are free-form deformation25 (FFD), domain
elements6 and direct manipulation.26

A novel method, recently developed by the authors, is to extract aerofoil design variables using a math-
ematical approach. The approach utilises singular value decomposition (SVD) in a manner that analyses
an initial library of aerofoils and decomposes that library into a reduced set of optimum variables that are
geometrically orthogonal to each another. The method is independent of the geometry so can �t into either
one of the three categories outlined above; the deformative formulation is used in this work. It can also be
linked to a uni�ed approach to allow the design variables to be applied to the uni�ed method, which is also
the method used in this work to allow application of the parameters to ASO. Previous work has considered
the ability for the method to represent a wide-range of aerofoil shapes,15,27,16,28 and the work here extends
the work to application to three-dimensional wing optimization.

I.B. Three-dimensional Aerodynamic Shape Optimization

The optimization of aircraft wings that represent a typical condition of a modern-day airliner at cruise con-
ditions is probably the most common type of three-dimensional aerodynamic shape optimization performed.
The initial studies into this type of problem were performed by Jameson et al.,29,30,31 who showed that the
adjoint (or control theory) approach for obtaining gradients can lead to high quality optimization results.
The adjoint method has the advantage of being able to compute large numbers of design variables in one
solution, allowing every surface point to be used as a design variable in the optimization process. However,
while large numbers of design variables can be handled by the adjoint method, the design spaces of such
problems are likely to be complex and highly multimodal (this has been demonstrated for wing optimization
in a comprehensive study by Chernukhin and Zingg11) making it di�cult for a gradient-based optimization
algorithm to make large planform changes and minor surface changes at the same time.

Surface parameterizations developed around the FFD and domain element approach are very popular
in wing optimization as this type of approach allows the design space to be reduced from thousands of
design parameters to hundreds of design parameters. Such techniques have been developed by Zingg and
colleagues,10,32 and have shown that these type of methods can be exible enough to allow the moulding
of a sphere into an aircraft like shape under certain optimization conditions.33 Further work has also been
performed by Martins et al.34,35 who showed results for blended-wing-body optimizations, and Yamazaki et
al.26 who further reduced the number of design variables by considering the direct manipulation method for
wing optimization.

Typically, owing to the high cost associated with running high-�delity simulations in three-dimensions,
numbers of objective function evaluations are kept to a minimum hence gradient-based optimization algo-
rithms are often run. With increasing computing power available to researchers, however, global search
algorithms are now also being used for wing optimization problems. Global search algorithms have the
advantage of not being constrained by restrictions placed on the algorithm by gradient computations such as
termination in local minima, hence are generally better at locating globally optimal solutions in multimodal
spaces. Examples of such optimizations have been shown for genetic36 and particle13 approaches. Whichever
optimisation approach is used, the number of design variables required to cover the design space is a very
important consideration, and the modal approach used here has been shown to be very e�cient.37

II. Parameterization Scheme

The modal design variables used here are based on aerofoil surface deformations and are linked to a
uni�ed parameterization scheme which uses control points to deform the CFD mesh, which is also called
the domain element approach. The method for deriving the mathematical design variables is outlined �rst,
followed by the control point-based approach for deforming the CFD mesh.
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II.A. Aerofoil Deformations by Singular Value Decomposition

The derivation of aerofoil perturbation modes come from a proper orthogonal decomposition (POD), via
singular value decomposition (SVD) of a training library of aerofoils. The resulting modes, which form
aerofoil design variables used in this work for ASO, are guaranteed to be orthogonal, meaning a given aerofoil
shape is described uniquely by a given set of input parameters. This alleviates some multimodality that can
be introduced numerically by the given parameterization scheme, and expands design space coverage.14

An alternative to deriving design variables by a direct decomposition approach is to manipulate already
existing ones by Gram-Schmidt orthogonalisation. This can be used to force orthogonality,38,39 however, it
is ideal to use the SVD method to guarantee orthogonal modes and provide a low dimensional approximation
(modal parameters) to a high dimensional design space (full training library). Initial studies of using the
SVD method to derive design variables have previously been demonstrated by Toal et al.40 and Ghoman
et al.,41 however, the work presented here develops more fully the use of mathematically-derived modes for
performing aerodynamic shape optimization.

