
Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via ICE Publishing at http://www.icevirtuallibrary.com/doi/abs/10.1680/jgele.16.00162. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
Time-dependent uplift capacity of driven piles in low to medium density chalk

F Ciavaglia*, J Carey†, A Diambra*

† Wind Support Ltd, Bath, United Kingdom
* University of Bristol, Bristol, United Kingdom

Revised Technical paper submitted for possible publication to:
ICE Géotechnique Letters
on 19/12/2016

Paper category: Technical Paper

Author to receive correspondence: Dr Andrea Diambra
Department of Civil Engineering
University of Bristol (UK)
andrea.diambra@bristol.ac.uk

Number of words: 2252 excluding abstract, reference, acknowledgments and captions.
Number of tables: 2
Number of figures: 8
ABSTRACT

A series of load tests have been performed on instrumented 762mm diameter tubular steel piles driven into low to medium density Grade A/B chalk at St. Nicholas-at-Wade, Kent, United Kingdom. This paper presents the results from the static axial uplift tests, which were performed on two piles 7, 50 and 120 days after installation in order to investigate the time dependent variations in shaft resistance. The results show that the static ultimate shaft resistance of this type of chalk can increase by up to a factor of seven over this time period, as a consequence of ‘set-up’ effects. The test results also show that the ‘set-up’ effect is reduced if the pile is subject to lateral loads up to 50% of the ultimate lateral capacity before uplift loading, whilst the application of lateral loading up to 10% of ultimate lateral capacity had negligible influence on the axial capacity. The measured load distribution from strain gauges suggests a mobilization of larger unit shaft resistance in the lower half of the pile. This paper also describes the geotechnical site conditions, the pile instrumentation and the effects of pile-driving on the chalk.

1 INTRODUCTION

Before this research, very few pile tests had been carried out on driven piles in chalk. These limitations are reflected in CIRIA C574 (Lord et al., 2002), which represents the current state-of-the-art of engineering in chalk.

Lord et al. (2002) explained that, when piles are driven into low density chalk, the blocks are easily fractured and crushed to a paste because of the low intact strength of the chalk. An annulus of remoulded chalk is formed around the pile, which appears to cause a reduction in lateral stress. As a result of this, piles driven into this material generally experience low resistance to driving (with a unit shaft resistance during driving of 0-20kPa) and a typical short-term static unit shaft resistance of around 20 kPa (Lord et al., 2002).

The CIRIA C574 guidance for engineering in chalk (Lord et al., 2002) recommends using an ultimate shaft resistance of 120 kPa for pile design in high density Grade A chalk, and 20 kPa for all other densities or grades. These recommendations were based on the results of only two pile tests in medium to high density chalk (Lord & Davies, 1979, and Hobbs & Atkinson, 1993) and two tests in low density chalk (Hobbs and Robins, 1976, and Burland & French, 1990). However, the CIRIA C574 guidance (Lord et al., 2002) also points out that “pore water pressures in the remoulded chalk dissipate with time, so that a pile can generate a higher shaft resistance if there is a longer delay between driving and testing”. This is referred to as ‘set-up’. Vijayvergiya et al. (1977) found that set-up can increase the static axial capacity of piles in low to medium density chalk by a factor of 1.1 after 1 hour and a factor of 1.8 after 60 days.

Based on a review of the current state-of-the-art, the ultimate shaft resistance and its variation with time was seen as one of the most pressing issues related to driven piles in chalk. As such, static uplift tests at different times after installation were performed on open-ended steel tube piles, which were installed as part of a broader research project that also involved static and cyclic lateral tests (Wind Support, 2012).
2 SITE DESCRIPTION

The test site is a disused chalk pit located in St Nicholas Wade in Kent, Southern England. The chalk is CIRIA Grade A/B (Lord et al., 2002) low to medium density and all the superficial weathered chalk has been removed by previous quarrying activity. The site was investigated by nine cone penetration tests (CPT) and five boreholes up to 20 m depth below ground level (SEtech, 2007; Fugro, 2012a; Fugro, 2012b) and the performance of two cyclic CPTs (Diambra et al., 2014). Two typical CPT profiles in the vicinity of the two tested piles are reported in Figure 1. The chalk was found to be within 0.5% of a fully saturated state, even though the groundwater level was about 10-11 m below ground level. A summary of the key chalk properties is presented in Table 1.

