
Early version, also known as pre-print

Link to published version (if available): 10.5220/0004377500580068

Link to publication record in Explore Bristol Research
PDF-document
Comparison of Cloud Middleware Protocols and Subscription Network Topologies using CReST, the Cloud Research Simulation Toolkit

The three truths of cloud computing are:
Hardware fails, software has bugs, and people make mistakes

John Cartlidge and Dave Cliff
Department of Computer Science, University of Bristol
Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK
john@john-cartlidge.co.uk, dc@cs.bris.ac.uk

Keywords: Cloud computing, simulation, CReST, middleware protocols, subscription network topologies.

Abstract: We introduce the Cloud Research Simulation Toolkit (CReST), a new cloud computing simulation tool designed to enable cloud providers to research and test their systems before release. We compare CReST with other known cloud simulation tools and demonstrate the utility of CReST by evaluating different distributed middleware protocols and associated subscription network topologies for robustness and reliability. Our results extend previous work and demonstrate that the published literature contains inaccuracies. CReST has been released as open-source under a Creative Commons license on SourceForge, with the intention that it can be used and extended by the cloud computing research community.

1 INTRODUCTION

Windows Azure is a “Platform as a Service” (PaaS) offering by Microsoft, enabling users to run cloud applications on the Azure platform. Cloud applications consist of virtual machines (VMs) running through a virtualisation manager, or hypervisor, on physical servers in Microsoft data centres (DCs). “Clusters” of approximately 1000 servers are independently managed by platform middleware called the Fabric Controller (FC). Each FC manages the lifecycle of applications running in its cluster, and provisions and monitors the health of the hardware under its control. Applications run in VMs through the use of a “guest agent” (GA) that Azure deploys into the OS image of each application. Each server runs a “host agent” (HA) that the FC leverages to deploy application secrets (e.g., SSL certificates) to the GA, and to “heartbeat” with the GA to determine VM health. At VM initialisation, the GA generates a “transfer certificate” (including public key) that it issues to the HA to enable secure communication of application secrets. Transfer certificates are issued with one year validity, using midnight UST of the current day as the valid-from date and the valid-to date calculated by simply adding one to the year. Erroneously, this “meant that any GA that tried to create a transfer certificate on leap day [2012] set a valid-to date of February 29, 2013, an invalid date that caused the certificate creation to fail.” (Laing, 2012). This is the “Leap Day Bug”.

A GA will terminate when its certificate creation fails. A HA has a 75 minute timeout for hearing from a GA, after which it assumes that there is a hardware problem and reports a fault to the FC. Upon receiving a fault report, the FC will set the server state to Human Investigate (HI) and re-assign the failed VMs to an available server elsewhere in the cluster. When a GA initialises on a new server, the Leap Day Bug will reproduce, causing the GA to terminate once again. The result is a cascade of servers being flagged as HI. On 29th February, 2012, such a failure cascade forced Microsoft to disable service management functionality in all clusters worldwide for more than 10 hours while the bug was located and a suitable patch applied. A subsequent series of human errors in the ensuing panic meant it was more than 34 hours before Azure was running at full service availability, prompting the Windows Azure Team to mark their postmortem of the event with a fatalistic epitaph: “The three truths of cloud computing are: hardware fails, software has bugs, and people make mistakes” (Laing, 2012).

The Leap Day Bug is a recent exemplar that high-
lights the incontrovertible problem faced by cloud computing providers: running massively parallel and distributed platforms on heterogeneous hardware in ultra-large scale data centres while maintaining service level agreements (SLAs) under fluctuating user demand is a complex, dynamic challenge that has no simple solution. Exacerbating this situation, while cloud provision has rapidly flourished in recent years, there has been relatively little progress in the development of robust simulation environments to aid in the design and development of cloud solutions before they are production-released. This is a risky game, and one that traditional engineering principles tells us is dangerous to play. Without a rigorous design and test harness, cloud computing provision has disconcerting parallels with the largely trial-and-error construction paradigm employed by architects of medieval cathedrals.

In this paper, we argue for the importance of cloud simulation tools and introduce the Cloud Research Simulation Toolkit (CReST), a discrete event simulation modelling tool for cloud provision. We compare CReST with other available tools and demonstrate its feature uniqueness. We then use CReST to explore a problem known in the literature: the effect that different distributed middleware protocols and component-subscription network topologies have on the consistency of components. In future, we hope to extend this work in order to ask questions of the following nature: if Azure used a different cluster topology and a decentralised rather than centralised FC protocol, what effect would it have had on the Leap Day Bug?