The SVD method �rst requires a training library of Na aerofoils to be collated from which the aerofoil
deformation modes are extracted. Each aerofoil surface is parameterized by N surface points, where the
i-th surface point has a position in the space (xi; zi). To ensure consistency of the surface description of
the training data all aerofoils are parameterized with the same parametric distribution, followed by each
aerofoil having a rigid body translation, scaling and then rotation applied to it to map the geometry into a
consistent form where the leading edge is located at the origin and the trailing edge at unit chord along the
horizontal axis. A matrix is built from which SVD is performed, by evaluating the vector di�erence of the
i-th surface point between all aerofoils, producing Ndef = Na(Na � 1)=2 aerofoil deformations. The x and z
deformations are stacked into a single vector of length 2N , for each aerofoil deformation, so a matrix is built
of the aerofoil deformations which has 2N rows and Ndef columns:

M =

0BBBBBBBBB@

�x1;1 � � � �x1;Ndef

...
. . .

...

�xN;1 � � � �xN;Ndef

�z1;1 � � � �z1;Ndef

...
. . .

...

�zN;1 � � � �zN;Ndef

1CCCCCCCCCA
(1)

Performing a SVD decomposes the matrix into three constituent matrices:

M = U�VT (2)

where U is a matrix of vectors, each of length 2N . The structure is analogous to the decomposed matrix,
so the columns of this matrix are the aerofoil mode shapes. � is a diagonal matrix of the singular values,
arranged in descending order. These can be considered the ‘relative energy’ of the modes, and represent
the ‘importance’ of the mode shapes in the original library. The total number of possible mode shapes is
governed by the number of singular values, which is the minimum of the number of columns and rows of the
decomposed matrix. A truncation of the U matrix, based on a certain total energy required, then gives the
number of design variables used in the optimization. The training library is based on deformations and this
is an important choice such that design variables that result from the decomposition are also deformations,
ensuring they are independent of the topology of the aerofoils that are used. This allows direct insertion into
an aerodynamic shape optimization framework where deformation of the surface and mesh is important. If
the constructive formulation is used, however, then the columns of the training matrix, M, can be absolute
positions of the aerofoil surface points as opposed to deformations between surface points.

In this work, a generic, non-symmetric training library is considered based on the optimization being
performed. The library contains 100 di�erent aerofoils, extracted from a larger library by quantifying their
performances in the transonic regime using the technology factor.15 The �rst six modes of the library are
shown in �gure 1; all modes are scaled up for illustration purposes, and have been added to a NACA0012
section.

Once the design variables have been extracted, and the total number of modes has been truncated then
a new aerofoil can be formed by a weighted combination of m modal parameters, as shown in equations
3. The weighting vector, �, represent the magnitude of the modal deformations which are then the design
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 1: Generic non-symmetric aerofoil modes.

variable values the optimizer works with. The truncation of the total number of modes, which is often very
large, down to a number which is useful for the optimization can either be done by a user speci�ed number
or based on the requirement for a total amount of energy to be preserved i.e. if 99.0% of the energy of the
original library is required to be preserved then the �rst, say, six modes may cumulatively have 99.1% of the
energy so six modes would be used. In this work, a number of modes is speci�ed and those modes with the
highest amount of energy are taken.

0BBBBBBBBB@

x1

...

xN

z1

...

zN

1CCCCCCCCCA

new

=

0BBBBBBBBB@

x1

...

xN

z1

...

zN

1CCCCCCCCCA

old

+

mX
n=1

�n

0BBBBBBBBB@

Un
1
...

Un
N

Un
N+1
...

Un
2N

1CCCCCCCCCA
or Xnew = Xold +

mX
n=1

�nUn (3)

II.B. RBF Coupling of Point Sets for Aerofoil Deformation

The aerofoil design variables must be coupled to a control-point based approach to allow exible deformation
of the CFD mesh. The control point method links deformations of the CFD mesh to deformations of a small
set of control points on or near the surface. At the centre of this technique is a multivariate interpolation
using radial basis functions (RBFs), which provides a direct mapping between the control points, the surface
geometry and the locations of grid points in the CFD volume mesh. The approach is meshless, so requires no
connectivity and is applicable to any mesh type; control points and volume mesh points are simply treated
as independent point clouds. The system is only the size of the number of control points, and so is not
related to the mesh size.

