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Fast Depth Edge Detection and Edge Based RGB-D SLAM

Laurie Bose1 and Arthur Richards2

University of Bristol, UK

Abstract� This paper presents a method of occluding depth
edge-detection targeted towards RGB-D video streams and
explores the use of these and other edge features in RGB-D
SLAM. The proposed depth edge-detection approach uses prior
information obtained from the previous RGB-D video frame to
determine which areas of the current depth image are likely to
contain edges due to image similarity. By limiting the search
for edges to these areas a signi�cant amount of computation
time is saved compared to searching the entire image. Pixels
belonging to both the depth and colour edges of an RGB-D
image can be back projected using the depth component to
form 3D point clouds of edge points. Registration between such
edge point clouds is achieved using ICP and we present a real-
time RGB-D SLAM system utilizing such back projected edge
features. Experimental results are presented demonstrating the
performance of both the proposed depth edge-detection and
SLAM system using publicly available datasets.

I. INTRODUCTION

Autonomous navigation and exploration using simultane-
ous localization and mapping (SLAM) is an area of great
activity and interest in robotics. The capability of conducting
such tasks with cameras and computer vision is particularly
desirable due to camera sensors generally being low cost
and in readily available. However the necessity of real-
time performance along with many persistent issues such
as camera blur, varying lighting levels, dynamic objects and
potential lack of visual features in a scene make this a highly
challenging area. RGB-D sensors, providing both visual
and geometric depth information, have seen increasingly
widespread use in the �eld of SLAM. The additional geomet-
ric information such sensors provide makes the problem of
SLAM more tractable, and as such RGB-D SLAM is an area
of increasing activity. This paper presents a fast depth edge-
detection approach for RGB-D video outlined in Section III,
exploiting both the temporal image similarity between video
frames and the ordered structure of the images themselves.

The edges present in an image typically occupy a small
fraction of total pixels present. However, in many cases this
set of edge pixels may still retain much of the important
structure and details of the original image. This ability to
provide a compact yet descriptive representation of a scene
makes edges a good candidate for use as features for real-
time SLAM. In the case of RGB-D sensors, edges can
be found in both the color and depth images. The pixels
corresponding to these sets of edges can then be back-
projected to form 3D point clouds of edge points.
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Pair-wise registration between two sets of edge points
can be achieved using the Iterative Closest Point (ICP)
algorithm that is abundant throughout SLAM literature. This
registration is generally far less computationally expensive
than using ICP to register two entire RGB-D point clouds due
to the vastly decreased number of points. Additionally when
registering such edge point clouds, there are in general fewer
incorrect local minimum which the ICP could potentially
converge to. This has been shown to result in increased
registration robustness and accuracy, given suf�cient edges
are present [1], [2]. We examine the application of such
edge point cloud registration further in the edge-based SLAM
system proposed in Section V.

II. RELATED WORK

Much work has been done in computer vision regarding
the detection of different types of RGB image features and
their utilization in SLAM. Many monocular camera based
SLAM systems ([3], [4], [5]) utilize visual point features
such as the well known SIFT [6] and SURF [7] feature
descriptors. Other feature types such as edge-lets and lines
have also been explored ([8], [9]) though to a lesser extent.
Since the introduction of low cost RGB-D sensors such as
the Microsoft Kinect, various approaches to RGB-D SLAM
have been proposed. Many of these have made use of the ICP
algorithm in some form [10], [11], [12]. One such approach
is KinectFusion [13], which instead of attempting to detect
and register speci�c feature types in the RGB-D images,
used ICP to register the raw depth point clouds from the
sensor against a dense 3D map of the environment. The
demanding process of performing this registration in real-
time however was only made possible with the use of a
GPU. The operational volume of the original system was
also limited due to the memory hungry representation of
the environment. This problem was later addressed by the
�Kintinuous� system created by Whelan et al. [14]. Another
approach towards RGB-D SLAM was to maintain the use
of visual point features detected in the RGB component,
and use the additional depth information to back project
them forming sparse point clouds [15], [16], [17]. These
sparse point clouds could then be registered using ICP
(enhanced with the feature information of each point). Other
works investigated the use of certain features speci�c to the
depth image. Planar surfaces are one such feature and many
methods have been proposed to detect them ef�ciently [18],
[19], [20], [21]. Such planar features are well suited for
indoor targeted SLAM systems due to their abundance in
man made environments. A number of SLAM systems using