In Section 2 we review existing cloud DC simulation models, before introducing CReST in Section 3. In Section 4 we introduce the problem of component-subscription network topologies and middleware protocols, and then present our results in Section 5. In Section 6 we discuss our results and describe future work, before concluding in Section 7.

2 CLOUD SIMULATION MODELS

Here, we review the small set of cloud computing simulation tools that we have found to exist.

2.1 Fujitsu Laboratories

In October, 2011, Fujitsu Laboratories released a press statement claiming to have developed “the world’s first simulation technology that can instantly test for changes in power consumption throughout a datacenter … when operating status of servers or air-conditioning equipment is altered” (Fujitsu Laboratories, 2011). Fujitsu supported their development of a proprietary simulation tool by saying: “It is impossible to directly perform tests—such as allocating server load or changing the number of running servers in response to fluctuations in processing load, or controlling air conditioning in response to server utilisation and temperature—using an actual data centre. A promising alternative is to employ computer simulations to check the impact of control measures” (Fujitsu Laboratories, 2011). Results of simulation led Fujitsu to claim that linking together the control of servers and air conditioning (AC) equipment—specifically, at times of low demand, by keeping a subsection of vincinal servers running at full load with proximal AC in full operation, and other sections of servers unloaded with proximal AC idled—may cut overall datacenter power consumption by as much as 40% (Fujitsu Laboratories, 2011).

2.2 CoolSim

CoolSim is a CFD-based tool for optimising energy consumption in a DC that combines airflow modelling using the industry-leading ANSYS CFD solver with a SaaS delivery model (CoolSim4, 2012). CoolSim is a commercial product with three paid subscription levels—from occasional use through to regular thermal simulations on large data centres—starting at $10,000. Applied Math Modelling Inc., the owners of CoolSim, suggest the following use-cases: predict cost savings resulting from DC modifications; determine maximum IT load and placement for a given DC; perform a comparative analysis of cooling system failure modes; and optimise the design of a new or existing DC (CoolSim4, 2012).

2.3 CloudSim

Developed at the University of Melbourne, CloudSim is an open source Java library/API that provides a framework for modelling and simulation of cloud computing infrastructures and services (Calheiros, Ranjan, Beloglazov, Rose, & Buyya, 2011). “By using CloudSim, researchers and industry-based developers can focus on specific system design issues that they want to investigate, without getting concerned about the low level details related to Cloud-based infrastructures and services” (CloudSim, 2012). CloudSim leverages BRITE (Boston university Representative Internet Topology gEnerator; Medina, Lakhina, Matta, & Byers, 2001) to model the network topology of a DC. A “.brite” file containing network model description, including nodes and edges, is read by CloudSim to configure the net-
Table 1: Summary of main features of known cloud computing simulation modelling tools.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Virtualisation</th>
<th>Network</th>
<th>Physical</th>
<th>GUI</th>
<th>License</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>CReST</td>
<td>Java Application</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (Simple)</td>
<td>Yes</td>
<td>Open Source</td>
<td>University of Bristol</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>Application</td>
<td>No</td>
<td>No</td>
<td>Yes (CFD)</td>
<td>Yes</td>
<td>Proprietary</td>
<td>Fujitsu Laboratories</td>
</tr>
<tr>
<td>CoolSim</td>
<td>SaaS</td>
<td>No</td>
<td>No</td>
<td>Yes (CFD)</td>
<td>Yes</td>
<td>Subscription</td>
<td>Applied Math Modelling Inc.</td>
</tr>
<tr>
<td>CloudSim</td>
<td>Java Library/API</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>University of Melbourne</td>
</tr>
<tr>
<td>SimGrid</td>
<td>C Library/API</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Open Source</td>
<td>INRIA, Sci. & Tech. Institute</td>
</tr>
</tbody>
</table>

work: the nodes section includes information about the location of the node, in and out degree of the node and the node type (router, switch, server, etc); while the edges provide information about the source and destination of the edge (length, propagation delay and bandwidth). CloudSim has spawned a number of related projects, and results from CloudSim have produced at least 8 (correct as of 3rd Dec, 2012) academic publications (CloudSim, 2012).