The general theory of RBFs is presented by Buhmann42 and Wendland,43 and the basis of the method
used here is described in detail by Rendall and Allen.44 Let f(x) be the original function to be modelled,
and fi be the scalar values at n discrete points xi; i = 1; :::; n, where xi is the vector of inputs at the ith
sample point. The set of data points X = fx1; :::;xng is con�ned to a domain 
 in d-dimensional space.
A RBF model is then a linear combination of basis functions, whose argument is the Euclidean distance
between the point x at which the interpolation is made and the n points in the known data set. In other
words, the interpolation at an untried site is a sum of contributions from all the known function values, the
inuence of which is controlled by a basis function that depends on the distance they are from the new site.
If � is the chosen basis function and k � k is used to denote the Euclidean norm, then an interpolation model
s has the form

s(x) =

nX
i=1

�i�(kx� xik) + p(x) (4)

where �i; i = 1; :::; n are model coe�cients, and p(x) is an optional polynomial. The coe�cients are found
by requiring exact recovery of the original data, sX = f , for all points in the training data set X . Hence
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the model is an interpolant, and all original solution information is preserved. When the polynomial term is
included, the system is completed by the additional requirement

nX
i=1

�ip(x) = 0 (5)

which is sometimes referred to as the side condition, for a polynomial that takes the form

px = x
0 + x

xx+ x
y y + x

z z (6)

Control points (sometimes named domain element points) are used here to decouple the shape parameters
from the surface mesh, and provide a exible framework through which to control the shape of a base
geometry. Setting up a global RBF volume interpolation for nc control points then requires a solution
to a linear system, see6 for more details, to ensure exact recovery of the control point data, in this case
deformations:

�xc = C�x (7)

�yc = C�y (8)

�zc = C�z (9)

Polynomials are not included here, due to their growing radial inuence, and so (superscript c represents a
control point):

�xc =

0BB@
�xc

1
...

�xc
nc

1CCA , �x =

0BB@
�x

1
...

�x
nc

1CCA (10)

(analogous de�nitions hold for y and z coordinates) and the control point dependence matrix, C, takes the
form

C =

0BB@
�11 � � � �1nc

...
. . .

...

�nc1 � � � �ncnc

1CCA (11)

where

�ij = �(kxc
i � xc

jk) (12)

For surface and volume mesh deformation, it is sensible to use decaying basis functions, to give the
interpolation a local character and ensure deformation is contained in a region near the moving body, and
Wendland’s C2 function43 is used here. It is also sensible to not include polynomial terms, since these will
transfer deformation throughout the entire mesh.

Hence, in the case considered here the global inuence on any point in the aerodynamic mesh (denoted
by superscript a) from the control points is determined by equation 4, which is applied as

�xa =

ncX
i=1

�x
i �(kxa � xc

ik) (13)

�ya =

ncX
i=1

�y
i �(kxa � xc

ik) (14)

�za =

ncX
i=1

�z
i �(kxa � xc

ik) (15)

Hence, the design variables are the modal deformations, which give control point perturbations, which
hence are decoupled from the surface and volume meshes.
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II.C. Control Point Deformations

The method for deriving surface design parameters and the methods for perturbing the CFD mesh have been
presented. The derived parameters are, however, surface deformations but for the aerodynamic optimization
process, control point parameters are required. Previous work has involved placing control points away from
the surface, to form o�-surface domain elements, and this has proven very e�ective, and is used again for the
optimization case later. In two dimensions, the control points to de�ne the modal deformations are located
on the surface of the aerofoil section. This ensures that there is direct coupling between the control point
deformations and the surface deformations that derived them.

The deformation modes derived by SVD, are extracted from a training library of aerofoils, and the
control points, 24 are used here, are independent of a base geometry. A ‘shrink-wrapping’ method is used to
map them onto the geometry being considered. Figure 2 shows the surface control points and an example
deformation of a single control point for a NACA0012 mesh.

(a) Control points (b) Example deformation

Figure 2: Surface-based control points and example deformation.