planar features alone or combined with other feature types
have be demonstrated by [22], [23], [24]. Edges are another
type of feature that can be found within depth images. These
can take the form of edges due to sharp depth discontinuities
caused by the occluding boundaries of physical objects or
edges due to two differently orientated surfaces meeting
such as two walls at right angles. However current work
regarding the use of such features is more limited . Choi et
al. [2] presented methods of edge detection in depth images.
Occluding edges corresponding to local discontinuities in
depth were found by examining each depth image pixel and
its 8 local neighbours. Additionally high curvature edges in
the depth image were detected by examining local surface
normals, and the well known canny-edge-detector [25] was
used to detect color edges in the RGB component. Each
of these edge types was then investigated to see which
provided the best trade off between tracking quality and
performance in pair-wise registration. A SLAM system based
on occluding edge features was then demonstrated, however
due to high computational cost the reported implementation
was not well suited for for real-time operation.

This paper presents a method of detecting occluding depth
edges from an RGB-D video stream. The given approach
uses information that was acquired when performing depth
edge-detection on the previous depth image to determine
in which areas of the current depth image edges are likely
to occur. This prior information is used to avoid searching
areas of a depth image in which edges are not likely to be
present. It will be shown that on average this results in a large
computational saving while still detecting the vast majority of
edge pixels compared to performing an edge-detection search
on the entire depth image. To the best of our knowledge,
this work is the �rst to utilize information gathered from the
previous RGB-D frame to accelerate depth edge-detection.

The proposed depth edge-detection approach is presented
in Section III in two parts. A basic edge-detection method
which operates upon an entire depth image in Section III-A
and a modi�ed version which only operates on speci�c areas
of the depth image based on knowledge gathered from the
previous depth image in Section III-B. Section IV discusses
the use of RGB color edges. A SLAM system based on such
edge features is presented in Section V. Finally experimental
results and an evaluation of both the proposed edge-detection
and SLAM system is presented in Section VI.

III. OCCLUDING DEPTH EDGES

The depth image component of an RGB-D video stream
provides 3D geometric information of the scene in view.
In such an image, physical objects occluding others further
from the camera gives rise to discontinuities between the
values of neighbouring pixels. Two types of edges arise from
such discontinuities. Occluding edges whose pixels belong to
geometric boundaries of foreground objects, and occluded
edges whose pixels belong to those objects and surfaces
being occluded. Note that occluded edges can be viewed
as simply being the edges of "shadows" cast by occluding
objects as illustrated in Figure 1.

Fig. 1: Examples of occluding depth edges (red) and the
related occluded edges (blue).

Algorithm 1 P _Scan(P; T )
Detect large differences between the values of neighbouring
pixels indicating the presence of occluding edges

INPUT: P = f(Vn; Ln) : n 2 f0:::Ngg
// P is a list of depth pixels along a line
// Vn value of nth pixel
// Ln image location of nth pixel
T // edge detection threshold ratio value

OUTPUT: E = fg // edge pixel locations

last_valid = 0 // index of the last observed valid pixel
for n = 0 to N do

if Vn 6= 0 then // if current pixel value is valid
threshold = Min(Vn; Vlast_valid)� T
// check for large differences between pixel values

if (Vlast_valid � Vn) > threshold then
E = E [ Ln

else
if (Vn � Vlast_valid) > threshold then

E = E [ Llast_valid
end if

end if
last_valid = n

end if
end for
return E

As such they do not actually physically represent objects in
the scene and are not useful for SLAM or camera tracking
purposes. The following edge-detection process inherently
detects both types of edges, however occluded edges are
simply ignored.