Unlike Fujitsu’s application and CoolSim, CloudSim is a function library/API and so cannot be used “out of the box”. Hence, it must be extended via Java classes to achieve a desired functionality. Further, CloudSim does not have a graphical display and does not model the DC at the physical level (of hardware, heat and energy), but instead models at a higher abstraction level of networking and virtualisation (network connections, virtual machines and services).

2.4 SimGrid

Written in C, with bindings for Java, Liu and Ruby, SimGrid is an open-source library/API “that provides core functionalities for the simulation of distributed applications in heterogeneous distributed environments [10] to facilitate research in the area of parallel and distributed large scale systems, such as Grids, P2P systems and clouds.” (SimGrid, 2012).

First released in 1999, SimGrid is now developed and maintained at INRIA—France’s National Institute for Research in Computer Science and Control—and has been used in a total of 119 academic journal articles, conference papers and PhD theses. Yet, from this lengthy publication list, only the conference paper by Caron, Desprez, Muresan, and Suter (2012) is ostensibly related to cloud computing. This is largely due to the fact that SimGrid, as the name suggests, was originally designed to simulate grid computing environments. Only relatively recently has it been extended to accommodate a cloud computing framework. Indeed, in the SimGrid reference manual, the description of the virtual machine typedef, VM, states: “all this is highly experimental and the interface will probably change in the future”. Like CloudSim, SimGrid enables cloud simulation models to be built on top of a grid simulation framework. Also like CloudSim, SimGrid: (i) is a function library/API that models cloud data centres at the level of networking and virtualisation rather than the physical level; (ii) cannot be used “out of the box”; and (iii) contains no GUI. For a summary comparison of all four platforms, refer to Table 1. For a full technical description of SimGrid, refer to Casanova, Legrand, and Quinson (2008).

3 CReST

The Cloud Research Simulation Toolkit (CReST) was developed at the University of Bristol to address the need for a robust simulation modelling tool for research and teaching of DC management and cloud provision. CReST is a stand-alone application, written in Java, and is freely available open source (CReST, SourceForge, 2012, GNU General Public License version 3.0). Although alternative tools exist, CReST has a unique feature set, summarised in Table 1, that enables simulation at multiple abstraction levels: from physical hardware, energy usage and thermal flows within a DC, to networked infrastructure and the virtualisation layer of application services supporting dynamic user demand.

3.1 Design

CReST is designed as a set of coupled “modules” that can be independently switched on or off depending on the level of abstraction required. Modules include: Thermal: Heat generation, propagation and extraction within the DC.

Energy: Energy used by DC hardware.

Failures: Permanent & temporary hardware failures.

Replacements: New hardware specifications.

Subscriptions: Middleware subscription network.

Services: Scheduling and allocation of VMs.

Pricing: Operational costs and pricing of services.

Demand: User demand and cloud brokerage.

UserEvents: User-defined events input via a text file.

GUI: Real-time display.

The flexible and extensible architecture of CReST enables new modules to be added, and current modules to be extended, as necessary.

3.2 Architecture

CReST is a discrete event simulation model that runs as a stand alone application. A schematic of CReST's architecture, showing input and output, is presented in Figure 1. To run CReST it is necessary to input an XML configuration file containing a full hardware specification of each CReST DC. CReST “Builder” is a graphical application for creating and editing such XML configuration files. CReST is also able to read simulation parameters from an optional text “Parameters” file. Parameters in this file overwrite those duplicated in the XML file and offer a quick way for users to edit a simulation configuration, or to run multiple simulations with varying configuration parameters. Users can also input their own events via a “User Events” file, a text file defining event type and time.

CReST may be run with or without a graphical interface. In GUI mode, users are presented with run-time visual feedback, such as the DC “map” view showing failures, server load, and thermal flow (e.g., Figure 2). All simulation data are logged to a set of CSV files—one per “live” module—for postmortem analysis.

To ensure extensibility and module independence, CReST has a Model-View-Controller (MVC) architecture. Following Figure 3, each module has a ModuleRunner that views the EventQueue model using Java’s Observer-Observer interface. Modules observe each Event popped from the EventQueue and decide whether to ignore the event or take appropriate action, which may involve generating new Events to push onto the EventQueue. Thus, modules are independent Observers of the EventQueue and only interact via the Queue, ensuring strict delineation between modules and making it possible to switch modules on and off, delete modules and add new modules with relative ease.