II.D. Computation of Deformation Field

The modal deformations can be applied to any geometry, and are extracted using a training library wherein
all aerofoils have been normalised to unit chord and all have leading and trailing edges at z(0) = z(1) = 0.
Hence, each mode is rotated to the local aerofoil axis system. In three dimensions, a set of ns sectional
slices of control points are applied to the surface at regular intervals. However, when these are deformed,
the variation of the deformation �eld between the sections can either be de�ned explicitly or left to the
global interpolation �eld. The latter is normally used, but this means that interpolation properties, for
example basis function chosen and support radius set, will inuence the deformed surface. That e�ect is
undesirable, so is eliminated here, as it can result in a more global inuence of an e�ectively local deformation.
Intermediate sections are de�ned between each deformed slice, and the deformation of these is controlled.
The spanwise region between each section is split into ni intermediate regions, and so the total number of
sections becomes 1 + (ns � 1)ni.

The geometry considered here is the MDO wing45,46,47 (see later). The surface is preprocessed to compute
the local chord length at each section, and the initial rotation angle of each section. The control point sections
are then applied to the surface by scaling by local chord, rotating by local incidence, and shrink-wrapping
to the exact geometry using a local geometric intersection algorithm. Figure 3 shows the control points
resulting from using ns = 10 and ni = 4, for the surface mesh used later. This means there are 37 control
point sections but only 10 are deformed by the design parameters. The deformed points are shown in green,
and the controlled points in black.

Consider �rst the deformation �eld for global application of the modal parameters. In this case the modal
deformations are applied using a single global weighting, i.e. one design variable for each mode, with local
e�ects due only to scaling the modal deformations by local chord and rotating by local section incidence.
For local deformations, i.e. one design variable for each mode at each of the ns sections, a basis function can
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Figure 3: Surface mesh and control points.

(a) Mode 1 global (b) Mode 1 local, width 1 (c) Mode 1 local, width 2

(d) Mode 3 global (e) Mode 3 global, width 1 (f) Mode 3 global, width 2

Figure 4: Surface and control point modal deformations. Mode 1 and mode 3.

be used to determine how the deformation of each of the ns sections a�ects the other sections, i.e. controls
the zone of inuence. This can be left to the global interpolation, but is de�ned here to allow control of
the decay. A width variable, nw, is de�ned to determine the deformation decay from each section, and this
de�nes over how many sections the e�ect decays to zero. A basis function is then de�ned such that for a
width of one, i.e. the e�ect of the sectional deformation decays to zero at the neighbouring sections each
side, a global modal deformation can be recovered exactly.

Figure 4 shows the control point locations and resulting surface mesh for deformations using the �rst
and third modes; left column shows a global modal deformation, and centre and right columns local modal
deformations of the �fth control point section using nw = 1 and nw = 2. The modal deformation magnitude
is exaggarated to 10% local chord for illustration purposes. This improved localisation process is also adopted
to improve the application of o�-surface domain element perturbations, used previously by the authors.
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Figure 5: Surface mesh and o�-surface control points.

III. Optimization Approach

Typically, the two main types of numerical optimization algorithm that are chosen for aerodynamic
optimization are gradient-based and global search. Gradient-based methods, such as conjugate gradient
and sequential quadratic programming (SQP) use the local gradient as a basis from which to construct a
search direction. The algorithm starts at an initial solution and marches in a direction towards to minimum
solution. Global search methods, however, use a number of agents with di�erent starting positions within the
search space. These agents then cooperate and move by various, often nature inspired, mechanisms towards
the global optimum solution.

The suitable selection of a gradient-based or a global search algorithm to perform aerodynamic optimiza-
tion is highly dependent on the optimization case analysed, speci�cally the degree of modality present in the
situation. Multimodal problems are characterised by multiple local optima, where one or more of those local
optima is the globally optimum solution. This can be particularly problematic for gradient-based optimizers
due to premature convergence in a local minimum that is not necessarily close to the global optimum. Agent-
based methods can alleviate this issue somewhat. Within the context of aerodynamic shape optimization,
the presence of a multimodal search space is highly dependent on the extent of the surface representation
and the �delity of the ow analysis tool. The issue of degree of multimodality in aerodynamic optimization
problems is an unanswered question, with work presented showing that multimodality exists in a number of
cases, but unimodal cases also exist.48,49,50,11 Chernukhin and Zingg11 have considered this issue by testing
a number of di�erent optimization problems and shown that for a b-spline parameterization of the surface,
viscous, compressible drag minimization of the RAE2822 aerofoil has one global optimum. They also showed
multiple local optima for other problems.