![Cone Tip Resistance, q_c, (MPa) vs Depth bgl (m)](image1)

![Cone Sleeve Friction, f_s, (kPa) vs Depth bgl (m)](image2)

![Pore Water Pressure, u, (kPa) vs Depth bgl (m)](image3)

Fig. 1. Typical CPT results including: (a) cone tip resistance (q_c); (b) sleeve friction (f_s) and (c) pore pressure (u)

<table>
<thead>
<tr>
<th>Chalk Formation</th>
<th>Within the Margate chalk member and upper part of the Seaford Chalk Formation of the White Chalk Subgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRIA Grade</td>
<td>Grade A/B</td>
</tr>
<tr>
<td>Bulk Density (Mg/m³)</td>
<td>Average 1.94 (Range 1.88-2.09)</td>
</tr>
<tr>
<td>Dry Density (Mg/m³)</td>
<td>1.5 (1.38-1.73)</td>
</tr>
<tr>
<td>Saturation Moisture Content (%)</td>
<td>29.5 (21-33)</td>
</tr>
</tbody>
</table>
3 PILE CHARACTERISTICS AND INSTRUMENTATION

Two piles were subject to static axial uplift tests and they are named as Pile 1 and Pile 2. Both piles had an outside diameter (D) of 762 mm, wall thickness (WL) of 44.5 mm, total length (L) of 5 m and an embedded length (EL) of 4 m. The steel grade was API 5L X65.

Vertical movements of the pile head were recorded by four linear variable displacement transducers (LVDT). Twenty vibrating wire (VW) strain gauges were welded in pairs at diametrically opposite positions (Figure 2a) at selected depths along the piles (Figure 2b). To avoid damage during driving, angular steel channels were welded over the gauges and each channel was closed at the pile toe using a 90 degree tapered steel plate with a nominal height of approximately 100 mm (Figure 2c).

![Figure 2. Pile instrumentation: (a) Pile cross-section, (b) Strain gauge positions and (c) Pile showing angular strain gauges protection.](image)

4 PILE INSTALLATION

The piles were driven using a 7-tonne hammer (7T Junttan PM20) as shown in Figure 3a. The measured blowcounts versus pile penetration depth (Figure 3b) show an easy driving to target depth for both the piles. The drop height of the hammer ram was varied between 100 mm and 400 mm, to suit the driving resistance.
During pile driving installation the chalk displaced by moving up inside the pile, raising the internal chalk level by approximately 1.5 m (Figure 4a). It was estimated that the volume of this displaced chalk was approximately equal to the volume of steel driven below ground level. This suggests that the preferential ‘flow path’ for displaced chalk was up inside the piles. It was also observed that all the chalk inside the pile became completely disturbed by the action of driving. The preferential flow path was likely due to the very low resistance of the completely disturbed chalk inside the pile, including the very low internal shaft resistance. For a large diameter pile, where the chalk in the very centre of the pile is likely remain intact, a preferential flow path up the inside of the pile is not envisaged. Instead, it is expected that the chalk will be displaced outside the pile just as easily as inside.

As the chalk rose inside the pile and came into contact with the hammer, significant damping occurred as the hammer tried to compress the chalk. This meant that driving had to be stopped several times to remove the excess chalk before the pile driving could continue. This damping effect accounts for the increase in blow count after 3.5m penetration, as shown in Figure 3b.

There was no obvious gap between the piles and the surrounding soil at the completion of the driving process, however, some slight heave (Fig 4c) was observed around the outside of the piles during driving, which remained after driving was completed. External to the piles, the chalk remained relatively undisturbed and intact, apart from a remoulded annulus that was approximately 20-40 mm thick (Figure 4b) and a zone of a fractured chalk extending 500mm beyond the pile wall. Muir Wood et al. (2015) also found that driving steel plates of different thicknesses into low to medium density chalk (at the same Kent test site) creates a zone of remoulded chalk adjacent to the plates, with a typical width of around 40% of the plate thickness.
Fig. 4. Effect of Pile Driving: (a) top view of the pile and the chalk raised inside during driving; (b) side view of the pile showing remoulded annulus; (c) heaving of ground around the pile.