Each simulation constructs a World object that contains one or more DC objects. Following the DC design described in Barroso and Holzle (2009), each DC contains a List of (at least one) abstract Block objects. Blocks are extended by 4 concrete types: Aisle, Container, AirCon and Rack. Aisles and Container objects contain a List of (at least one) Rack objects. In turn, Rack objects contain a List of (at least one) Server objects. Both Server and AirCon objects implement the Failable interface, since they represent hardware that can fail. Server objects contain HardDisk, RAM and Software objects and a List of (at least one) CPU objects. Servers can run Service and VirtualMachine objects, which are started and stopped via methods stop() and start().

All status updates on the World object are initiated by Events generated by each ModuleRunner. Events are pushed to the time-sorted EventQueue. When a new Event is popped from the EventQueue, it performs an action and then has the potential to generate new events, which it pushes back onto the EventQueue; for example, a VMStart event at time, t, on Server 6 will generate a VMStop event on Server 6 at time $t + \Delta$, where Δ is the VM lifetime. Once an event has “performed” and “generated”, it is then viewed by
each ModuleRunner. If a ModuleRunner is interested in the event, then appropriate action is taken, otherwise it is ignored; for example, upon observing the VMStart Event on Server 6, the Energy module will increase the energy usage of Server 6 based on the attributes of the VM that has been started.

3.3 Middleware Subscriptions Module

Here, we detail the middleware subscriptions module used to run the empirical experiments presented in 4 and 5. While this module, in isolation, has similar characteristics to other more classic distributed system simulators, it is the complex interaction between modules that gives CREST its uniqueness; enabling simulation of physical infrastructure, cloud services and users in one toolkit. In this paper we aim to verify the utility of the middleware module by applying it to a specific set of problems described in the literature. We reserve the more ambitious goal of exploring the interactions between multiple cloud computing abstraction levels for future work.

The subscriptions module describes a communications network—a directed graph—between individual servers. Servers connect to a subset of other servers that they periodically query for a “heartbeat” status to see if they are “alive”. This enables servers to have a view of which other hardware is available to communicate. Within this framework it is possible for servers to have an “inconsistent” view of other servers, for example, when Server A believes Server B is “alive” when Server B is, in fact, “dead”; or conversely, when Server A believes Server B is “dead” when Server B is, in fact, “alive”. Inconsistencies occur within the subscriptions network after “ServerFail” or “ServerFix” Events. The percolation of inconsistencies is determined by the network topology and communications protocol. The subscriptions module is designed to compare the efficacy of different topology-protocol pairings.

The subscriptions module pre-defines a set of topologies and protocols, described below. When activated, the subscriptions module generates a communications network across a data centre, with each node corresponding to an individual server. The SubscriptionsModuleEventThread generates SubscriptionUpdateEvents that cause nodes to query the status of other nodes. When a ServerFail or ServerFix Event is popped from the EventQueue, the SubscriptionsModuleRunner observes the Fail/Fix Event and updates the status of the corresponding network node to dead/alive. The proportion of inconsistent nodes is plotted as a time-series graph on the GUI (if active) and logged to the “subscriptions log” CSV file. Other event types observed by the SubscriptionsModuleRunner are ignored.

3.3.1 Network Topologies

For reference, Table 2 summarises the salient features of each network topology, described below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Clustering</th>
<th>Diameter</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>Small</td>
<td>Small</td>
<td>K</td>
</tr>
<tr>
<td>Nearest Neighbour</td>
<td>Very Large</td>
<td>Large</td>
<td>K</td>
</tr>
<tr>
<td>Grid Lattice</td>
<td>Very Large</td>
<td>Large</td>
<td>K</td>
</tr>
<tr>
<td>Small World</td>
<td>Large</td>
<td>Small</td>
<td>Mean $= K$</td>
</tr>
<tr>
<td>Scale Free</td>
<td>Small</td>
<td>Small</td>
<td>Power Law</td>
</tr>
<tr>
<td>Klemm-Eguiluz ($\mu = 0.1$)</td>
<td>Large</td>
<td>Small</td>
<td>Power Law</td>
</tr>
</tbody>
</table>

Random: server nodes are connected at random to exactly K other nodes. A Random network topology has a small clustering coefficient (i.e., few neighbours of a node are themselves neighbours) and a small diameter (i.e., the average path length between any two nodes is small).