III.A. Feasible Sequential Quadratic Programming (FSQP)

The feasible sequential quadratic programming (FSQP)51,52 algorithm is used here, and is an e�cient con-
strained local gradient-based optimization algorithm. FSQP approximates the Lagrangian of the optimiza-
tion problem by a quadratic programming (QP) subproblem, such that a solution to this can be found which
is the step direction of the algorithm. The QP subproblem at every major timestep is given as an active set
problem:

minimise
��2<n

1

2
��T H�� +rJ(�)T ��

subject to rgi(�)T �� + gi(�) � 0 i 2 v
(16)

where J is the objective function, � is the design vector, g are the equality and inequality constraints, and
v represents the integers of the constraints that are active. The solution to this problem is a minimum of
the approximated quadratic and therefore gives the direction along which to search. This solution requires
the Hessian, or an approximation to the Hessian at every major timestep, which in turn requires sensitivity
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of the objective function and constraints with respect to the design variables. Here these are obtained by a
second-order central-di�erence scheme, so the number of objective function evaluations is proportional to the
number of design variables. It is more computationally e�cient to create an approximation to the Hessian
instead of calculating the Hessian at every major timestep, so the Hessian is updated using a suitable quasi-
Newton method to ensure a positive de�nite Hessian and therefore ensure a decreasing objective function.
The algorithm evolves until the Kuhn-Tucker conditions are satis�ed, which then represent a converged
solution using a constrained gradient-based optimizer. The line search is a non-monotone procedure53 that
results in a decrease in the objective function within at most four iterations, meaning that an increase in
the objective function can also result within those four iterations.

For computational e�ciency, the sensitivity evaluation has been parallelised based on the number of
design variables such that the evaluation of the sensitivity of the objective function and constraints with
respect to the design variables is split between the number of CPUs available.6,7 This is necessary as, within
the ASO environment, an objective function evaluation represents a CFD solution, so this formulation allows
parallel evaluation of the required sensitivities. Constraint and step-size evaluations and optimizer updates
occur on the master process, and each CPU controls the geometry (and CFD volume mesh) perturbations
corresponding to the di�erent design variables, and calls the ow solver. Flow-solver results are then returned
to the master for optimizer updates.

III.B. Flow Solver

The ow-solver used is a structured multiblock �nite-volume code, with upwind spatial discretisation, using
the ux vector splitting of van Leer,54 and multi-stage Runge-Kutta time-stepping. Convergence acceleration
is achieved through multigrid.55

IV. Application of Modal Design Variables in Three Dimensions

IV.A. Problem De�nition

Optimization is applied here to the MDO wing (a large modern transport aircraft wing, the result of a pre-
vious Brite-Euram project45,46,47) in the economical transonic cruise condition, de�ned by Allwright45,46,47

as Mach 0.85 with the wing trimmed to obtain a lift coe�cient of 0.452. This design case is well suited to
inviscid ow analysis, since induced and wave drag are dominant here. Compressible transonic wing opti-
mization for drag minimization subject to strict constraints is investigated, and so the problem de�nition is:

Objective: Minimize drag (CD)

Constraint 1 (lift): CL � C0
L

Constraint 2 (moment): CMx � C0
Mx

Constraint 3 (moment): CMy � C0
My

Constraint 4 (internal volume): V � V 0

A 688,000 cell, block-structured C-H mesh was generated;56 129 � 81 surface mesh, 33 points on either
side of the wake, 33 points in the tip-slit, and 33 points between inner and outer boundary. Figure 6 shows
domain, boundaries and far�eld mesh, and Figure 7 two views of the surface mesh and chordwise planes.

In previous work the authors have applied a 16-point o�-surface domain element for an aerofoil, and a
set of section-based domain elements for a wing, which has been shown to be very e�ective.6,7 Hence, an
improved version of this approach is used here as a comparison with the new method; the 24-point on-surface
set of control points used in two dimensions is again used here. The same evenly-distributed set of slices is
used as above, but the points at each slice are ‘shrink-wrapped’ to the local surface. Figure 5 shows two
views of the located control point spanwise locations.

Four optimizations of the MDO wing were run using di�erent design variables, all with the parallel
FQSP optimizer. The drag comprises pressure, induced, and wave drag components, and it is most e�cient
to address these separately. Hence, the induced drag is considered by �rst running a twist only optimization,
and optimizations to minimize the remaining drag restarted from this geometry.