A. Edge Detection by Row and Column Iteration
We employ a two step search process to �nd pixels belong-

ing to occluding edges within a depth image. This involves
examining the pixels of the depth image twice, �rst by rows
then by columns. In either case an identical process is used to
locate local depth discontinuities within a given line of pixels
(be it a row or column). This pixel search process, outlined
in Algorithm 1, iterates over a given list of pixels, skipping
over invalid pixels (of zero depth value) while keeping track
of the last found valid pixel. At each iteration the value of
the current pixel (if valid) is compared to that of the last



Fig. 2: Occluding depth edges (red) and the associated image
patches which were �agged for edge detection (green).

found valid pixel. If the difference between these two values
is above a certain threshold then this discontinuity in depth
between nearby pixels is deemed large enough to indicate the
presence of an occluding edge. If this is the case the pixel
with the smaller of the two depth values (that being closer to
the sensor) is identi�ed as an occluding edge pixel. The other
pixel which corresponds to an occluded edge is ignored. The
prior mentioned threshold is given by d� T where d is the
smaller of the two pixel values and T is a sensitivity constant.
Having such a proportional threshold is necessary due to
the nature of structured light RGB-D sensors where, both
noise and spacing between readable values is proportional
to depth [26], [27]. The two steps of this search process
constitute scanning across the depth image in two orthogonal
directions (by rows going left to right and by columns going
top to bottom). In practice the organised image structure is
exploited to minimize the computational time of this process.

B. Sub Image Edge Detection
When working with a standard RGB-D video stream (30hz

640� 480), each depth image is likely highly similar to the
previous one due to small camera movements between video
frames. Occluding edge pixels are thus also likely to occur in
similar locations from one depth image to the next due to this
image similarity. This prior knowledge of where edge pixels
are likely to occur can be exploited to signi�cantly speed up
the occluding edge detection process. This is done by only
searching for edge pixels in speci�c areas of the depth image
(around which edge pixels were previously detected) instead
of simply searching the entire image in a brute force manner.

Our implementation of this concept considers each depth
image as consisting of an N �M grid of smaller equally
sized images (referred to as "image patches") rather than a
single image. For example a grid size of 4�3 would consider
a 640�480 depth image as consisting of 12 image patches of
160� 160 pixels each. An N �M array of boolean �ags F
is also stored and used to determine which image patches
should be searched for occluding edge pixels. With each
new depth image from the RGB-D video stream, all image
patches whose associated �ag is set to true are searched
using the same occluding edge-detection process described
in Section III-A. Searched image patches in which no edge
pixels are detected then have their associated �ag reset to
false. Conversely those image patches in which edge pixels
were detected have both their own �ag and those of their
neighbouring patches set to true. By setting the values of

the boolean array in this manner, the next image will only
be searched for edges in those image patches located around
where edge pixels were detected in the current image. While
suf�cient for detecting edge pixels belonging to edges that
were also found in the previous image, this �agging scheme
may fail to detect pixels belonging to new edges unique to
the latest depth image (or edges that were simply not detected
previously). To address this, with each new depth image a
certain number edge-detection �ags are randomly selected
and set to true to facilitate the detection of new edges.

The number of �ags randomly selected in this manner (R)
is determined by Equation 1 below.

R = Max(1; Round(N �M � rand_search)) (1)

Here N � M is the number of image patches and
rand_search 2 [0; 1] is a speci�c value relating to what
percent of each depth image we wish to be randomly selected
and searched for edges. Thus at least one image patch is
always randomly searched, increasing up to all image patches
(and thus the entire image) being searched as rand_search
approaches 1. In this scheme the detection of new edge pixels
may be delayed a number of frames until the �ag associated
with the image patch they reside in is randomly selected and
set to true. This potential detection delay is one of the trade-
offs for the reduced computation this approach provides. Us-
ing higher values of rand_search 2 [0; 1] will decrease the
average number of frames of this detection delay but increase
the average computational cost of the whole occluding edge
detection process. The value of rand_search = 0:05 was
found to provide suf�ciently small average detection delay
and is used throughout the rest of this paper.