Nearest Neighbours: nodes are arranged in a 1D circular array, with each attached to the K nearest
neighbours. This topology has a large clustering coefficient and large diameter.

Regular Grid-Lattice: nodes are arranged on a toroidal grid/lattice network structure and then subscribed to their K nearest neighbours. This arrangement has a large clustering coefficient and large diameter, similar to Nearest Neighbours.

Watts-Strogatz (Small World): nodes are connected using an implementation of the Watts-Strogatz algorithm to generate a “Small World” network (Watts & Strogatz, 1998). Small World networks have a large clustering coefficient and small diameter; and are obtained by departing from a regular lattice, randomly rewiring links with probability $p \ll 1$. Networks created in this way display a degree distribution sharply peaked around the mean value, K.

Barabási-Albert (Scale Free): nodes are connected using an implementation of the Barabási-Albert algorithm that generates a “Scale Free” network, where the distribution of the node degree is scale-free, i.e., it decays as a power law (Barabási & Albert, 1999; Albert & Barabási, 2002). The absence of a typical scale for the connectivity of nodes is often related to the organisation of the network as a hierarchy. Scale Free networks have a small clustering coefficient and small diameter.

Klemm-Eguíluz (Scale Free/Small World): nodes are connected using an implementation of the Klemm-Eguíluz algorithm that utilises a “mixing” parameter, $0 \leq \mu \leq 1$, to generate a topology with properties that vary between Small World ($\mu = 0$) and Scale Free ($\mu = 1$). At some intermediate values, e.g., $\mu = 0.1$, the network has a large clustering coefficient and small diameter, while maintaining a scale-free distribution of node degrees (Klemm & Eguíluz, 2002).

3.3.2 Protocols

Simple peer-to-peer (P2P): nodes communicate with each other directly using a peer-to-peer protocol, requesting the status (alive/dead) of connected nodes.

Transitive peer-to-peer (TP2P): nodes communicate with each other directly using a peer-to-peer protocol in a similar fashion to the simple P2P protocol. However, nodes also pass information about the status of other nodes that are mutually connected. This protocol generates fewer status requests than simple P2P, but has the side effect that “stale” information may percolate across the network (if node A receives information from node B about the status of node C that is “out of date”). This protocol is taken from Sriram and Cliff (2010a).

Centralised: a (small set of) central node(s) periodically requests status information from all other nodes in the network. Individual nodes then query the central node for status information of other nodes, rather than querying those nodes directly.

Revisiting Microsoft Azure’s Platform as a Service, we can consider the Fabric Controller (FC) as middleware with a Centralised protocol, since the host agent (HA) of each node within a Cluster communicates directly with the Cluster’s FC, rather than with another HA directly. The network topology of each Cluster may take different forms, depending on the scheduling (and migration) algorithm that the FC uses—while the FC is likely to begin by issuing application VMs using a Nearest Neighbour topology, over time the network structure is likely to morph into a less regular topology as applications spawn new VMs and failing VMs are migrated. In the following section, we review the literature on scalable middleware and propose some empirical experiments using CReST to replicate and extend this work.

4 MIDDLEWARE RESILIENCE & SCALEABILITY

“A system is scalable if it can be deployed effectively and economically over a range of different “sizes”, suitably defined” (Jogalekar & Woodside, 2000). It is well understood that centralised control systems do not scale well: as a DC grows in scale, middleware that uses a centralised protocol will see an increase in latency, caused by bottlenecking of network communications, and increased risk of single-point failure. To circumvent these problems, distributed protocols offer an attractive alternative; removing the possibility of single-point failure and decreasing the traffic congestion at any one node. However, as Isard (2007) states, distributed middleware can lead to “inconsistency” between networked components:

Where information needs to be shared between components in a distributed system, there is often a choice between designs that allow weak consistency and those that require strong consistency. Weak consistency can improve availability, since one component may be able to operate for a while from cached data when another is unavailable. However, strong consistency often allows simpler designs. (p. 3)
Inconsistency can occur when applications on different machines are configured differently, or are running different versions of software; particularly likely to happen when a new software patch or upgrade is rolled out. Inconsistency can also occur when hardware fails and is no longer “available” (see Torell & Avelar, 2011, for a discussion of “availability” versus “reliability” of hardware). “Traditionally, reliable systems have been built on top of fault-tolerant hardware. The economics of the contemporary computing industry dictate, however, that the cheapest way to build a very large computing infrastructure is to amass a huge collection of commodity computers” (Isard, 2007). In essence, fault-tolerance has moved from hardware to software, making failure a “normal” event that has to be managed efficiently (so called “normal failure”, an extension of the concept “normal accident” expounded by Perrow, 1999). Referring to hardware failures at Google, Miller (2008) states:

In each cluster’s first year, it’s typical that 1,000 individual machine failures will occur; thousands of hard drive failures will occur; one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours; 20 racks will fail, each time causing 40 to 80 machines to vanish from the network; 5 racks will “go wonky” with half their network packets missing in action; and the cluster will have to be rewired once, affecting 5 percent of the machines at any given moment over a 2-day span […] And there’s about a 50 percent chance that the cluster will overheat, taking down most of the servers in less than 5 minutes and taking 1 to 2 days to recover.

Sriram and Cliff (2010a) used a simulation model to empirically compare the resilience and scalability of different middleware protocols in a large scale DC experiencing normal failure such that, at any given time, some proportion of the DC hardware is unavailable. They compared three middleware protocols (Hierarchical, P2P and TP2P) under a selection of network topologies and demonstrated that:

1. inconsistencies grow with DC size;
2. subscription topology has no significant effect on P2P and hierarchical protocols; and
3. under TP2P protocol, there is a direct relation between the clustering coefficient of the subscription topology and inconsistency in the network.

As an extension, Sriram and Cliff (2010b) went on to show that a “hybrid” network topology containing a mix, \(\mu = 0.2 \), of Small World and Scale Free features produces less network inconsistency than a Small World (\(\mu = 0 \)) or Scale Free (\(\mu = 1 \)) topology. The authors concluded that, under TP2P protocol:

4. inconsistencies fall as the path lengths drop. “This contradicts our previous belief that the transitivity caused the higher levels of inconsistencies” (Sriram & Cliff, 2010b).

We believe these results are interesting and deserve further investigation. Hence, we perform a series of empirical experiments, using CREST, to replicate and extend the work of Sriram and Cliff (2010a, 2010b).

4.1 Experimental Design

CREST was used to explore the scalability and resilience of cloud middleware under different messaging protocols and network topologies. To do this, we ran a series of empirical experiments using CREST’s Subscriptions Module, pairing each Protocol with each Topology (18 P-T pairings). All other modules were switched off, apart from the UserEvents Module which was used to input a series of server hardware failures at a specific time. Each P-T pairing was tested under the following conditions:

- number of servers, \(S \in \{100, 1000, 10000\} \);
- mean number of subscriptions, \(K \in \{10, 30, 100\} \);
- number of failures, \(F \in \{10, 100, 500, 1000\} \); and
- failure type, \(T \in \{\text{random, correlated}\} \).

Each run, a UserEvents file was generated to input a set of hardware failures at time, \(t \), where \(t \) was drawn from a Uniform distribution with limits 5 and 15 seconds. Under random failure type, servers were selected randomly from the DC, whereas for correlated failures, a contiguous block of IP addresses was selected at random. Since IP addresses in CREST are determined by server location, correlated failures occur within a localised neighbourhood (e.g., same rack, or same aisle). The network is continually monitored for inconsistency and three measures are recorded:

- maximum proportion of the DC that becomes inconsistent, \(MAX,\ INCON \);
- time until the DC becomes consistent, \(TIME \); and
- total load on the DC network, \(LOAD \).

Each condition was repeated between 10 and 30 times, with mean and 95% confidence intervals taken. CREST simulations lasted one simulated minute.

5 RESULTS & ANALYSIS

For all graphs presented here, we plot mean ±95% confidence interval for each protocol, representing...
Figure 4: Mean ±95% C. I. for each protocol, with TP2P as green triangles, P2P as red squares, and Centralised as blue circles. Maximum network inconsistency (top) and time to consistent (bottom) for DCs with 1,000 servers (left) and 10,000 servers (right) subject to a 5% random hardware failure event.