A restrike test was carried out on Pile 1 two hours after installation and on Pile 2 twelve hours after installation. The restrike blows were monitored using a Pile Driving Analyzer (PDA) and the data was analysed using CAPWAP software. The results indicated an average shaft resistance of 11 kPa and unit end bearing of 6.5 MPa for Pile 1 (two hours after installation) and an average shaft resistance of 23 kPa and unit end bearing of 9.2 MPa for Pile 2 (twelve hours after installation).

5 PILE LAYOUT AND TESTING STRATEGY

The pile layout is provided in Figure 5, where the boreholes and CPTs locations are also mapped. Piles 3 to 5 (marked in grey in Figure 5) were also driven as part of the same test campaign but
tested under lateral loading only and these results have been discussed in Ciavaglia et al. (2016) and Wind Support (2012).

The uplift tests on Pile 1 and Pile 2 were performed in three phases at different times (2-6 days, about 7 weeks and about 4 months) after pile installation as reported in Table 2. The main purpose of the tests performed on Pile 1 was to investigate possible time dependent variations in pile behaviour following installation, which might be caused by the dissipation of positive excess pore pressures, or re-cementation of the remoulded chalk as suggested by Lord et al. (2002). The tests on Pile 2 were used to determine if lateral loading can affect the build-up of shaft resistance over time. Pile 2 was subjected to monotonic lateral loads up to approximately 10% its ultimate lateral pile capacity (determined to be about 2500 kN upon lateral loading to failure, Wind Support, 2012) before Tests 2_A7 and 2_A52 (carried out 7 and 52 days after installation, respectively), and up to 50% ultimate lateral pile resistance before Test 2_A122 (carried out 122 days after installation).

Table 2. Summary of pile tests and results

<table>
<thead>
<tr>
<th>Pile No.</th>
<th>Test name</th>
<th>Time after driving (days)</th>
<th>Max load (kN)</th>
<th>Average unit shaft friction (kPa)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1_A6</td>
<td>6</td>
<td>296</td>
<td>23</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1_A50</td>
<td>50</td>
<td>620</td>
<td>56</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1_A119</td>
<td>119</td>
<td>1691</td>
<td>168</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>2_A7</td>
<td>7</td>
<td>290</td>
<td>22</td>
<td>Lateral load up to 10% lateral capacity before the uplift test</td>
</tr>
<tr>
<td></td>
<td>2_A52</td>
<td>52</td>
<td>650</td>
<td>60</td>
<td>Lateral load up to 10% lateral capacity before the uplift test</td>
</tr>
<tr>
<td></td>
<td>2_A122</td>
<td>122</td>
<td>797</td>
<td>75</td>
<td>Lateral load up to 50% lateral capacity before the uplift test</td>
</tr>
</tbody>
</table>
6 UPLIFT TESTS RESULTS

6.1 LOAD-DISPLACEMENT CURVES

The load-displacement curves obtained during the Pile 1 and 2 test series are shown in Figure 6. Pile 1 shows a very large increase in uplift capacity with time after installation. The capacity at 7 weeks is about twice the capacity after 2 days after driving, while the capacity after 4 months is about six times higher (Figure 6a). The load-displacement curves display almost bilinear behaviour up to the failure point with the yield point being at about 5 mm for the first two tests (1_A2 and 1_A50) and at a higher displacement for the final test (1_A119).

The results for Pile 2 (Figure 6b) are similar to those for Pile 1 for the first two tests (2_A7 and 2_A52), but there was no further increase in capacity for the final test after 4 months (2_A122). This last test shows an almost coincident load-displacement curve to the test performed after about 7 weeks (2_A52). This may suggest that application of lateral loading up to 10% of ultimate had negligible influence on the axial capacity, whilst the application of 50% ultimate lateral load had an adverse effect, possibly because a significant gap had developed between pile and chalk. In fact, the pile head lateral displacement measured at 50% of ultimate lateral load, was about 18mm. A similar dimension of the gap between pile and chalk was measured.