Algorithm 2 outlines this entire edge-detection process
taking a set of image patches P , edge-detection �ags F
and number of patches to randomly search R as inputs
and returning a list of edge pixel locations E and updated
boolean �ags F . This algorithm can also take an additional
parameter K determining which rows and columns of each
image patch should be skipped over instead of being searched
for edge pixels. For greater clarity we will refer to this
parameter as rowcol_skip from now on. The default value
rowcol_skip = 1 results in no rows/columns being skipped,
with rowcol_skip = 2 only every other row/column is
searched, rowcol_skip = 3 only every 3rd row/column
is searched and so on. This parameter can be viewed as
allowing downscaled edge detection search to be conducted,
resulting in fewer edge pixels being returned (and thus
sparser edge point clouds being created from these pixels).
Examples of this approach illustrating the image patches grid
and corresponding edge-detection �ag values are show in
Figure 2. Detailed results of running this proposed occluding
edge detection on a number of RGB-D sequences are given
in Section III-A.



Fig. 3: RGB edges (green) and occulding edge (red).

Algorithm 2 Occluding_Edge_Detection(P; F; T; R; K)
Detect occluding depth edge pixels within �agged image
patches and update edge detection �ags

// image patches P and their associated boolean �ags F
INPUT: P = fPxy : x 2 f0:::Ng; y 2 f0:::Mgg

F = fFxy : x 2 f0:::Ng; y 2 f0:::Mgg
T // edge detection threshold value
R // number of patches to randomly search
K // row and column skip value

OUTPUT: E = fg // edge pixel locations

Set R randomly selected �ags from F to True
for all Pij 2 P do

if Fij then // if patch �agged for edge detection
row_edges = fg
col_edges = fg
for all Kth rows R of image patch Pij do

row_edges = row_edges [ P _Scan(R; T )
end for
for all Kth columns C of image patch Pij do

col_edges = col_edges [ P _Scan(C; T )
end for
if row_edges 6= fg or col_edges 6= fg then

E = E [ row_edges [ col_edges
Fij = T rue
Set �ags of neighbouring image patches to True

else
Fij = F alse // reset patches �ag

end if
end if

end for
return E; F

IV. RGB EDGES

Each frame of RGB-D video provides not only a depth
image but a corresponding RGB color image. Edges present
in this RGB image can be back-projected and used for
pair-wise registration and SLAM in the same way as the
occluding depth edges of Section III. In practice the detection
of such RGB edges presents a more challenging problem than
that of occluding depth edge-detection. There are a number
of RGB image speci�c issues such as image blur and variable
lighting levels. Additionally RGB images will generally have
a higher detail density compared their corresponding depth
image making the identi�cation of edges more complex.

Our employed method of RGB edge detection functions
in a very similar way to the occluding depth edge-detection
described in Section III-A, searching rows and columns of
pixels from the RGB image for abrupt local changes in color
values. Rows and columns can also similarly be skipped
over as described by the use of the rowcol_skip parameter
in the previous section. However it does not make use of
any information from the previous RGB image, and simply
searches all rows and columns of the image. We seek to
improve or use an alternative RGB edge-detection method
in the future work, however it is not the focus of this paper.

It is important to note that we reject all RGB edge
pixels located in close proximity to occluding depth edges
in the corresponding depth image. The back projected points
from such pixels can often be highly unreliable due to
poor alignment and synchronisation between the depth and
RGB data provided by the RGB-D sensor. Additionally it
is highly likely that such RGB edge pixels are the result of
an occluding foreground object, in which case an occluding
depth edge will already be present in the same location. The
occluding depth edge detection �ags described in Section III-
B are used to enable fast rejection of such unwanted RGB
edge pixels.