TP2P as green triangles, P2P as red squares, and Centralised as blue circles. On the x-axis, the network topologies are labelled using the mapping: SF = Barabási-Albert (Scale Free), KE = Klemm-Eguíluz, NN = Nearest Neighbours, Ran = Random, Grid = Regular Grid-Lattice, and SW = Watts-Strogatz (Small World). Further, all graphs present results of Klemm-Eguíluz with mixing parameter $\mu = 0.11$.

Figure 4 shows the effects of scaling on the protocol-topology pairings when 5% of servers fail randomly. The top row displays the maximum inconsistency in the network at any given time, and the bottom row displays the time until the network becomes consistent once again. In the left column we have a DC with 1,000 servers, in the right column a DC with 10,000 servers. It can clearly be seen that maximum inconsistency, top, is invariant to DC size for all protocols. However, the relationship for time to consistent, bottom, is more complicated. For P2P and Central, time to consistent does not vary with DC size. However, for the TP2P protocol, there is a significant increase in time to consistent for topologies: KE, NN, Grid, and SW. From Table 2, it can be seen that these are the four topologies with the highest clustering coefficients. Hence, the likelihood is that inconsistency in the TP2P protocol is sensitive to scaling when the underlying network topology has a high clustering coefficient. As the clustering coefficient increases, there is more likelihood of passing on “stale” information about a mutual “neighbour”. Further, as the size of the network increases, the number of opportunities to pass on stale information also increases, resulting in an overall increase in network inconsistency. It should be noted that the value of maximum inconsistency for KE is an obvious outlier. Possibly, this is a results of the beneficial features of KE described by (Sriram & Cliff, 2010b). However, at this stage, until more analysis is completed, we remain cautious about this datum.

In Figure 5, we see four graphs comparing the effects of random failure (left column) with correlated failure (right column) when 1% of servers in a DC of 10,000 servers fail. For each network, mean subscriptions $K = 100$. It is clear that correlated failure has a significant affect on network inconsistency. Unsurprisingly, when failure is correlated, topologies with a high clustering coefficient suffer the least network inconsistency across all protocols (top row). When considering time to consistent (bottom row), although P2P and Centralised are unaffected by topology or correlated failures, TP2P is significantly affected by both. Once again, for TP2P, time to consistency un-
Figure 5: Mean ±95% C. I. for each protocol, with TP2P as green triangles, P2P as red squares, and Centralised as blue circles. Maximum network inconsistency (top) and time to consistent (bottom) for DCs with 1,000 servers subject to 1% random failure (left) and 1% correlated failure (right).

Under correlated failure is often quicker when clustering coefficients are high (however, there are some exceptions to this rule, such as Ran and Grid). One reason that NN recovers much more quickly than Grid may be because the NN topology fits the underlying physical topology more closely (i.e., servers are more likely to subscribe to other servers in the same rack). This is a similar effect to that observed by Cartlidge and Sriram (2011), who noticed a resilience sensitivity to particular scheduling algorithms when the scheduled/software network directly fits the underlying hardware network.

Figure 6 displays network load under each protocol-topology pairing. As may be expected, load is not affected by failure rate and failure type (not shown), but is affected by protocol and topology. Figure 6 plots the network load for a DC containing 10,000 servers and network subscriptions $K = 100$. Intuitively, we see that the load produced by the Centralised protocol is invariant under topology. However, the load of P2P and TP2P does vary with topology, with high clustering coefficients tending to produce lower load. The ordering of the topologies, based on load, is largely invariant, except for KE and SW under the TP2P protocol. Interestingly, when subscriptions, K, is small, KE load is greater than SW load, however, as K increases, KE load increases more slowly than SW, until SW eventually has greater load (for example, in Figure 6, where $K = 100$). The KE topology has an intriguing scaling behaviour that is unlike the other topologies. We intend to investigate this further to determine whether or not this effect is real, or an artefact of our design.
6 DISCUSSION

In Section 4, we listed four findings from the literature (Sriram & Cliff, 2010a, 2010b). Here, we discuss our results from Section 5 in the context of each finding.