1. Twist case. To address the induced drag e�ect, a simple case was �rst run using a global linear twist
variable, plus a global pitch variable to allow load balancing. This results in two variables.

10 of 15

American Institute of Aeronautics and Astronautics



Figure 6: Domain and block boundaries and far�eld mesh.

Figure 7: Surface mesh and selected mesh planes.

2. Individual point deformation case. Conventional o�-surface domain element, with individual deforma-
tions of each point in each of the 10 slices, plus a global linear twist variable and a global pitch variable
to allow load balancing. This results in 10� 16 + 2 = 162 variables.

3. Global mode case. Global modal deformations of all 10 sectional slices using six modes, a global linear
twist variable, plus a global pitch variable to allow load balancing. This results in 6+2 = 8 variables. A
global mode is a single deformation of all control points, with the modes scaled and rotated according
to the local geometry.

4. Local mode case. Local modal deformation using six modes at each of the 10 sectional locations,
a global linear twist variable, plus a global pitch variable to allow load balancing. This results in
10 � 6 + 2 = 62 variables. In all cases nw = 1. Again at each section, the local modes are scaled
and rotated according to the local geometry. Global modes are not included too, since these can be
recovered exactly from combinations of the local modes.

IV.B. Results

Table 1 presents results of the four sets of variables. The twist variables are clearly e�ective at reducing the
induced drag, and the �ner surface deformations then reduce the pressure and wave drag. Figure 8 shows
the upper surface pressure contours for the baseline case, the optimization using 16-point domain element
deformations at each section, six global modes, and six local modes. Sectional pressure coe�cient variations
are also presented in �gure 9. Hence, the local mode case has produced a shock-free solution.
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Table 1: Optimization results (CD in counts)

Variables Parameters CL CD �CD Evolutions CFD calls

Baseline Geometry 0.452 153.8 - - -

Twist 2 0.452 142.2 -7.5% 20 111

Domain Element 162 0.452 108.6 -29.4% 114 (+20) 37502

Modes: 6 Global 8 0.452 112.7 -26.7% 41 (+20) 827

Modes: 6 Local 62 0.452 106.9 -30.5% 75 (+20) 9887

(a) Baseline (b) Domain element

(c) Modes 6 global (d) Modes 6 local

Figure 8: Upper surface pressure coe�cient: Initial, domain element, 6 global modes, 6 local modes.

The convergence histories, in terms of evolutions and function evaluations are shown in �gure 10. Table
1 also includes the number of objective evaluations (ow solutions) required. The optimizer adopts a second-
order central �nite-di�erence gradient evaluation, and so each evolution requires two ow solutions per
variable, and a further one or two solutions for the step size evaluation. Hence, the global modes are
particularly e�cient, requiring 45� fewer evaluations than the o�-surface domain element, for similar drag
reduction. However, neither of these approaches has eliminated the wave drag entirely, whereas the local
modes have achieved this for signi�cantly lower cost than the domain element approach.
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(a) y/s = 0.2 (b) y/s = 0.4

(c) y/s = 0.6 (d) y/s = 0.8

Figure 9: Sectional pressure coe�cient. y/s = 0.2, 0.4, 0.6, 0.8.

Figure 10: Convergence histories.

V. Conclusions

Aerodynamic shape optimization has been considered, using mathematically-derived design variables.
Orthogonal design variables have been extracted by a singular value decomposition approach where a training
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library of aerofoils is analysed and decomposed to obtain an e�cient and reduced set of design variables;
these are geometric ‘modes’ of the original library, representing typical aerofoil design parameters. In the
aerodynamic shape optimization framework a surface and mesh deformation algorithm is required, and a
control point approach has been adopted. This adopts a small number of control points which are linked
to the numerical mesh points by a global volume interpolation using radial basis functions to allow large,
smooth deformations of the mesh.

The performance of the mathematical design variables has been demonstrated in three dimensions, with
results of optimization of the MDO wing in transonic ow. The modal deformations have been applied as
both local and global variables, and a further case run with a previously-used o�-surface domain element
approach. An e�ective geometric application method has also been developed, allowing improved local
control of deformations, and exact recovery of global modes from local modes. It has been demonstrated
that the modal approach gives better results than the domain element approach, for signi�cantly fewer
design variables and, furthermore, using global modes alone, an impressive result is achieved with only eight
variables.
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