V. RGB-D EDGE SLAM
The pixels belonging to the different types of edges in

an RGB-D image can be back-projected to form 3D point
clouds of edge points. Each of these clouds can be viewed
as a down-sampling of the full RGB-D point cloud to only
points expressing a speci�c type of information. Such edge
point clouds are far smaller in size than the full cloud, but
may still provide excellent information for localization. We
created a SLAM system utilizing edge point clouds resulting
from both the occluding depth edges discussed in Sections III
and RGB edges discussed in Section IV. It was shown by [2]
that these two edge types provided superior sensor odometry
on Frieburg RGB-D dataset sequences ([28]) compared to a
number of alternative features making them good candidates
for use in SLAM. Additionally using two different types of
edge features decreases the likelihood of localization being
lost due to insuf�cient features being present (there will exist
scenes in which occluding edges are not present but RGB
edges are plentiful, and vice versa). This increases both the
SLAM system’s robustness and the range of environments
in which it can successfully operate.

The standard pose graph set-up was used, in which the
constructed map consists of a set of key-frames K =
fk0; k1; :::; kNg with estimated poses p0; p1; :::; pN . Each
of these key-frames contains various features and other
information. The current pose of the sensor is then tracked
relative to the map by registering the latest observed features
against those of the key-frames. For our system speci�cally
each key-frame ki = (Oi; Ci; T O

i ,T C
i ) consists of a point

cloud of back-projected occluding edge pixels Oi and second
cloud of color edge pixels Ci. Additionally each key-frame
stores two KD-trees T O

i ; T C
i constructed from these point

clouds used for point cloud registration.



Fig. 4: An example map created by the proposed SLAM
system. Key-frames poses are drawn in white and estimated
camera trajectory (57m) in red.

A. Registration And Sensor Tracking
An ICP registration process denoted reg(Ct; Cs; T s; pi)

is used to estimate the transformation to best align a set of
N target point clouds Ct = fct

0; :::ct
Ng with a set of N

source point clouds Cs = fcs
0; :::cs

Ng. The input set of KD-
trees T s = fts

0; :::ts
Ng created from the Cs clouds is used

to greatly speed up nearest neighbour searches required by
this process. The input transformation pi provides an initial
guess for the alignment transformation.

To track the pose of the sensor relative to the map
(psensor), occluding and color edges are extracted from
each new RGB-D image. The pixels of these edges are
then back projected to form occluding and color edge point
clouds Onew and Cnew. The pose of the sensor relative
to a certain key-frame ki = (Oi; Ci; T O

i ,T C
i ) can then be

estimated by registering the point clouds Onew; Cnew with
Oi; Ci using reg as shown in Equation 2. The initial guess
of best registration pose is taken to be prel, the relative pose
between the sensors current estimated pose psensor and the
key-frames current pose pi.

reg(fOnew; Cnewg; fOi; Cig; fT O
i ; T C

i g; prel) (2)

This ICP process uses both occluding and color edges to
estimate the registration transformation. Naturally at each
ICP iteration, when determining pairs of associated points
between the two sets of clouds, occluding edge points are
only paired with other occluding edge points (and similarly
for color edge points).

In practise only one key-frame is used for sensor tracking
at any point in time. Whenever the registration between the
sensor and the tracking key-frame is not strong enough, other
key-frames near the sensors current estimated pose are tested
to see if they provide a stronger registration. If another key-
frame is found to provide suf�ciently strong registration then
this takes over as the tracking key-frame. Thus the map key-
frame used for sensor tracking is automatically changed as
the sensor moves about the world. In the case where no
key-frame is found to provide suf�cient registration, a new
key-frame is added to the map located at the sensors current
estimated pose.