Finding 1: inconsistencies grow with DC size (Sriram & Cliff, 2010a). We have shown (Figure 4) that DC size has no significant effect on inconsistencies when using the Central and P2P protocols. Further, when using the TP2P protocol, inconsistencies only increase with DC size when the network topology has a high clustering coefficient. Hence, we believe that finding 1 is an artefact of experimental design and not a real phenomenon. From our results (not shown), we have evidence that the time to consistency increases with the number of subscriptions, \(K \), under both random and correlated failure. Also, it should be noted that Sriram and Cliff (2010a) automatically scale the number of subscriptions, \(K \), with DC size, \(n \), such that \(K = \sqrt{\pi} n \). Thus, we believe that finding 1 is incorrect: our evidence suggests that inconsistencies grow with subscriptions, \(K \), and not DC size, \(n \).

Finding 2: topology has no significant effect of P2P and centralised (hierarchical) protocols (Sriram & Cliff, 2010a). When considering consistency, for the set of protocol-topology pairings used by Sriram and Cliff (2010a), we agree with this finding. However, in Figure 6, we have shown that topology has a significant effect on the network load of P2P. Hence, finding 2 is not completely accurate. However, we believe this to be a refinement, rather than a refutation, of finding 2.

Finding 3: for TP2P, there is a direct relation between the clustering coefficient of the subscription topology and inconsistency in the network (Sriram & Cliff, 2010a). In Figure 4 we presented evidence to support this finding. Further, we extended this finding by observing the impact of correlated failures (Figure 5). Interestingly, when hardware failures are correlated, rather than random, the inverse of finding 3 holds true: topologies with higher clustering coefficients produce less network inconsistency. The reason for this is intuitive: when a topology is highly clustered, a failure in one region of the network is unlikely to affect many other regions of the network. This can be most clearly seen in the top-right graph of Figure 5, where a 1% correlated failure in a Nearest Neighbour topology produces little over 1% network inconsistency—i.e., nearly 99% of the network is unaffected. Compare this with Random and Scale-Free topologies, where more than 50% of the network becomes inconsistent upon failure. Intriguingly, however, despite also having a very high clustering coefficient, the Grid topology produces a significantly longer period of inconsistency than NearestNeighbour. The reason for this is that the NearestNeighbour topology more tightly matches the underlying hardware topology, an effect similar to that previously identified by Cartlidge and Sriram (2011).

Finding 4: inconsistencies fall as the path lengths drop (Sriram & Cliff, 2010b). As recognised by the authors, this result is in slight contradiction to finding 3: “This contradicts our previous belief that the transitivity caused the higher levels of inconsistencies” (Sriram & Cliff, 2010b). In the work presented here we have not replicated this finding directly. Yet, we have presented some intriguing findings regarding the KE network that we are currently unable to explain. It is our intention to perform further work in this area in order to tease out the relationship between network diameter, clustering, and inconsistencies, particularly in relation to the KE network.

7 CONCLUSIONS

We have introduced the Cloud Research Simulation Toolkit (CReST)—a discrete event simulation modelling tool for cloud provision—and demonstrated its unique feature set when compared with other commercially and freely available alternative tools. We used the “Subscriptions Module” of CReST to run a series of experiments to evaluate the performance—scalability with respect to “consistency”—of different communication protocols and network topologies in a distributed middleware platform. Our results replicate and extend a set of experiments from the literature to test the findings therein. Demonstrating the efficacy of CReST, we were able to draw the following new conclusions:

1. network inconsistency grows with the average number of network subscriptions and not with data centre size, as was previously published;
2. network topology has a significant effect on the network load of peer-to-peer (P2P) protocols; and
3. for transitive peer-to-peer (TP2P) protocols, topologies with higher clustering coefficients produce less network inconsistency when failures are correlated, and more network inconsistency when failures are non-correlated;

We aim to continue extending CReST so that we have a powerful, versatile platform, capable of solving real-world problems in simulation before software is released into production. Hopefully this will enable cloud providers to avoid cascading middleware failure such as the “Leap Day Bug” which, on 29th February, 2012, caused Microsoft to disable service man-
management functionality in all Azure clusters worldwide for more than 10 hours and reduce service availability for more than 34 hours, while the bug was located and a suitable patch applied.

ACKNOWLEDGEMENTS

Particular thanks go to all the LSCITS undergraduate interns that helped to develop the CReST platform: Luke Drury, Sarah Haswell, James Laverack, Callum Muir, and Alex Sheppard. John Cartlidge is supported by EPSRC grant number EP/H042644/1; primary financial support for Dave Cliff’s research comes from EPSRC grant number EP/F001096/1.

REFERENCES