By imposing force equilibrium on the piles and accounting that, in all tests with exception of Test 1_A2, the chalk inside the pile was jointly lifted with the piles during loading, the average external unit shaft resistance (f_s) has been determined and plotted in Figure 7. The results shows that the 20 kPa unit shaft resistance recommended by Lord et al. (2002) was only measured a short time after pile driving (2 to 7 days). These results are consistent with the CAPWAP results, which are also
reported in Figure 7. A consistent increase in average external unit shaft resistance up to about 60 kPa was measured for both piles after seven weeks. A further increase of up to 168 kPa was measured for Pile 1 after four months. However, the application of lateral load up to 50% the lateral capacity cancelled any further increase in unit shaft resistance for Pile 2 beyond seven weeks, since a value of about 60 kPa appears to have also measured in Test 2_A122. The unit shaft resistance values in Figure 7 are static long-term values and, although they suggest that the CIRIA C574 recommendation for the unit shaft friction of piles in low to medium density chalk may be conservative, the application of two-way cyclic axial loading could result in a significant degradation in ultimate unit shaft resistance. Related to this, are the observations of Diambra et al. (2014) that show a large cone sleeve friction degradation during cyclic CPT tests.

![Fig. 7. Average unit shaft resistance vs time elapsed since pile installation](image)

6.2 DISTRIBUTION OF SHAFT RESISTANCE

The strain gauges readings offer some insight into the distribution of shaft resistance along the pile. For these analyses, it has been assumed that negligible residual axial stresses would remain in the pile after driving based on the fact that the driving resistance of the chalk was low and axial stiffness of the pile was high. The measured load distribution has been determined simply by 'zero-ing' the strain gauge readings before the start of each load test, as presented in Figures 8a to 8c for three
tests performed at different times after pile installation. The unit shaft resistance (f_s) deduced from
the measured load distributions is also shown in the figures. The results indicate that a larger f_s is
developed on the lower half of the pile as compared to the upper half.

![Load distribution along the pile shaft at failure for Test 2_A7, Test 2_A122, and Test 1_A119.](image)

Fig. 8: Load distribution along the pile shaft at failure for: (a) Test 2_A7, (b) Test 2_A122 (b) and (c) Test 1_A119.

7 CONCLUSIONS

Two instrumented hollow steel piles with external diameter of 0.762mm and 4m embedded length
were driven in Grade A/B, low to medium density chalk and tested under uplift axial load at different
times after installation. The following conclusions can be drawn from the analysis of the test results:
1. During pile driving the chalk displaced up inside the pile, showing this was the preferential ‘flow path’. Calculations showed that the amount of chalk rising inside the pile was equal to the volume occupied by the pile steel in the ground.

2. A steady increase in uplift capacity was observed with elapsed time from pile installation. The measured capacity after 7 weeks was about twice the initial one (measured 2-6 days after driving), while the capacity after 4 months was 6 times the initial value.

3. An average unit shaft resistance of 23 kPa was determined from the initial uplift tests performed a few days after driving. This is consistent with the CIRIA C574 design recommendations for piles in low to medium density chalk. However, the results from uplift tests on the same piles showed the ultimate average shaft resistance increased sevenfold (to 168 kPa) after 4 months. This increase is known as ‘set-up’ and may be attributed to excess pore pressure dissipation and possible re-bonding of remoulded chalk particles.

4. The ultimate shaft resistance can be affected by previous lateral loading. While the application of lateral loads up to 10% of the ultimate lateral resistance did not affect axial pile resistance, lateral loads reaching 50% of the ultimate lateral pile resistance resulted in a 65% reduction in ultimate shaft resistance relative to a pile that experienced no previous lateral loading.

5. Strain-gauges readings indicate the development of larger unit shaft resistance on the lower half of the pile as compared to the upper half.

8 ACKNOWLEDGMENTS

This research project was collectively sponsored by DONG Energy Power, Scottish Power Renewables, Centrica Renewable Energy, Statoil, Statkraft, Vattenfall, Fugro Geoconsulting, and Lloyd’s Register. This research was also supported and reviewed by Det Norske Veritas (DNV) and Germanischer Lloyd. The valuable and professional contribution of PMC in carrying out the pile tests is acknowledged.

9 REFERENCES