B. Loop Closure Detection And Pose Graph Optimization
Map optimization and loop closure is performed simulta-

neously on a separate CPU core to that performing sensor
tracking. This uses the standard pose graph concept wherein
relative pose constraints are added between pairs of key-
frames poses. Each time a new key-frame is added to the
map, ICP registrations are attempted between this new key-
frame and each of the previous key-frames. The initial trans-
formation used for such a registration between a new key-
frame knew and a previously existing key-frame ki, is taken
to be prel the relative pose between the current key-frame
poses pnew and pi. Each of these registrations is evaluated
and assigned a score based upon the strength of the registra-
tion (i.e. what proportion of points were paired between the
edge point clouds of the two key-frames by the ICP) and the
extent to which the �nal registration transformation differs
from the the current relative pose between two key-frames
prel. This is then to determine if a registration should be
used to create a new loop closure constraint. Thus strong
registrations or registrations whose reported transformations
is similar to prel are used to add new loop closure constraints
to the pose graph. Conversely weak registrations whose
reported transformation differs greatly from prel (which are
likely caused by the ICP converging to an incorrect local
minima or no overlap existing between the point clouds) are
rejected as constraints.

Simultaneously pose graph optimization is performed to
try and determine the set of poses most compliant with
the given loop closure constraints. We implemented a mesh
relaxation based method very similar to that presented by
Andrew Howard et al. [29] but extended to 6DOF poses to
conduct this optimization.

VI. RESULTS

This section presents a sample of results from various
experiments conducted to evaluate the performance of both
the edge-detection proposed in Section III and edge based
SLAM system described in Section V. We use the publicly
available Freiburg RGB-D datasets [28] to conduct this
evaluation. These consist of a number of 640� 480 RGB-D
video sequences of various environments along with sensor
ground truth trajectories obtained from motion capture. The
results were obtained from an Intel i5 CPU, 4GB RAM
laptop running Ubuntu 14.10.



TABLE I: Occluding depth edge detection results from Freiburg sequences using a variety of image patch grid sizes

FR1 desk FR1 plant FR1 room

Grid
Size

Occluding
edges

Pixel
%

avg % img
searched

Occluding
edges

Pixel
%

avg % img
searched

Occluding
edges

Pixel
%

avg % img
searched

Whole Image 8.9� 2.25 ms 100 100 9.83� 2.50 ms 100 100 10.91� 1.97 ms 100 100
4x3 8.31� 2.57 ms 99.7 96.65 8.9� 2.07 ms 99.8 98.18 8.75� 2.03 ms 99.8 98.98
8x6 7.65� 2.25 ms 99.1 92.13 8.69� 2.31 ms 99.5 95.80 8.15� 2.11 ms 99.2 93.74

16x12 6.74� 2.26 ms 97.8 74.85 7.92� 2.02 ms 98.9 86.92 7.98� 2.22 ms 98.4 78.11
32x24 4.91� 1.95 ms 96.0 52.29 6.41� 1.92 ms 97.6 66.67 5.11� 1.68 ms 96.6 55.34
64x48 3.13� 1.32 ms 91.8 34.28 5.35� 1.79 ms 96.3 51.49 4.08� 1.7 ms 90.7 36.43
128x96 2.41� 1.04 ms 80.7 22.38 4.09� 1.44 ms 84.5 30.62 2.56� 1.03 ms 77.2 23.92

Fig. 5: Plots showing how various performances metrics of the occluding edge detection vary with image patch grid size
and RGB-D sequence, FR1 desk (Blue), FR1 plant (Red) and FR1 room (Yellow).

TABLE II: Comparison of Occluding edge detection methods

Sequence Choi et al[2] Proposed
(32 � 24)

Proposed
(16 � 12)

FR1 desk 24.06 � 1.22 ms 4.91 � 1.95 ms 6.74 � 2.26 ms
FR1 desk2 24.71 � 0.79 ms 4.88 � 1.91 ms 6.64 � 1.93 ms
FR1 room 23.86 � 1.47 ms 5.11 � 1.68 ms 7.98 � 2.22 ms
FR1 plant 24.61 � 1.71 ms 6.41 � 1.92 ms 7.92 � 2.02 ms
FR1 rpy 23.89 � 0.99 ms 5.35 � 1.83 ms 6.18 � 1.94 ms
FR1 xyz 24.45 � 1.36 ms 4.16 � 1.30 ms 5.19 � 1.03 ms

A. Depth Edge Detection

We evaluated the occluding depth edge-detection de-
scribed in Section III-B on a number of datasets and with
various image patch grid sizes. In each case the total number
of edge pixels detected across the entire sequence was
recorded. This total was then compared to the total number of
edge pixels obtained when using brute force occluding edge
detection (searching the entirety of each depth image). From
this comparison the percentage of total edge pixels detected
(compared to brute force) was calculated. What percentage of
each depth image examined for edge pixels was also recorded
in each case.

A detailed sample of these results is given in Table I
showing the average computation time of the edge detection
process, percentage of total edge pixels detected, and what
percentage of each depth image was examined on average.
These results are illustrated in the plots of Figure 5. As
expected the average computation time and percentage of
depth image examined generally decreases as the image

patch grid size increases. This is due to the smaller image
patches �agged for edge-detection more tightly �tting about
the edges detected in the previous image. This tighter �t-
ting then results in edge-detection being performed upon a
smaller percentage of the entire depth image. The down side
of larger grid sizes however is an increased likelihood of
edges failing to be re-detected from one image to the next
due to changes in their locations between images (moving
them into image patches not �agged for edge detection). This
issue occurs most often when the sensor is undergoing a rapid
change in orientation.

It can be seen however that using an image patch grid size
such as 32x24 can provide up to a 50% saving in computation
time while still detecting over 95% of the edge pixel in the
sequence. The average computation time when using such a
grid size is also well within the 33ms required to process
a standard 640 � 480 30hz RGB-D video stream in real-
time and leaves plenty frame time remaining in which other
processes can take place.

Table II shows a comparison between the computation
times of our proposed occluding edge detection and that
introduced in [2] across a number of Freiburg sequences.
The use of prior knowledge to only selectively search certain
areas of the depth image gives the proposed method a far
lower computation time compared method conducted by [2]
which searches the entire image. All results in this section
were obtained using the parameter value rowcol_skip = 1.



TABLE III: Evaluation results of the SLAM system proposed in Section V on various RGB-D video sequences along with
comparisons to other SLAM systems. Reported results were obtained with the edge detection parameter rowcol_skip = 5.

SIFT based RGB-D SLAM Occluding edge based SLAM Proposed RGB-D edge SLAM

Sequence (length) Trans
RMSE

Rot
RMSE

Total
Runtime

Trans
RMSE

Rot
RMSE

Total
Runtime

Trans
RMSE

Rot
RMSE

Total
Runtime

FR1 desk (23 s) 0.049 m 2.42 deg 199 s 0.153 m 7.47 deg 65 s 0.075 m 3.43 deg 14 s
FR1 desk2 (25 s) 0.102 m 3.81 deg 176 s 0.115 m 5.87 deg 92 s 0.098 m 3.75 deg 16 s
FR1 plant (42 s) 0.142 m 6.34 deg 424 s 0.078 m 5.01 deg 187 s 0.076 m 4.09 deg 29 s
FR1 room (49 s) 0.219 m 9.04 deg 423 s 0.198 m 6.55 deg 172 s 0.210 m 5.66 deg 30 s
FR1 rpy (28 s) 0.042 m 2.50 deg 243 s 0.059 m 8.79 deg 95 s 0.055 m 4.20 deg 16 s
FR1 xyz (30 s) 0.021 m 0.90 deg 365 s 0.021 m 1.62 deg 111 s 0.038 m 1.92 deg 17 s

Fig. 6: Plots comparing results obtained by different SLAM systems on a number of Freiburg datasets. RGB-D SLAM [30]
is shown in red, occluding edge RGB-D SLAM [2] in green, and our proposed edge based SLAM in Blue.

TABLE IV: Results detailing the effects of changing the
rowcol_skip parameter on SLAM system performance
(translational RMSE, rotational RMSE and total runtime).

Row Col
Skip Value

FR1 desk
23 s

FR1 desk2
25 s

FR1 plant
49s

FR1 rpy
28 s

1
0.081 m 0.101 m 0.078 m 0.061 m
3.65 deg 3.69 deg 4.22 deg 4.39 deg

79 s 93 s 149 s 101 s

5
0.075 m 0.098 0.076 m 0.055 m
3.43 deg 3.75 deg 4.09 deg 4.20 deg

14 s 16 s 29 s 16 s

10
0.085 m 0.111 m 0.098 m 0.056 m
3.76 deg 3.88 deg 5.19 deg 4.25 deg

7 s 8s 15 s 8 s

20
0.103 m 0.122 m 0.098 m 0.056 m
4.13 deg 4.21 deg 4.10 deg 4.24 deg

4 s 5 s 10 s 4 s

B. RGB-D Edge SLAM

The same Freiburg datasets were again used to evaluate
the performance and accuracy of the SLAM system laid
out in Section V. The estimated sensor trajectory produced
by the SLAM was compared to the provided ground-truth
trajectory using the evaluation tools provided by [28]. All
results were obtained using an image patch grid size of
32� 24 as discussed in Section III-B.

Table IV gives an evaluation of the proposed system on
a number of datasets and also details the effects of altering
the row/column skipping parameter rowcol_skip given to
the detection processes. Increasing the value of rowcol_skip
results in fewer edge pixels being returned by the edge
detection processes, and thus smaller down sampled edge
point clouds being used by the SLAM system. We observed

that the system’s accuracy displayed a surprising level of
robustness to this down sampling. With rowcol_skip = 10,
only every 10th row and column of each image patch is
searched for edge pixels. On average this results in 10 times
fewer edge pixels being detected (and thus 10 times smaller
edge point clouds) compared to when rowcol_skip = 1.
Despite using such smaller point clouds the resulting sensor
trajectories are still comparable in accuracy to those obtained
when using no down sampling. Using larger values of
rowcol_skip also greatly decreased the total runtime on
each data set due to the smaller edge point clouds resulting
in much faster ICP registration. The results obtained using
rowcol_skip = 1 were in fact slightly less accurate to those
of rowcol_skip = 5, due to cases where the ICP registration
did not fully converge within the the allowed 15 iterations.
Because of this robustness to down sampling and the desire
of real time performance, rowcol_skip = 5 was chosen to
be default for SLAM system use.

Table III shows a comparison between results from the
proposed system and other RGB-D SLAM systems on the
same Freiburg datasets. These systems are the well known
SIFT feature based RGB-D SLAM [30] (running on a "quad-
core CPU with 8 GB of memory"), and the occluding edge
based SLAM system presented by [2] (running on a Intel
Core i7 CPU, 8GB memory). The edge based SLAM system
of [2] uses occluding depth edges in a similar manner to our
own system but does not make use of RGB edges and utilizes
a different method of occluding edge detection with higher
run times (as illustrated Table II). We see that in general
our system provides a comparable levels of accuracy while
having far shorter total runtimes, being able to process the
30hz sequences in real-time.



Fig. 7: Map created by the proposed SLAM system on the
FR1 room dataset. Occulding edge point clouds are drawn
in red and RGB edge points in green.

VII. CONCLUSIONS

This paper presented a fast, easy to implement method
of occluding depth edge-detection for RGB-D video. The
method makes uses of knowledge obtained from the previous
depth image, to determine what areas of the current image
should be searched. In doing so it is able to ignore large
sections of the image where depth edges are unlikely to
occur. Evaluating on public data sets demonstrated that such
a method can have substantial computational savings over
searching the entire image. An edge based RGB-D SLAM
system using the proposed edge detection methods was also
demonstrated, with similar accuracy and signi�cantly lower
computation times compared to other state of the art systems.
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